
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

24

Aggregation of EDF and ACO for Enhancing Real Time
System Performance

Jashweeni Nandanwar

Department of Computer Science & Engineering
G.H.Raisoni College of Engineering, Nagpur, India

Urmila Shrawankar

Department of Computer Science & Engineering
G.H.Raisoni College of Engineering, Nagpur, India

ABSTRACT

Time constraint is the main factor in real time operating

system and it affects the deadline of the process. To achieve

deadline, proper scheduling algorithm is required to schedule

the task. In this paper an Adaptive scheduling algorithm is

developed which is the combination of Earliest Deadline First

(EDF) and Ant Colony Optimization (ACO). The EDF

algorithm places the process in a priority queue and executed

using the deadline. The priority of the processes depends upon

the deadline and handles the under loaded condition. The

limitation of EDF algorithm is that it cannot handle the

overloaded condition. The execution of ACO algorithm is

based on the execution time. Process which contains the

minimum execution time is executed first. The limitation of

ACO algorithm is, it takes more time for execution than EDF.

Therefore, to remove the limitation of both the algorithms an

Adaptive scheduling algorithm is developed. It increases

performance of the system and decreases the system failure.

Also the percentage of missing deadline is reduced. The

advantage of an Adaptive scheduling algorithm is, it handles

over-loaded and under-loaded condition simultaneously.

The performance of an Adaptive scheduling algorithm is

calculated in terms of Success Ratio that is the number of

process scheduled and CPU Utilization. The result of

execution time is compared with the EDF and ACO

scheduling algorithm. The goal of an Adaptive scheduling

algorithm is to show the switching between the scheduling

algorithms and to decrease the system failure and increase the

system performance.

Keywords

Real-Time Scheduling algorithm, Earliest Deadline First, Ant

Colony Optimization, Load balancing, Adaptive Scheduling

Algorithm.

1. INTRODUCTION
Real Time system completes its work and services on time so

that the task or the process in system must complete within a

specified time frame otherwise the failure will occur [1].

Consider the ATM network as an example of real time

system, when the system becomes overloaded some

transaction fails [2]. The time is measured using some internal

measure of time such as clock ticks or instruction cycles [3].

The real-time systems maintain logical correctness it means if

the users give the certain input to the system it will react to

the input and generates the correct output. In addition, real-

time systems must maintain temporal correctness – the output

must be generated within the designated time frame. If a real-

time system does not complete task in a definite time, it may

cause the system which run the task.

Scheduling is the method used to allocate the resources

between the various processes by the system and specify

which job will receive next service by the resources.

Scheduling algorithm is used to handle the real time system.

Each of the algorithms provides best effort to increase the

success ratio and decrease the CPU utilization as the

performance of an Adaptive algorithm is measured using

these two terms. EDF is most widely used algorithm for

handling real-time traffic. It is the dynamic scheduling

algorithm which places the task in a priority queue. Whenever

the scheduler schedules the task it will search for the task

closest to its deadline. The priority of the task is assign at the

run time depending upon the deadline [4].

In overload situations, the performance of the system

decreases when scheduler schedules the process using EDF

algorithm. Researchers have proposed several methods to

solve this problem. Previously proposed algorithms switched

from EDF to another static algorithm after failure of more

than two processes successively [5]. This will decrease the

CPU utilization as well as the success ratio of the system.

Recently some researcher proposed algorithm by combining

both the static and dynamic algorithm together to make the

recovery process faster [6].

An Adaptive algorithm removes the possibility of failure by

combining EDF and ACO based scheduling algorithm. ACO

algorithm is a branch of Swarm Intelligence. This algorithm

handles the overloaded condition but the time required to

execute the process is much more than the EDF algorithm so

to remove this limitation, switching is performed between the

EDF and ACO algorithm and the new algorithm is developed

which is an Adaptive scheduling algorithm. In the rest of the

paper the scheduling technique will be described as well as its

advantages over other algorithm is described.

This paper makes the following contribution. Firstly it creates

the process and executes using EDF algorithm. Secondly if

the load of the processor is increased some process switched

to ACO algorithm. Thirdly the algorithm calculates the

Success Ratio, CPU Utilization and compares the execution

time required by EDF and ACO algorithm with an Adaptive

algorithm.

The paper is organized as follows. Section 2 provides the

overview of scheduling techniques that are used for handling

the under-loaded and over-loaded conditions. Section 3

discusses about an Adaptive scheduling algorithm which

combine EDF and ACO algorithm. The designing steps of an

Adaptive technique are discussed in section 4. Section 5 gives

the working of an Adaptive scheduling algorithm. Section 6

gives the comparison of an Adaptive algorithm with the EDF

and ACO algorithm and finally section 7 concludes the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

25

2. OVERVIEW OF SCHEDULING

TECHNIQUES
Real time system always deals with the temporal parameters

of the system. To handle the time factor it consists of hard and

soft time constraint. Hard real-time system requires that

deadlines must be met otherwise fatal error occurs such as

traffic signals but in soft real-time system, missing an

occasional deadline is undesirable, but nevertheless tolerable

such as railway reservation [7]. Static and Priority driven are

the techniques used by the scheduling algorithm to handle the

under-loaded condition. Priority driven is classified as fixed

priority and dynamic priority these techniques are used for

managing the process in real time environment.

System use the scheduling techniques to schedule the process

so rate monolithic and deadline monolithic scheduling

algorithm is used in which the priority of the task is constant

all the time user can not change the priority. Dynamic Priority

consists of EDF and LST algorithms, the priority of the task

may changed during its execution which give good result

when the job is preemptive and the processor is not

overloaded. But the system performance decreases when

system is slightly overloaded. The priority of the process

change dynamically in EDF algorithm and an Adaptive

algorithm combined EDF and ACO algorithm.

3. AN ADAPTIVE SCHEDULING

ALGORITHM
An Adaptive scheduling algorithm is the combination of EDF

and ACO algorithm [8]. The limitation of the EDF algorithm

is that it cannot handle the overloaded condition. When the

overload condition occurs, EDF algorithm fails to execute.

The ACO algorithm handle the overload condition but the

execution time required is more than the EDF algorithm. This

is the limitation of ant colony optimization, so to overcome

the limitation of both the algorithm the new algorithm is

developed which is called as an Adaptive scheduling

algorithm and is described in the next section. Every

scheduling algorithm gives a schedule for a set of task

consider job 𝑱𝒊𝒋which starts its execution after its ready time

𝒓𝒊𝒋 and complete before its deadline 𝒅 such a schedule is

called as a feasibly schedule, and the schedule produced is

said to be feasible [9].

3.1 Earliest Deadline First
Liu and Layland [10] described the Rate- Monotonic (RM)

and the Earliest Deadline First (EDF) scheduling policies.

EDF algorithm is the dynamic scheduling algorithm which

depends upon the deadline of the task. The task with the

nearest deadline gives the highest priority [11].

EDF algorithm schedules the process and to create that

process some parameter is required that is Start time,

Execution Time, Deadline of the process, Release time and

the Load of each process. After creating the process the

process are store in a queue and the priority of that process

depend upon the deadline [10]. ―Figure 1‖ shows the working

of EDF algorithm.

pn

pi

p3

p2

p1

Fig 1: Working of EDF Algorithm

The working of the algorithm is as follow: the processes are

added one by one in a process queue or EDF queue. Let

𝑃 = (𝑝1, 𝑝2, 𝑝3 ……… . 𝑝𝑛) denote a set of process 𝑃𝑖 =
(𝑟𝑖 , 𝑒𝑖 , 𝑑𝑖) is characterized by its release time 𝑟𝑖 , execution

time 𝑒𝑖 and deadline of the process 𝑑𝑖 . The process is added in

the system and the process with highest priority is switched to

EDF algorithm and the switching depends upon deadline of

the process.

The periodic task τi = (ci , pi) is characterized by two

parameters: an execution time ci and a period pi . The

utilization of periodic task τi is defined as [12]

 ui =
ci

pi
 (1)

A task can be feasibly scheduled using EDF algorithm if the

total utilization of a task set 𝜏 is

 𝑈 𝜏 = 𝑢𝑖
𝑛
𝑖=1 (2)

When the process is underloaded, the EDF algorithm executes

all the process and CPU usage for that process is also

minimum but when the process is overloaded some process

fail to execute. This is the drawback of EDF algorithm. To

overcome this drawback an Adaptive algorithm combines the

ant colony optimization algorithm.

3.2 Ant Colony Optimization
ACO was proposed by Dorigo and Gambardella in the early

1990s and by now has been successfully applied to various

combinatorial optimization problems [13], [14]. This

algorithm is based on the behavior of real ant, each ant

constructs a path and one or more ants concurrently active at

the same time.

In ACO algorithm, each ant is called as a node and each of

them will start their journey from different node. To apply

scheduling in ACO each node is considered as a task and

probability of each node depend upon the pheromone value 𝜏

and heuristic value 𝜂and it is calculated as [15]

𝑝𝑖 𝑡 =
(𝜏𝑖(𝑡))𝛼 ∗ (ɳ𝜂𝑖(𝑡))𝛽

 (𝜏𝑙(𝑡))𝛼 ∗ (𝜂ɳ𝑙(𝑡))𝛽𝑙∈𝑅1

 (3)

Where,

 𝑝𝑖(𝑡) is the probability of 𝑖𝑡ℎ node at time 𝑡.

 𝜏𝑖 is pheromone on 𝑖𝑡ℎ node at time 𝑡.

 𝜂𝑖 is a heuristic value of 𝑖𝑡ℎ node at time 𝑡 and is

determined by,

 ɳ𝑖 =
𝑘

𝐷𝑖−𝑡

d2

d3

di

dn

d1

Process Queue

Execution Depend

On Deadline

New Process

EDF

Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

26

Here, 𝑡 is current time 𝑘 is constant and 𝐷𝑖 is absolute

deadline of 𝑖𝑡ℎ node.

𝛼 and 𝛽 are constants which decide importance of 𝜏 and 𝜂 .

The ACO algorithm is applied to the process with the same

parameter as the EDF algorithm. The process is switched from

EDF to ACO when the process is loaded and the process

count is more. After switching to ACO, process executed

depends upon the execution time the process with less

execution time is executed first. The advantages of ant colony

optimization is it indirectly communication between ants

using pheromone variables. It also handles the overloaded

condition. The behavior of the ant is successfully applied to

several optimization problems [16].

4. DESIGNING STEPS OF AN

ADAPTIVE ALGORITHM

 Fig 2: Flowchart of an Adaptive Scheduling Algorithm

1. Create the process with parameters such as Start time,

Execution Time, Deadline, Release Time and Load of

process.

2. Switch the process from the system to the EDF algorithm.

3. The EDF algorithm executes depending on the deadline of

the process. The process with the nearest deadline is executed

with the highest priority.

4. For switching to ACO algorithm, it checks the three

conditions such as the Process Count, Priority of the process

and the Load of each process. If the load of the process is

more than the given CPU load, then the process switches from

EDF to ACO algorithm.

5. In ACO it will calculate the total time required for all the

process and the process which contains minimum execution

time is executed first. In short execution depends upon the

execution time.

6. Performance of an Adaptive scheduling algorithm is

measured in terms of the Success Ratio, CPU Utilization and

it also calculates the total number of process which are

executed using EDF and the ACO algorithm with the process

missed the deadline.

7. Finally the result is calculated in terms of graph and tables.

―Figure 2‖ shows the working of an Adaptive scheduling

algorithm.

5. WORKING OF AN ADAPTIVE

ALGORITHM
Scheduling algorithm is necessary when the new task arrives

or the running task completes. An Adaptive algorithm

improves the load balancing technique [17]. An Adaptive

algorithm works as follows:

• During underloaded condition, the algorithm uses EDF

algorithm and priority of the job is decided dynamically

depending on its deadline [18].

• During overloaded condition, the algorithm switch

to ACO algorithm calculates the total execution time and

minimum time required for each process and the process

which contain the minimum execution time is executed first

[19, 20]. Following are the steps to create and schedule the

process:

5.1 Total number of process running on

system
Process is the instance of a program running on a Computer.

Each process gives the complete description of the process

with Process ID (PID), Total CPU usage for each process,

priority of the process, thread required to run each process and

the total CPU time. Priority is the main parameter for each

process user can change the priority from idle to normal,

normal to high and from high to low.

5.2 Total number of tasks and the working

of EDF algorithm
A task is like a process or thread in an operating system. If the

user wants to add the process then he has to specify the basic

parameter such as

i) Total number of process.

ii) Start time is automatically defined by the system when

the process is entering into the system.

iii) Deadline of the process when the process completes its

execution.

iv) Execution time of the process (time required to execute

the process).

v) Release time of process when the process is ready for

execution.

vi) Threshold of CPU loads for each process as well as the

type of the algorithm to run the process (using EDF, ACO or

Adaptive scheduling algorithm).

Depending upon the parameter process is created. ―Table 1"

shows the process creation. By using the above parameter one

START

EDF Algorithm

Create the process with the parameters such as

Start time, Execution Time and the deadline.

If (The

Processor is

Overloaded)

ACO Algorithm

Calculate SR, CPU Utilization

 END

NO

YES

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

27

by one process is created. Let the process 𝑃1 is created

𝑃1 = (𝑑1 , 𝑟1, 𝑒1)

Where, 𝑑1 is the deadline of process 𝑃1

 𝑒1 is the total time required for process 𝑃1

 𝑟1 is the release time of 𝑃1 .

Process 𝑃1 is created and the load of process 𝑃1 is calculated

as

 𝐿𝑜𝑎𝑑 𝑙 =
 𝑒𝑖

𝑞𝑖

𝑚
𝑖=1 (4)

Where,

 𝑒𝑖 is the execution time required for each process.

 𝑞𝑖 depends upon the value of period pi and the

deadline 𝑑𝑖

After creating the process user has to specify the algorithm

type weather he wants to use EDF, ACO or an Adaptive

algorithm. Suppose user select the EDF algorithm then the

process entered into the EDF queue. In this way process is

created ―Table 2‖ show queue structure of EDF algorithm.

All the created processes are moved to the EDF queue. When

the processes are entered into the queue then the system gives

the specific Process ID (PID) to each process. If the user

added the ten processes then the system allocate the process

name such as P1, P2, P3……etc. When the process is created

that time is the start time of that process. Suppose process P1

is created at 10:14, so the start time is 10:14:26. And for same

process user give the deadline as 3 minute then the deadline

for system is 10:17:26 then depending upon the release time

the status of the process is changed from waiting to running

that is the process is releases for execution. In ―Table 2‖

process P1, P3, P5, P6, P10 is of minimum release time so the

status of this process changed to running and the priority is

normal but when the process is nearest to deadline then the

process is executed using EDF algorithm. This algorithm

checks the load of each process. If the calculated load is

greater than the CPU load then the process fails to execute.

―Table 3‖ shows the execution of process using EDF

algorithm.

Table 1. Process creation

Table 2. EDF Queue

Process Count Start Time Deadline

in Min

Execution

Time in Min

Release

time in

Sec

CPU load

1 10:14:26 10:17:26 2 1 ≥ 10 %

Process

ID

Process

Name

Start Time Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

1667 P1 10:14:26 10:17:26 3 1 Waiting Normal 9.192341

1668 P2 10:15:10 10:16:60 1 2 Waiting Normal 5.68743

1669 P3 10:16:57 10:17:19 1 1 Waiting Normal 11.22071

1670 P4 10:17:44 10:20:55 2 2 Waiting Normal 14.55657

1671 P5 10:18:23 10:22:45 4 1 Waiting Normal 14.55657

1672 P6 10:19:56 10:23:34 3 1 Waiting Normal 7.89763

1673 P7 10:20:34 10:23:12 2 4 Waiting Normal 11.22071

1674 P8 10:21:22 10:22:23 1 3 Waiting Normal 12.34563

1675 P9 10:22:46 10:26:33 2 2 Waiting Normal 13.34562

1676 P10 10:23:06 10:24:29 1 1 Waiting Normal 10.00071

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

28

Table 3. Execution of EDF algorithm

Process P1, P3, P5, P6, P10 are started to execute because all

the process have the nearest deadline but the load of process

P5 is greater than the CPU load so process P5 fails to execute

and this is the limitation of EDF algorithm. The rest of the

process is also executed depending on the load.

5.3 Working of ACO Algorithm
Secondly user wants to apply the ACO algorithm for the same

process which is created. ―Table 4‖ shows the queue structure

of ACO algorithm ‗n‘ number of process are added total 10

process are added.

After Adding the process queue structure is formed. Same

procedure is follow for execution of ACO algorithm. In ACO

algorithm, the algorithm checks the release time as well as the

execution time of each process.

Consider the process P4 which contains the release time 1 and

the minimum execution time than other processes then the

process P4 is executed first and likewise the other processes

are executed. If the other process contains the same release

time i.e. 1 then the algorithm checks the execution time of

individual process. ―Table 5‖ shows the execution of ACO

algorithm.

The remaining process such as P2, P7, P8, P9 and P10 are

also released depends upon the release time. These processes

also executed in the same way as the other processes. But out

of these 5 processes some process is failed to execute because

of the time this is the limitation of the ACO algorithm.

5.4 Process Execution Using an Adaptive

Scheduling Algorithm
An Adaptive algorithm combines the EDF and ACO

algorithm user has to specify the algorithm type which is

applied for the created process. ―Table 6‖ shows the queue

structure of an Adaptive algorithm.

Now all the process are entered into an Adaptive queue with

the status of each process is waiting and depend upon the

release time the process status change to the running. Load of

each process is calculated if the calculated load is greater than

the given CPU load that is the threshold value then the

process is switch to ACO algorithm. In ―Table 1‖ the CPU

load is ≥ 10 for all the process and in ―Table 6‖ process P1,

P3, P4, P5 and P6 contain the load < 10 or load ≥ 10 so the

five processes start their execution because of their release

time is earlier from five process two processes are executed

using EDF algorithm and the remaining process is switch to

ACO algorithm depending upon the following condition:

i) Load of process is greater than the given CPU load.

ii) The priority of the process is high it means the deadline

of the process is nearer.

iii) The process count is more.

―Table 7‖ shows the execution of an Adaptive algorithm and

the remaining five process are executed when these process

are release for execution it depend upon their release time.

The switching depends upon the load, if the load change then

the algorithm also changes. An Adaptive algorithm removes

the drawback of EDF and ACO algorithm. An Adaptive

algorithm schedules more process than the EDF and ACO

algorithm.

Process

ID

Process

Name

Start

Time

Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

Algorithm Used

1667 P1 10:14:26 10:17:26 3 1 Execution Start High 9.192341 EDF

1668 P2 10:15:10 10:16:60 1 2 Running Normal 5.68743 -

1669 P3 10:16:57 10:17:19 1 1 Execution Start High 11.22071 EDF

1670 P4 10:17:44 10:20:55 2 2 Running Normal 14.55657 -

1671 P5 10:18:23 10:22:45 4 1 Execution Start High 14.55657 Failed To Execute

1672 P6 10:19:56 10:23:34 3 1 Execution Start High 7.89763 EDF

1673 P7 10:20:34 10:23:12 2 4 Running Normal 11.22071 -

1674 P8 10:21:22 10:22:23 1 3 Running Normal 12.34563 -

1675 P9 10:22:46 10:26:33 2 2 Running Normal 13.34562 -

1676 P10 10:23:06 10:24:29 1 1 Execution Start High 10.00071 EDF

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

29

Table 4. ACO queue

Table 5. Execution of ACO algorithm

Process

ID

Process

Name

Start Time Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

1237 P1 10:14:26 10:18:26 4 1 Running Normal 9.192341

1238 P2 10:15:10 10:18:60 3 2 Waiting Normal 5.68743

1239 P3 10:16:57 10:19:19 3 1 Running Normal 11.22071

1240 P4 10:17:44 10:18:55 1 1 Running Normal 14.55657

1241 P5 10:18:23 10:20:45 2 1 Running Normal 14.55657

1242 P6 10:19:56 10:24:34 5 1 Running Normal 7.89763

1243 P7 10:20:34 10:22:12 2 4 Waiting Normal 11.22071

1244 P8 10:21:22 10:22:23 1 3 Waiting Normal 12.34563

1245 P9 10:22:46 10:24:33 1 2 Waiting Normal 13.34562

1246 P10 10:23:06 10:25:29 2 2 Waiting Normal 10.00071

Process

ID

Process

Name

Start

Time

Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

Algorit

hm

Used

1237 P1 10:14:26 10:18:26 4 1 Execution Start High 9.192341 ACO

1238 P2 10:15:10 10:18:60 3 2 Running Normal 5.68743 -

1239 P3 10:16:57 10:19:19 3 1 Execution Start High 11.22071 ACO

1240 P4 10:17:44 10:18:55 1 1 Execution Start High 30.55657 ACO

1241 P5 10:18:23 10:20:45 2 1 Execution Start High 14.55657 ACO

1242 P6 10:19:56 10:24:34 5 1 Execution Start High 7.89763 ACO

1243 P7 10:20:34 10:22:12 2 4 Waiting Normal 11.22071 -

1244 P8 10:21:22 10:22:23 1 3 Waiting Normal 12.34563 -

1245 P9 10:22:46 10:24:33 1 2 Running Normal 13.34562 -

1246 P10 10:23:06 10:25:29 2 2 Running Normal 10.00071 -

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

30

Table 6. An Adaptive Algorithm Queue

Table 7. Execution of an Adaptive Scheduling Algorithm

Process

ID

Process

Name

Start Time Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

1237 P1 10:14:26 10:18:26 4 1 Running Normal 9.192341

1238 P2 10:15:10 10:18:60 3 2 Waiting Normal 5.68743

1239 P3 10:16:57 10:19:19 3 1 Running Normal 11.22071

1240 P4 10:17:44 10:18:55 1 1 Running Normal 14.55657

1241 P5 10:18:23 10:20:45 2 1 Running Normal 14.55657

1242 P6 10:19:56 10:24:34 5 1 Running Normal 7.89763

1243 P7 10:20:34 10:22:12 2 4 Waiting Normal 11.22071

1244 P8 10:21:22 10:22:23 1 3 Waiting Normal 12.34563

1245 P9 10:22:46 10:24:33 1 2 Waiting Normal 13.34562

1246 P10 10:23:06 10:25:29 2 2 Waiting Normal 10.00071

Process

ID

Process

Name

Start

Time

Deadline Execution

Time

Release

time in

Sec

Status Priority CPU

Load

Algorith

m Used

1237 P1 10:14:26 10:18:26 4 1 Execution Start High 9.192341 EDF

1238 P2 10:15:10 10:18:60 3 2 Waiting Normal 5.68743 -

1239 P3 10:16:57 10:19:19 3 1 Execution Start High 11.22071 ACO

1240 P4 10:17:44 10:18:55 1 1 Execution Start High 14.55657 ACO

1241 P5 10:18:23 10:20:45 2 1 Execution Start High 14.55657 ACO

1242 P6 10:19:56 10:24:34 5 1 Execution Start High 7.89763 EDF

1243 P7 10:20:34 10:22:12 2 4 Waiting Normal 11.22071 -

1244 P8 10:21:22 10:22:23 1 3 Waiting Normal 12.34563 -

1245 P9 10:22:46 10:24:33 1 2 Waiting Normal 13.34562 -

1246 P10 10:23:06 10:25:29 2 2 Waiting Normal 10.00071 -

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

31

5.5 Success Ratio and CPU Utilization
In real time system, deadline achieving is the most important

factor. For that most appropriate performance metric is the

Success Ratio and it is defined as [21],

𝑆𝑢𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
 (5)

It is same as the number of process scheduled. So the ―Figure

3‖ shows that the Success Ratio and CPU utilization by using

an Adaptive scheduling algorithm when system is overloaded.

CPU utilization is the total amount of work handle by the

CPU. CPU utilization depends upon the task or processes. It is

shown in equation (2). When adding a new task in the system

then the CPU Utilization is high. ―Figure 4‖ shows the total

CPU utilization and the total physical memory required by

each task [22]. When the process is created the CPU usage

and the memory utilization is changed. ―Table 8‖ gives the

total description of each process depend on the load.

Table 8. CPU usage with total memory used when load is

varied

Fig 3: Success Ratio and CPU Utilization

Fig 4: CPU Utilization and Physical Memory Consumption

0
5

10
15
20
25
30
35
40
45

10 15 20 25 30 35 40 45 40

P
h

ys
ic

al
 M

e
m

o
ry

C

o
n

su
m

p
ti

o
n

 in
 M

B

% LOAD

CPU Utilization

Physical Memory
Consumption in MB

Load Process Thread Handles CPU

Usage

Memory

Used

10 70 908 22315 2.34 35.09 MB

15 66 879 21619 3.00 39.33MB

20 62 820 21559 4.56 40.11MB

25 57 789 21499 5.89 43.33MB

30 51 756 21434 6.99 44.55MB

35 47 715 20994 10.77 46.33MB

0

20

40

60

80

100

10 15 20 25 30 35 40 45 50 55 60

P
ro

ce
ss

 S
ch

e
d

u
le

d

% LOAD

Adaptive Algorithm when system is

overloaded

%SR

% CPU Utilization

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

32

6. COMPARISON OF SCHEDULING

ALGORITHMS
―Figure 5‖ shows the execution time required for EDF, ACO

and an Adaptive algorithm and ―Figure 6‖ shows number of

process schedule by the same algorithm. When the load of

processor is 5 and total 10 processes are added then the time

required for execution by EDF algorithm is less than the ACO

and an Adaptive algorithm [23]. It means EDF is better for

execution but it cannot handle the overloaded condition.

―Figure 6‖show the comparison of number of process

schedule by the EDF, ACO and an Adaptive algorithm. Graph

shows that if the user gives 5 processes and at that time

processor load is 5% then the EDF algorithm schedule the 2

out of 5 processes and rest of three processes failed to

execute.

At the same time if the user applied ACO algorithm then 4

processes execute and one process is failed to execute because

of the execution time. If an Adaptive algorithm is applied then

all the processes are executed and all the process deadline is

meet. An Adaptive algorithm is very useful when future

workload of the system is unpredictable.

Fig 5: Comparison of Execution Time

Fig 6: Comparison of Number of Process Schedule

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35 40 45 50

Ti
m

e
 in

 M
ic

ro
 S

e
c

% LOAD

EDF

ACO

Adaptive

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50

N
o

 o
f

P
ro

ce
ss

 S
ch

e
d

u
le

% LOAD

EDF Algorithm

ACO Algorithm

Adaptive Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

33

7. CONCLUSION
An Adaptive Algorithm is a dynamic scheduling algorithm

and it is beneficial for single processor real-time operating

systems. The algorithm is useful when future workload of the

system is unpredictable. An Adaptive Algorithm combines the

EDF and ACO algorithm. An Adaptive Algorithm schedules

the process on single processor when it is preemptive. The

advantage of the algorithm is that it automatically switches

between the EDF and ACO algorithm and overcome the

limitation of both the algorithms (EDF and ACO) algorithms.

An Adaptive algorithm requires less time for execution as

compared to EDF and ACO and the algorithm gives the result

when the system is overloaded. Memory usage of the system

is increased when the load of the process is increased.

8. REFERENCES
[1] M.Kaladevi and Dr.S.Sathiyabama ―A Comparative

Study of Scheduling Algorithms for Real Time Task‖

International Journal of Advances in Science and

Technology, Vol. 1, No. 4, 2010.

[2] A.F.M.Suaib Akhter, Mahmudur Rahman Khan,Shariful

Islam ― Overload Avoidance Algorithm for Real-Time

Distributed System‖ IJCSN International Journal of

Computer Science and Network Security, Vol. 12

no.9,September 2012.

[3] Marko Bertogna and Sanjoy Baruah ―Limited

Preemption EDF Scheduling of Sporadic Task Systems‖

IEEE Transactions on Industrial Informatics, Vol. 6, no.

4, November 2010.

[4] Fengxiang Zhang and Alan Burns ―Schedulability

Analysis for Real-Time Systems with EDF Scheduling‖

IEEE Transactions on Computers, Vol. 58, no. 9,

September 2009.

[5] Lalatendu Behera Durga Prasad Mohapatra

―Schedulability Analysis of Task Scheduling in

Multiprocessor Real-Time Systems Using EDF

Algorithm‖ 2012 International Conference on Computer

Communication and Informatics Coimbatore, INDIA

[6] Shuhui Li, Shangping Re, Yue Yu, Xing Wang, Li

Wang, and Gang Quan, ― Profit and Penalty Aware

Scheduling for Real-Time Online Services‖ IEEE

Transactions on Industrial Informatics, Vol. 8, no. 1,

February 2012.

[7] Sachin R. Sakhare and Dr. M.S. Ali ―Genetic Algorithm

Based Adaptive Scheduling Algorithm for Real Time

Operating Systems‖ International Journal of Embedded

Systems and Applications (IJESA) Vol.2, No.3,

September 2012.

[8] Jashweeni Nandanwar, Urmila Shrawankar ―An

Adaptive Real Time Task Scheduler‖ IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 6, No

1, November 2012.

[9] Ching-Chih Han, Member and Kwei-Jay Lin, ―Distance

constraint scheduling and its application to real time

system‖ IEEE Transactions On Computers, Vol. 45, no.

7, July 1996.

[10] C. Liu and J. Layland, ―Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment,‖

J. ACM, vol. 20, pp. 46–61, 1973.

[11] Giorgio C. Buttazzo, Marko Bertogna and Gang Yao

―Limited Preemptive Scheduling for Real-Time

Systems‖ IEEE Transactions On Industrial Informatics,

Vol. 9, no. 1, February 2013.

[12] Xuefeng Piao, Sangchul Han, Heeheon Kim, Minkyu

Park, Yookun Cho ―Predictability of Earliest Deadline

Zero Laxity Algorithm for Multiprocessor Real-Time

Systems‖ Proceedings of the Ninth IEEE International

[13] Symposium on Object and Component-Oriented Real-

Time Distributed Computing 2006

[14] W.N. Chen and J. Zhang, ―An Ant Colony Optimization

Approach to a Grid Workflow Scheduling Problem with

Various QoS Requirements,‖ IEEE Trans. System, Man,

and Cybernetics- Part C, vol. 39, no. 1, pp. 29-43, Jan.

2009.

[15] W.N. Chen, J. Zhang, H.S.H. Chung, R.Z. Huang, and O.

Liu, ―Optimizing Discounted Cash Flows in Project

Scheduling—An Ant Colony Optimization Approach,‖

IEEE Trans. Systems, Man, and Cybernetics-Part C, vol.

40, no. 1, pp. 64-77, Jan. 2010.

[16] Ketan Kotecha and Apurva Shah ―Scheduling Algorithm

for Real-Time Operating Systems using ACO‖ 2010

International Conference on Computational Intelligence

and Communication Networks.

[17] Yuren Zhou, Xinsheng Lai, Yuanxiang Li, and Wenyong

Dong ―Ant Colony Optimization with Combining

Gaussian Eliminations for Matrix Multiplication‖ IEEE

Transactions On Cybernetics, Vol. 43, no. 1, February

2013.

[18] Michael A. Palis ―The Granularity Metric for Fine-Grain

Real-Time Scheduling‖ IEEE Transactions on

Computers, Vol. 54, no. 12, December 2005.

[19] Ya-Shu Chen, Han Chiang Liao, and Ting-Hao Tsai ―

Online Real-Time Task Scheduling in Heterogeneous

Multicore System-on-a-Chip‖ IEEE Transactions On

Parallel And Distributed Systems, Vol. 24, no. 1, January

2013.

[20] Joon-Woo Lee and Ju-Jang Lee ―Ant-Colony-Based

Scheduling Algorithm for Energy-Efficient Coverage of

WSN‖ IEEE Sensors Journal, Vol. 12, no. 10, October

2012.

[21] Wei-Neng Chen, Member, IEEE, and Jun Zhang, Senior

Member, IEEE ―Ant Colony Optimization for Software

Project Scheduling and Staffing with an Event-Based

Scheduler‖ IEEE Transactions on Software Engineering,

Vol. 39, no. 1, January 2013

[22] Krithi Ramamritham, John A Stankovik and Perng Fei

Shiah, ―Efficient scheduling algorithms for real-time

multiprocessor systems‖, IEEE Transaction on Parallel

and Distributed Systems, vol. 1(2), April 1990.

[23] Silviu S. Craciunas, Christoph M. Kirsch Ana Sokolova

―Response Time versus Utilization in Scheduler

Overhead Accounting‖ 2010 16th IEEE Real-Time and

Embedded Technology and Applications

Symposium.Bowman, M., Debray, S. K., and Peterson,

L. L. 1993. Reasoning about naming systems.

IJCATM : www.ijcaonline.org

