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ABSTRACT
In this paper, we prove the existence of mild solutions for the
semilinear fractional order functional of Volterra-Fredholm type
differential equations with impulses in a Banach space. The re-
sults are obtained by using the theory of fractional calculus, the
analytic semigroup theory of linear operators and the fixed point
techniques.
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1. INTRODUCTION
Impulsive differential equations have become more important
in some mathematical models of real processes and phenom-
ena studied in control, physics, chemistry, population dynam-
ics, biotechnology and economics. Integro differential equations
play an important role in many branches of linear and non-linear
functional analysis and their applications in the theory of en-
gineering, mechanics, physics, chemistry, biology, economics,
electrostatics. For some general and recent works on the theory
of impulsive differential and integrodifferential equations, we re-
fer the reader to (see [1, 2, 4, 5, 7, 9, 10, 13, 14, 20, 29, 30]).
Fractional differential equations have many applications in var-
ious fields of engineering and science, for example, vibration,
viscoelasticity, control and electromagnetic theory. Many re-
cent works are devoted to physical application of fractional cal-
culus and fractional differential equations. The theory of frac-
tional differential equations and their applications has been ex-
tensively studied by several authors (see [12, 22–24]) and refer-
ences therein.
In recent years, there has been a significant development in im-
pulsive fractional differential equations. For more details, we
refer the monographs (see [21, 25, 28]) and the papers (see
[3, 8, 11, 26, 27, 32, 33]).
In particular ( [17–19, 31]) discussed some existence results for
nonlinear fractional differential equations with impulse. Very re-
cently, in ( [16]), the author discussed about the existence of mild
solutions for the fractional order semilinear functional differen-
tial equations with impulse.
Motivated by above mentioned works ( [16, 31]), the purpose
of this paper, we shall consider the existence of mild solutions
for the fractional order semilinear functional Volterra-Fredholm
type of differential equations with impulses as follows,

Dαx(t) = Ax(t) + f

(
t, xt,

∫ t

0

h(t, s, xs)ds,∫ T

0

k(t, s, xs)ds

)
,

t ∈ J = [0, T ], t 6= tk,

∆x|t=tk = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(t) = φ ∈ Λ,

(1)

where A is the infinitesimal generator of an analytic semigroup
of bounded linear operators, {T (t), t ≥ 0} on a Banach space
X, f : J × Λ × X × X → X , h : D × Λ →
X, k : D × Λ → X are appropriate functions and D :=
{(t, s) ∈ [0, T ] × [0, T ] : s ≤ t} , where Λ is a phase space
defined in preliminaries, 0 = t0 < t1 <, · · · , < tm < tm+1 =
T, Ik ∈ C(X,X) (k = 1, 2, · · · , m) are bounded functions.
∆x|t=tk = x(t+k ) − x(t−k ), x(t+k ) and x(t−k ) represent the left
and right limits of x(t) at t = tk respectively. We assume that
the histories xt : [−τ, 0] → X, xt(s) = x(t + s), s ∈ [−τ, 0]
belong to an abstract phase space Λ.
In this paper, we use the analytic semigroup theory of linear op-
erators and fixed point method to prove the existence and unique-
ness of mild solution. In Section 2, we present some definition
and preliminary facts. In Sections 3, we prove the existence of
mild solution to the fractional order mixed type functional inte-
grodifferential equations with impulses.

2. PRELIMINARIES
Throughout this work, (X, ||.||) is a Banach space. An opera-
tor A is said to be sectorial if there are constants ω ∈ R, θ ∈
[π/2, π], M > 0 such that the following two conditions are sat-
isfied: 

(1)ρ(A) ⊂
∑
θ,ω = {λ ∈ C : λ 6= ω,

|arg(λ− ω)| < θ} ,
(2)||R(λ,A)||L(X) ≤ M

|λ−ω| , λ ∈
∑
θ,ω .

Consider the following Cauchy problem for the Ca-
puto fractional derivative evolution equation of order
α(m− 1 < α < m, m > 0 is an integer):

{
Dαx(t) = Ax(t),
x(0) = x, x(k)(0) = 0, k = 1, 2, · · · , m− 1

(2.1)
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where A is a sectorial operator. The solution operators Sα(t) of
(2.1) is defined by (see [17])

Sα(t) =
1

2πi

∫
Γ

eλtλα−1R(λα, A)dλ,

where Γ is a suitable path lying on
∑
θ,ω .

An operator A is said to belong to Cα(X;M,ω), if prob-
lem (2.1) has a solution operator Sα(t) satisfying ||Sα(t)|| ≤
Meωt, t ≥ 0. Denote Cα(ω) := {Cα(X;M,ω) : M ≥ 1},
and Cα := {Cα(ω) : ω ≥ 0}.

DEFINITION 1. (see [31]). A solution operator Sα(t) of
(2.1) is called analytic if Sα(t) admits an analytic extension
to a sector

∑
θ0

:= {λ ∈ C\{0} : |argλ| < θ0} for some
θ0 ∈ (0, π

2
]. An analytic solution operator is said to be of an-

alyticity type (θ0, ω0) if for each θ < θ0 and ω > ω0 there
is an M = M(θ, ω) such that ||Sα(t)|| ≤ MeωRet,

∑
θ :=

{t ∈ C\{0} : |argt| < θ} . Denote Aα(θ0, ω0) :=
{A ∈ Cα : A generates analytic solution

operators Sα(t) of type (θ0, ω0)} .
LEMMA 2. (see [31]). Let α ∈ (0, 2), a linear closed

densely defined operator A belong to Aα(θ0, ω0) iff λα ∈ ρ(A)
for each λ ∈

∑
θ0+π

2
, and for any θ < θ0, ω > ω0, there is a

constant C = C(θ, ω) such that∥∥λα−1R(λα, A)
∥∥ ≤ C

|λ− ω|
, λ ∈

∑
θ+π

2

(ω).

For any τ > 0, we have

Λ = {Φ : [−τ, 0]→ Xsuch that Φ(t) is bounded

and measurable}

and equip the space Φ with the norm

||Φ||Λ = sup
s∈[−τ,0]

|Φ(s)|, ∀ Φ ∈ Λ.

We consider the space

Λh = {x : [−τ, T ]→ X such that

xk ∈ C((tk, tk+1], X) and

there exist x(t+k ) and

x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Λ,

k = 0, 1, · · · ,m}

where xk is the restriction of x to Jk = (tk, tk+1], k =
0, 1, · · · ,m. Set ||.||Λh to be a seminorm in Λh defined by

||x||Λh = ||φ||Λ + sup {|x(s)| : s ∈ [0, T ]} , x ∈ Λh.

DEFINITION 3. ( [6]) Let f : J × Λ → X be a continuous
function, and A is a sectorial operator. A continuous solution x(t)
of the integral equation

x(t) =


Sα(t)φ+

∫ t
0

(t− s)α−1Tα(t− s)
f(s, xs)ds, 0 ≤ t ≤ T,

φ(t), −τ ≤ t ≤ 0,

where

Sα(t) :=
1

2πi

∫
Γ

eλtλα−1R(λα, A)dλ,

Tα(t) :=
1

2πi

∫
Γ

eλtR(λα, A)dλ

and Γ is suitable path lying on
∑
θ,ω , is said to be a mild solution

of the initial value problem{
Dαx(t) = Ax(t) + f(t, xt), t ∈ J = [0, T ],

x(t) = φ ∈ Λ.

LEMMA 4. (see [31]). If α ∈ (0, 1) and A ∈ Aα(θ0, ω0),
then for any x ∈ X and t > 0, we have

||Tα(t)|| ≤ Ceωt(1 + tα−1), t > 0, ω > ω0.

DEFINITION 5. (see [16]). A function x ∈ Λh is a solution
of fractional integral equation

x(t) =



Sα(t)φ+
∫ t

0
Tα(t− s)

f
(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,

∫ T
0
k(s, θ, xθ)dθ

)
ds,

t ∈ [0, t1];

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))] +
∫ t
t1
Tα(t− s)

f
(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,

∫ T
0
k(s, θ, xθ)dθ

)
ds,

t ∈ (t1, t2];

...

Sα(t− tm)[x(t−m) + Im(x(t−m))] +
∫ t
tm
Tα(t− s)

f
(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,

∫ T
0
k(s, θ, xθ)dθ

)
ds,

t ∈ [tm, T ];

φ(t), −τ ≤ t ≤ 0

will be called a mild solution of problem (1.1).

In this paper, we will employ an axiomatic definition for the
phase space Λ, Λ is a linear space of functions mapping [−τ, 0]
into X endowed with a seminorm ||.||Λ, which satisfies the
following conditions:

(A1) If x : [−τ, T ] → X is a continuous on [0, T ] and x0 ∈ Λ,
then xt ∈ Λ and xt is continuous in t ∈ [0, T ].

(A2) ||φ(0)|| ≤ K1||φ||Λ for φ ∈ Λ and some constant K1.
(A3) There exist a measurable and locally bounded functions

K(t) and M(t) of t ≥ 0 such that

||xt||Λ ≤ K(t) sup
θ∈[0,t]

||x(θ)||+M(t)||x0||Λ,

for t ∈ [0, T ] and x as in (A1).

In order to prove the existence of mild solution of IVP (1.1), we
need following lemma.

LEMMA 6. ( [15]) Let X be a Banach space, and U ⊂ X
convex with 0 ∈ U , let F : U → U be a completely continuous
operator, then either
(a)F has a fixed point, or
(b)the set E = {x ∈ U : x = λF (x), 0 < λ < 1} is un-
bounded.

3. EXISTENCE RESULTS
In this section, we study the existence of mild solutions for the
system (1.1)
To establish our results, we introduce the following conditions;

(H1) f : [0, T ] × Λ ×X ×X → X is continuous, and these
exists Hf such that

||f(t, ϕ, ϕ1, ϕ2)− f(t,Ψ,Ψ1,Ψ2)|| ≤
Hf [||ϕ−Ψ||Λ + ||ϕ1 −Ψ1||+ ||ϕ2 −Ψ2||] .

(H2) K = sup
t∈[0,T ]

K(t), M1 = sup
t∈[0,T ]

M(t), Ns =

sup
0<t<T

||Sα(t)|| and NT = sup
0<t<T

Ceωt(1 + t1−α).

(H3) The function Ik : X → X are continuous and there exist
constant d such that ||Ik(x)|| ≤ d, k = 1, 2, · · · ,m, for
each x ∈ X .
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(H4) There exist ρ such that

||Ik(x)− Ik(y)|| ≤ ρ||x− y||, k = 1, 2, · · · ,m,

for each x, y ∈ X .
(H5) For each (t, s) ∈ D the function h(t, s, .) : D×Λ→ X ,

is continuous and for each x ∈ Λ, h(t, s, .) : D × Λ→ X ,
is strongly measurable. There exists an integrable function
p : J → [0,∞) and a constant γ > 0, such that

||h(t, s, x)|| ≤ γp(s)W (||x||),

where W : [0,∞) → [0,∞) is continuous nondecreasing
function.

(H6) For each (t, s) ∈ D the function k(t, s, .) : D×Λ→ X ,
is continuous and for each y ∈ Λ, k(t, s, .) : D × Λ→ X ,
is strongly measurable. There exists an integrable function
q : J → [0,∞) and a constant γ1 > 0, such that

||k(t, s, y)|| ≤ γ1q(s)W1(||y||),

where W1 : [0,∞) → [0,∞) is continuous nondecreasing
function.

(H7) The function f : J × Λ × X × X → X satisfies the
following Caratheodory conditions:
(a)t → f(t, x, y, z) is measurable for each (x, y, z) ∈ Λ ×
X ×X,
(b)(x, y)→ f(t, x, y, z) is continuous for almost all t ∈ J .

(H8) ||f(t, x, y, z)|| ≤ m(t)Ψ(||x||Λ + ||y|| + ||z||) for al-
most all t ∈ J and all x ∈ Λ, y, z ∈ X , where m ∈
L1(J,R+) and Ψ : R+ → (0,∞) is continuous and in-
creasing with

C2

∫ T

0

m̂(s)ds ≤
∫ ∞
C1

ds

Ψ(s) +W (s) +W1(s)
,

where

C1 =
Ns(||x0||+ d)

1−NS
, C2 =

NTT
α

α(1−Ns)
,

m̂(t) = max{C2m(t), γp(t), γ1q(t)}.

(H9) h : D × Λh → X, and there exist a constant Hh > 0,
such that∥∥∥∥∫ t

0

(h(t, s, xs)− h(t, s, ys))ds

∥∥∥∥ ≤ Hh||xs − ys||Λ.
(H10) k : D × Λh → X, and there exist a constant Hk > 0,

such that∥∥∥∥∫ t

0

(k(t, s, xs)− k(t, s, ys))ds

∥∥∥∥ ≤ Hk||xs − ys||Λ.
Remark 1.
For each l > 0, we define Λl = {x ∈ Λh, ||x|| ≤ l}, then for
each x, y ∈ Λh, we have∥∥∥∥f (t, xs,∫ t

0

h(t, s, xs)ds,

∫ T

0

k(t, s, xs)ds

)
−f
(
t, ys,

∫ t

0

h(t, s, ys)ds,

∫ T

0

k(t, s, ys)ds

)∥∥∥∥
≤ Hf [||xs − ys||Λ +Hh||xs − ys||Λ +Hk||xs − ys||Λ]

≤ Hf [1 +Hh +Hk]||xs − ys||Λ.

We have the following theorem regarding the existence and
uniqueness of mild solution for the IVP (1.1)

THEOREM 7. Assume conditions (A), (H1), (H2), (H4), (H9)
and (H10) are satisfied, then the problem (1.1) has a unique mild
solution provided that

Ns(ρ+ 1) +
1

α
NTHf (1 +Hh +Hk)KTα < 1

Proof: Transform the problem (1.1) into a fixed point problem.
Consider the operator F : Λh → Λh defined by

Fx(t) =



Sα(t)φ+
∫ t

0
Tα(t− s)

f
(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ [0, t1];

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))]

+
∫ t
t1
Tα(t− s)f

(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ (t1, t2];

...
Sα(t− tm)[x(t−m) + Im(x(t−m))]

+
∫ t
tm
Tα(t− s)f

(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ [tm, T ];

φ(t), −τ ≤ t ≤ 0.

Let x, y ∈ Λh, then for each t ∈ (0, t1], we have

||Fx(t)− Fy(t)|| ≤ Ns||xs − ys||Λ

+NT

∫ t

0

(t− s)α−1

Hf [1 +Hh +Hk]

||xs − ys||Λds

≤
[
Ns +

1

α
NTHf

[1 +Hh +Hk]KTα]

||x− y||.

For t ∈ (t1, t2], we have

||Fx(t)− Fy(t)|| ≤ Ns[||x(t−1 )− y(t−1 )||
+ρ||x(t−1 )− y(t−1 )||]

+NT

∫ t

0

(t− s)α−1

Hf [1 +Hh +Hk]||xs − ys||Λds

≤
[
Ns(ρ+ 1) +

1

α
NTHf

(1 +Hh +Hk)KTα]

||x− y||.

Similarly, we have

||Fx(t)− Fy(t)|| ≤
[
Ns(ρ+ 1) +

1

α
NTHf

(1 +Hh +Hk)KTα] ||x− y||,
t ∈ (ti, ti+1)

and

||Fx(t)− Fy(t)|| ≤
[
Ns(ρ+ 1) +

1

α
NTHf

(1 +Hh +Hk)KTα] ||x− y||,
t ∈ (tm, T ].

Then, for each t ∈ [−τ, T ], we have

||Fx(t)− Fy(t)|| ≤
[
Ns(ρ+ 1) +

1

α
NTHf

(1 +Hh +Hk)KTα] ||x(t)− y(t)||.

Therefore, F is a contraction operator, hence F has a unique
fixed point by the Banach contraction principle. That is problem
(1.1) has a unique mild solution.
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Next we give an existence result based on nonlinear alternative
of Leray-Schauder applied to completely continuous operator.

THEOREM 8. If Ns < 1 and conditions (A), (H2), (H3),
(H5)-(H8) are satisfied, then the problem (1.1) has at least one
mild solution.

Proof: Transform the problem (1.1) into a fixed point problem.
Consider the operator F : Λh → Λh define by

Fx(t) =



Sα(t)φ+
∫ t

0
Tα(t− s)

f
(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ [0, t1];

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))]

+
∫ t
t1
Tα(t− s)f

(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ (t1, t2];

...
Sα(t− tm)[x(t−m) + Im(x(t−m))]

+
∫ t
tm
Tα(t− s)f

(
s, xs,

∫ s
0
h(s, θ, xθ)dθ,∫ T

0
k(s, θ, xθ)dθ

)
ds, t ∈ [tm, T ];

φ(t), −τ ≤ t ≤ 0.

The proof is given in several steps.
Step 1 F is continuous.
Let xn be a sequence such that xn → x in Λh, then for t ∈ [0, T ]
we have

||f(s, xns , ·, ·)− f(s, xs, ·, ·)|| ≤ ε, n→∞,

become the function f is continuous. Now, for every t ∈ [0, t1],
we have

||F (xn)(t)− F (x)(t)|| ≤ NT

∫ t

0

(t− s)α−1

||f(s, xns , ·, ·)
−f(s, xs, ·, ·)||

≤ εTαNT
α

.

Similarly, for t ∈ (ti, ti+1], we have

||Fxn(t)− Fx(t)|| ≤ Ns[||xn(t−i )− x(t−i )||
+ρ||(xn(t−i ))− (x(t−i ))||]

+
εTαNT
α

→ 0,

as n→∞, and for each t ∈ (tm, T ], we have

||Fxn(t)− Fx(t)|| ≤ Ns[||xn(t−m)− x(t−m)||
+ρ||(xn(t−m))− (x(t−m))||]

+
εTαNT
α

→ 0,

as n→∞. Since f and Ik, k = 1, 2, · · · ,m are continuous, we
have F is continuous.
Step 2 F maps bounded sets into bounded sets in Λh.
It is enough to show that for any r > 0, there exists a positive
constant l, such that for each x ∈ Br = {x ∈ Λh, ||x|| ≤ r} we
have ||F (x)|| ≤ l.
Since f is continuous, there exist a constant Mr , such that

||f(t, u, v, w)|| ≤Mr, u ∈ Λh, v, w ∈ X, t ∈ [τ, T ].

Then, for any x ∈ Br, t ∈ [0, t1], we have

||Fx(t)|| ≤ Nsr +
TαNTMr

α
.

Similarly, for each t ∈ (ti, ti+1], i = 1, 2, · · · ,m, we have

||Fx(t)|| ≤ Ns(r + d) +
TαNTMr

α
.

Therefore, for each x ∈ Br, t ∈ [−τ, T ], we have

||Fx(t)|| ≤ Ns(r + d) +
TαNTMr

α
=: l.

Step 3 F maps bounded sets into equicontinuous sets in Λh.
Let Br is a bounded set of Λh as in Step 2. Then, for each
s1, s2 ∈ [0, t1], s1 < s2, we have

||F (x)(s2)− F (x)(s1)|| ≤ M ||φ|| ||eωs2 − eωs1 ||

+NTMr

(∫ s2

0

(s2 − s)α−1ds

−
∫ s1

0

(s1 − s)α−1ds

)
≤ M ||φ|| |eωs2 − eωs1 |

+
NTMr(s

α
2 − sα1 )

α
.

Similarly, for each s1, s2 ∈ [ti, ti+1], s1 < s2, we have

||F (x)(s2)− F (x)(s1)|| ≤ M(r + d)e−ωti |eωs2 − eωs1 |

+
NTMr(s

α
2 − sα1 )

α

As s2 → s1 the right-hand side of the above inequality tends to
zero. The equicontinuity for the cases s1 < s2 ≤ 0 and s1 ≤
0 ≤ s2 is obvious.
As a consequence of steps 1-3, together with Arzela-Ascoli the-
orem, we can conclude that F : Λh → Λh is continuous and
completely continuous.
Step 4 A Priori bounds.
We now show there exists an open set U ⊂ Λh with x 6= λF (x)
for λ ∈ (0, 1) and x ∈ ∂U .
Let xλ ∈ U and xλ(t) = λF (xλ)(t) for 0 < λ < 1, we have

||xλ(t)|| =



λ[Ns||x0||+NT
∫ t

0
(t− s)α−1m(s)

Ψ
(
||xλ(t)||+

∫ s
0
γp(τ)W (xτ )dτ

+
∫ T

0
γ1q(τ)W1(xτ )dτ

)
ds],

t ∈ [0, t1];

λ[Ns(||xλ(t)||+ d)

+NT
∫ t
t1

(t− s)α−1m(s)

Ψ
(
||xλ(t)||+

∫ s
0
γp(τ)W (xτ )dτ

+
∫ T

0
γ1q(τ)W1(xτ )dτ

)
ds],

t ∈ (t1, t2];

...
λ[Ns(||xλ(t)||+ d)

+NT
∫ t
tm

(t− s)α−1m(s)

Ψ
(
||xλ(t)||+

∫ s
0
γp(τ)W (xτ )dτ

+
∫ T

0
γ1q(τ)W1(xτ )dτ

)
ds],

t ∈ (tm, T ];

φ(t), −τ ≤ t ≤ 0.

8
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By the young inequality, for t ∈ (ti, ti+1], i = 1, 2, · · · ,m, we
get that

||xλ(t)|| ≤ Ns||xλ(t)||+Nsd

+
TαNT
α

∫ t

t1

m(s)Ψ (||xλ(t)||

+

∫ s

0

γp(τ)W (xτ )dτ

+

∫ T

0

γ1q(τ)W1(xτ )dτ

)
ds

and for all t ∈ (0, t1], we have

||xλ(t)|| ≤ Ns||x0||+
TαNT
α

∫ t

0

m(s)Ψ (||xλ(t)||

+

∫ s

0

γp(τ)W (xτ )dτ

+

∫ T

0

γ1q(τ)W1(xτ )dτ

)
ds.

Then, for all t ∈ [0, T ], we have

||xλ(t)|| ≤ βλ(t) = C1 + C2

∫ t

0

m(s)Ψ (||xλ(t)||

+

∫ s

0

γp(τ)W (xτ )dτ

+

∫ T

0

γ1q(τ)W1(xτ )dτ

)
ds,

where C1 = Ns(||x0 ||+d)
1−Ns , C2 = NT T

α

α(1−Ns)
.

Computing β
′
λ(t) for all t ∈ [0, T ], we arrive at

β
′
λ(t) ≤ C2m(t)Ψ

(
||xλ(t)||+

∫ t

0

γp(τ)W (||xλ(t)||)dτ

+

∫ T

0

γ1q(τ)W1(||xλ(t)||)dτ
)
,

≤ C2m(t)Ψ

(
βλ(t) +

∫ t

0

γp(τ)W (||xλ(t)||)dτ

+

∫ T

0

γ1q(τ)W1(||xλ(t)||)dτ
)
.

Let

ω(t) = βλ(t) +

∫ t

0

γp(τ)W (||xλ(t)||)dτ

+

∫ T

0

γ1q(τ)W1(||xλ(t)||)dτ

then ω(0) = βλ(0) and βλ(t) ≤ ω(t),

ω
′
(t) ≤ β

′
λ(t) + γp(t)W (||xλ(t)||)

+γ1q(t)W1(||xλ(t)||)
≤ C2m(t)Ψ(ω(t)) + γp(t)W (ω(t))

+γ1q(t)W1(ω(t))

≤ m̂(t)[Ψ(ω(t)) +W (ω(t)) +W1(ω(t))].

This implies that∫ ω(t)

ω(0)

ds

Ψ(s) +W (s) +W1(s)
≤
∫ T

0

m̂(s)ds

≤
∫ ∞

0

ds

Ψ(s) +W (s) +W1(s)
,

where we have used the fact: βλ(0) = C1, βλ(t) is positive and
non-decreasing. Hence, by the above inequality, we conclude

that the set of functions {βλ(t) : λ ∈ (0, 1)} is bounded.
This implies that U = {x ∈ Λh : x = λF (x), λ ∈ (0, 1)} is
bounded in X. Since F : Λh → Λh is continuous and com-
pletely continuous. As consequence of the nonlinear alternative
of Leray-Schauder type, we deduce that F has a fixed point x in
Λh. This completes the proof.

4. Conclusion
In this paper, the existence and uniqueness of mild solutions
for the semilinear fractional order functional integrodifferential
equations with impulses are discussed by using phase space ax-
ioms. We applied the concepts of fractional calculus together
with fixed point theorems to establish the existence results.
5. Acknowledgement
The authors wish to thank the referees for their comments and
suggestions.

4. REFERENCES
[1] A. Anguraj and M. Mallika Arjunan, Existence and

uniqueness of mild and classical solutions of im-
pulsive evolution equations, Electron. J. Differ. Equ.
2005(2005), 111, 1-8.

[2] A. Anguraj, M. Mallika Arjunan and E. Hernandez,
Existence results for impulsive neutral functional dif-
ferential equations with state dependent delay, Appl.
Anal., 26(7)(2007), 861-872.

[3] K. Balachandran, S. Kiruthika and J.J. Trujillo, Exis-
tence results for fractional impulsive integrodifferen-
tial equations in Banach spaces, Commun. Nonlinear
Sci. Numer. Simul., (2010).

[4] K. Balachandran, D.G. Park and S.M. Anthoni, Exis-
tence of solutions of abstract nonlinear second order
neutral functional integrodifferential equations, Com-
put. Math. Appl. 46(2003), 1313.

[5] K. Balachandran, J.Y. Park and M. Chandrasekaran,
Nonlocal Cauchy problem for delay integrodifferen-
tial equations of Sobolov type in Banach spaces, Appl.
Math. Lett. 15(7)(2002), 845-854.

[6] E. Bazhlekova, Fractional evolution equations in Ba-
nach spaces, Ph.D. Thesis, Eindhoven University of
Technology, 2001.

[7] M. Benchora, J. Henderson and S.K. Ntouyas, Im-
pulsive differential equations and inclusions, Hindawi
publishing corporation, Newyork, 2006.

[8] M. Benchora, BA. Slimani, Existence and Uniqueness
of solutions to impulsive fractional differential equa-
tions, Electron. J. Differ. Equ., 2009(10), 1-11.

[9] Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Ex-
istence results for impulsive neutral functional differ-
ential equations with infinite delay, Nonlinear Anal. ,
Hybrid Syst., 2(1)(2008), 209-218.

[10] Y.K. Chang, V. Kavitha and M. Mallika Arjunan, Ex-
istence results for impulsive neutral differential and
integrodifferential equations with nonlocal conditions
via fractional operators, Nonlinear Anal. , Hybrid
Syst., 4(1)(2010), 32-43.

[11] J. Dabas, A. Chauhan and M. Kumar, Existence of the
mild solutions for impulsive fractional equations with
infinite delay, Int.J. Differ. Equations, 2011(2011).

[12] D. Delbosco, L. Rodino, Existence and uniqueness for
a fractional differential equation, J. Math. Anal. Appl.,
204(1996), 609-625.

[13] M.B. Dhakne and S.D. Kender, On abstract Nonlinear
Mixed Volterra-Fredholm Integrodifferential equa-
tions, Comm. Appl. Nonlinear Anal., 13(4), (2006),
101-112.

9



International Journal of Computer Applications (0975 - 8887)
Volume 73 - No. 17, July 2013

[14] T. Diagana, G. M. Mophou and G. M. Guerekata,
On the existence of mild solutions to some semilin-
ear fractional integrodifferential equations, Electron.
J. Qual. Theory Differ. Equ., 58(2010), 1-17.

[15] A. Granas, J. Dugundji, Fixed Point Theory, Springer-
Verlag, New York, 2003.

[16] Heping Jiang, Existence results for fractional order
functional differential equations with impulse, Com-
put. Math. Appl., 64(2012), 3477-3483.

[17] JinRong Wang, Michal Feckan, Yong Zhou. On the
new concept of solutions and existence results for im-
pulsive fractional evolution equations, Dyn. Partial
Differ. Equ., 8(2011), 345-361.

[18] JinRong Wang, Yong Zhou, A class of fractional
evolution equations and optimal controls, Nonlinear
Anal., RWA 12(2011), 262-272.

[19] JinRong Wang, Yong Zhou, Analysis of nonlinear
fractional control systems in Banach spaces, Nonlin-
ear Anal., TMA 74(2011), 5929-5942.

[20] V.Kavitha, M. Mallika Arjunan and C. Ravichandran,
Existence results for impulsive systems with nonlocal
conditions in Banach Spaces, J. Nonlinear Sci. Appl.
4(2)(2011), 138-151.

[21] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory
and applications of fractional differential equations,
[in:]North Holland Math. stud., vol.204, Elsevier Sci-
ence, 2006.

[22] V. Lakshmikantham, Theory of fractional functional
differential equations, Nonlinear Anal. 69(2008),
3337-3343.

[23] V. Lakshmikantham, A.S. Vastala, Basic theory of
fractional differential equations, Nonlinear Anal.
69(2008), 2677-2682

[24] V. Lakshmikantham, J. Vasundhara Devi, Theory of
fractional differential equations in Banach Spaces,
Eur. J. Pure Appl. Math. , 1(2008), 38-45.

[25] K.S. Miller, B. Ross, An introduction to the Fractional
Calculus and Differential equations, John Wiley, New
York, 1993.

[26] G.M. Mophou, G.M.N’Gurerekata, Existence of
mild solution for some fractional differential equa-
tions with nonlocal conditions, Semigroup Forum,
79(2009), 315-322.

[27] G.M. Mophou, Existence and Uniqueness of mild so-
lutions of mild solution to impulsive fractional dif-
ferential equations, Nonlinear Anal., 72(2010), 1604-
1615.

[28] I. Podlubny, Fractional Differential Equations, Aca-
demic Press, San Diego, 1999.

[29] H.L. Tidke and M.B. Dhakne, Existence of solutions
for nonlinear mixed type integrodifferential equation
of second order, Surv. Math. Appl. 5(2010), 61-72.

[30] J. Wang and W. Wei, A class of nonlocal impulsive
problems for integrodifferential equations in Banach
spaces, Results Math., 58(2010), 379-397.

[31] Xiao-Bao Shu, Yongzeng Lai, Yuming Chen, The
existence of mild solutions for impulsive fractional
partial differential equations, Nonlinear Anal., TMA
(74)(2011), 2003-2011.

[32] Yong Zhou, Existence and Uniqueness of fractional
functional differential equations with unbounded de-
lay, Int. J. Dyn. Syst. Differ. Equ., 1(2008), 239-244.

[33] Yong Zhou, Feng Jiao, Jing Li, Existence and unique-
ness for fractional neutral differential equations with
infinite delay, Nonlinear Anal., TMA 71(2009), 3249-
3256.

10


	Introduction
	Preliminaries
	Existence results
	REFERENCES

