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ABSTRACT 

Virtualization enables to switch different operating systems 

without reboot.  It enables live migration from one Operating 

System (OS) to another and results in proportional sharing of 

storage resources. Virtualization is gaining importance day by 

day in the fields of academics, industry and business. 

Performance is the major requirement to fulfill today’s need. 

As far as, computer’s workload is concerned, there is a need 

of high performance computing system. As the use of 

virtualization has increased tremendously there is much focus 

on optimizing the virtual machine performance. Disk 

scheduling within the virtual environment plays a key role in 

optimizing the overall system performance. Prior works on 

disk scheduling in virtual environment found it difficult to 

achieve system performance because of the high disk seek 

time. This paper presents an approach towards the 

performance improvement of disk scheduling in virtualized 

environment by future request arrival prediction. The basic 

idea is to examine whether the traditional High Throughput 

Token Bucket Disk Scheduling algorithm (HTBS) is still 

efficient for the performance improvement in virtualized 

environment. 
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1. INTRODUCTION 
Disk Scheduler is an important component of operating 

system which aims to improve disk utilization and to achieve 

high throughput by proportionally sharing the storage 

resources. All the information produced in the world is stored 

on the disk [1]. For controlling and providing the memory to 

all the requests, operating system uses the concept of Disk 

Scheduling. Today’s, modern computers are powerful enough 

to run entire operating systems within the main operating 

systems  which is nothing, but operating system virtualization. 

Virtualization allows emulation of one operating system 

within another. Without rebooting from one OS to another, 

virtualization allows to run applications on different operating 

systems by allowing live migration.  

The disk is a resource which is shared by different 

applications. Although there is more than one operating 

system, but the disk is a single resource which is shared by all. 

As there is sharing of disk, there must be a policy to use disk 

properly. Virtualization has brought several different 

challenges to disk scheduling as the disk technology 

advances. The disk scheduler within the Virtual Machine 

Monitor (VMM) plays a very important role in determining 

the overall fairness and performance characteristics of the 

virtualized system. As virtualization allows multiple operating 

systems on the same set up, these multiple system can be used 

by different users. Users requirement differ according to their 

need and time. From the users log it is helpful to schedule 

their recent requests using a better scheduling algorithm so 

that it improves the overall system throughput by minimizing 

seek time.  

The latency of a disk plays an important role in the design of 

disk schedulers. But, disk latency characteristics in the virtual 

environment depends not only on the  disk being used but the 

additional queuing and processing that happens in the 

virtualization layer. Furthermore, virtual machine is being 

provided with the virtual disk which shows the limitations of 

existing disk schedulers [2]. In order to improve the 

performance of the system, the HTBS algorithm is 

implemented in order to improve the seek time of the system. 

The disk scheduling algorithm HTBS has been successfully 

implemented for the traditional disk scheduling [3].  

The paper is organized as follows: Section 2 describes the 

related work. Section 3 gives experimental set up. Section 4 

and 5 discusses the complete results and conclusion.   

2. RELATED WORK 
The virtualization technology is basically used for storage 

consolidation which permits independent configuration of 

multiple operating systems, software, and device drivers 

[4][5].  Virtualization helps to achieve greater system 

utilization and it lowers the total cost of implementation. It is 

helpful as it responds more effectively to changing business 

conditions in enterprise, government and organizations [6].  

Operating system virtualization is, conceptually, a virtualized 

operating environment [7]. Scheduling brings new issues in 

the virtual environment because virtual machine contains 

more properties which are used for scheduling [8]. In the 

virtual environment each guest operating system runs on top 

of the virtual machine monitor. The virtual machine shares all 

the physical devices available with the host operating system 

[9]. Each guest has virtual disk share of the single shared 

physical disk [10]. The aim for using disk scheduling 

algorithms is to minimize the seek time required to reach the 

particular memory block. In virtual environment there is a 

sharing of hard disk between the host OS and guest OS. 

Hence to minimize the total seek time the HTBS algorithm is 

being presented in the virtual environment. 

Most of the work on traditional disk scheduler concentrates on 

workloads running on native operating systems [11, 12].  As 

the storage system has evolved to new technologies, the 

traditional disk scheduling algorithms which are used in 

virtual environment have become obsolete.  

In the recent studies by Boutcher et.al. [13] about the disk 

scheduling in virtual environment, suggests the right 

combination of schedulers to maximize throughput and 

fairness between VMs. Seelam and Teller proposed the 
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Virtual I/O scheduler [14]. The scheduler is work –conserving 

scheduler which in the presence of multiple VM’s provides 

fairness among them. Gulati, Ahmad, and Waldspurger 

suggested the PARDA system which uses proportional 

allocation of a distributed storage resource among virtualized 

environments [15]. It employs a global scheduler that enforces 

proportionality across hosts and a local scheduler for VMs 

running on a single host. In [16], the authors studies the 

impact of virtualization and shared disk usage in virtualized 

environments on the guest VM-level I/O scheduler, and its 

ability to continue to enforce isolation and fair utilization of 

the VM's. VM shares I/O resources among applications and 

application components deployed within the VM. 

All the prior work carried out in disk scheduling in virtual 

environment uses work conserving algorithms which does not 

predict the arrival of future request. The paper presents an 

algorithm for disk scheduling is non-work conserving in 

nature. It introduces the concept of prediction of future 

request [17].  The concept is used in the case of virtual 

environment to improve the system performance. 

3. EXPERIMENTAL SETUP 
VM used in this experiment is VMware player 5.0. It requires 

minimum of 6 GB of free disk for guest OS to run on the host 

OS. Each guest operating system is viewed as a single process 

of the host operating system that runs in the user space. The 

virtual machine is configured with 40 GB of hard disk space 

and 512 MB of RAM. The host operating system used in this 

experiment is Windows 7 Ultimate. Through the VMware 

player the guest operating system that is installed is Window 

XP. 

The space required for guest OS is greater than or equal to the 

sum of space required by the guest's raw image files, the space 

required by the host operating system and the swap space that 

guest OS will require and can be expressed as: 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝐺𝑢𝑒𝑠𝑡 = 𝐼𝑚𝑎𝑔𝑒𝑠 + 𝐻𝑜𝑠𝑡 +
𝑆𝑤𝑎𝑝 𝑠𝑝𝑎𝑐𝑒----- (1) 

Using swap space can provide additional memory beyond the 

available physical memory. 

Figure 1 shows the complete virtualization scenario. The host 

OS is the main operating system and the guest OS is the one 

which is installed through virtual machine monitor 

(VMM).The VMM acts as an abstraction layer between host 

and guest OS. The task of VMM is to allocate the virtual 

resources to the guest OS. The resources are shared among 

host and guest operating system through the VMM. 

The High Throughput Token Bucket (HTBS) scheduling 

algorithm uses the concept of future request prediction. The 

algorithm dispatches the disk requests so that spatial locality 

is maintained, which improves the overall system 

performance in terms of seek time. In this experiment, the 

same algorithm is used in the virtual environment to examine 

its working whether it improves the system performance in 

terms of seek time. To compare the results existing disk 

scheduling algorithms are implemented which are the NOOP 

scheduler (No Operation) and CFQ (Commonly Fair 

Queuing) scheduler. NOOP follows simple uses the FIFO 

policy where the files are read or written according to their 

order of arrival. CFQ being fair allocates equal time slice to 

each request. The flowchart of the HTBS algorithm which is 

going to be used in the virtual environment is as shown in 

figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stepwise description of the HTBS disk scheduling 

algorithm is as follows: 

Step1:  Maintain a queue to hold at max 10 file read requests. 

Step2:  Add file read/write requests in the queue. 

Step3:  If number of files exceeds 10  

 Then display message “Number of files should be 

  less than 10” 

Step4:  Call Get_Volume_Map () to calculate the start address 

 and end address of files 

Step5:  Select the request from the user’s log with maximum 

 frequency of occurrences 

Step6:  Apply loop from 1 to number of files 

Step7:  Dispatch the request having smallest Start LBN 

Step8: Note the Start Time and End time of each file read 

 request. 

Step9:  Calculate:  

𝐷𝑖𝑠𝑘 𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒 𝑅𝑎𝑡𝑒 =
𝐵𝑙𝑜𝑐𝑘 𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑡𝑒𝑛 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒   

𝑆𝑒𝑒𝑘_𝑇𝑖𝑚𝑒 = 𝑆𝑒𝑒𝑘_𝐹𝑎𝑐𝑡𝑜𝑟 ∗ [𝑎𝑏𝑠(𝐵𝑙𝑜𝑐𝑘 𝐴𝑐𝑐𝑒𝑠𝑠 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)]  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
= 𝑇𝑜𝑡𝑎𝑙 𝐸𝑙𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒/𝑁𝑜. 𝑜𝑓 𝐹𝑖𝑙𝑒𝑠 

The system is provided with the user login. The user can read 

/write up to 10 files at a time and every time, the user data is 

maintained in a separate log file. From the respective user’s 

log file the future request is predicted. To search for the 

arrival of future request, the disk must wait for a specific time 

period. This time period is known as Twait. This factor limits 

the time the disk can be kept idle. At a time, limited number 

of consecutive requests can be issued which is being 

controlled by the factor Bmax. Greater the number of requests 

with locality grater is the performance of the system. The 

seek_time, required to the disk head from current position to 

the to the target track, is given by: 

Fig 1: Virtual Environment  
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𝑆𝑒𝑒𝑘_𝑇𝑖𝑚𝑒 = 𝑆𝑒𝑒𝑘_𝐹𝑎𝑐𝑡𝑜𝑟 ∗ [𝑎𝑏𝑠(𝐵𝑙𝑜𝑐𝑘 𝐴𝑐𝑐𝑒𝑠𝑠 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)] ----- (2) [18] 

Where, Block access is the block location on the disk. 

Seek_factor will be assumed as 0.3. 

A drive of size 63.8 GB is being shared among host OS and 

guest OS. Different files of variable sizes are maintained in 

the shared drive. The scheduler is provided with the file read 

write operation from the shared drive. At a time, different files 

of varying sizes are given as input to the scheduler. All the 

files residing on the disk has a physical address in the form of 

Cylinder Head and Sector. This physical address is converted 

into Logical Block Numbers (LBN) using following formula. 

𝐿𝐵𝑁 = ((𝐶 ∗ 𝐻𝑃𝐶) + 𝐻) ∗ 𝑆𝑃𝑇 + 𝑆 − 1 ----- (3) 

Where,   HPC: Heads per Cylinder, SPT:  Sectors per Track, 

C: Cylinder, S: Sector 

4. RESULTS AND DISSCUSION  
When the file read/write requests are given to the scheduler 

their starting LBNs are calculated. The scheduler dispatches 

the requests with strongest spatial locality on the basis of 

LBNs. As the algorithm being used is non-work conserving, it 

will predict the arrival of future request i.e. instead of 

considering the requests from the pending queue only; the 

scheduler will also consider the future request. If the incoming 

future request is nearer than the request in the pending queue, 

the scheduler will dispatch the future request else the request 

from the pending queue. 

Table 1 and figure 3 show the result of the HTBS scheduler 

implemented in host and in guest OS. Table 1 gives the 

numerical data and figure 3 shows the graphical results for the 

same. The scheduler has been tested in the host as well as in 

the guest. 12 files with different sizes has been given as input 

to the scheduler and time required for reading those files in 

the host as well as in the guest  has been noted. In addition 

with the HTBS, NOOP and CFQ has also been implemented 

in the guest OS. 

The results show that, the HTBS algorithm improves the 

execution time as compared with the CFQ and NOOP. When 

the file size is small the execution time required by all the 

three algorithms is same. But, as the file size grows gradually 

HTBS requires minimum execution time. From the table, it is 

also observed that, in spite of having the sharing of disk there 

is a slight difference between the execution time in host and in 

guest OS by HTBS algorithm. 

Table 2 and figure 5 shows the average disk read/write rate 

for the three algorithms. Table 2 shows the numerical data and 

figure 5 shows the graphical results for the same. From the 

graph, it is observed that the disk read write rate using HTBS 

is high as compared to NOOP and CFQ. CFQ gives the lowest 

disk read/write rate. 

Table 3 shows the seek time required by the three schedulers. 

Figure 6 shows the graphical results for the average seek time 

by three algorithms. 

The maximum queue limit of these schedulers is 10. The 

number of files is varied and for each one the three schedulers 

are tested. 

 

 

 

Table 1. Request Execution Time in Guest OS  

S
r.

 N
o

. 

F
il

e 
S

iz
e 

E
x

ec
u

ti
o

n
 t

im
e 

in
 G

u
es

t 
O

S
 

(S
ec

)N
O

O
P

 

E
x

ec
u

ti
o

n
 t

im
e 

in
 G

u
es

t 
O

S
 

(S
ec

)C
F

Q
 

E
x

ec
u

ti
o

n
 t

im
e 

in
 G

u
es

t 
O

S
 

(S
ec

)H
T

B
S

 

E
x

ec
u

ti
o

n
 t

im
e 

in
 H

o
st

 O
S

 

(S
ec

) 
H

T
B

S
 

1 577 0.6567 0.6412 1.3901 1.3416 

2 2389 2.7192 2.6551 2.5773 2.4648 

3 2481 2.8239 2.7573 2.7959 2.6208 

4 2929 3.3338 3.2552 3.2489 3.1117 

5 4033 4.5904 4.4822 4.4517 3.1264 

6 4961 5.6467 5.5135 5.5763 5.1792 

7 5441 6.1932 6.047 5.2876 5.231 

8 5457 6.2113 6.0648 6.0761 5.7408 

9 8593 9.7801 9.5501 5.5619 4.1652 

10 9185 10.4549 10.208 10 9.516 

11 9201 10.4728 10.2258 9.5125 8.9076 

12 9777 11.1284 10.866 10.8715 10.218 

A
v

g
.E

x
ec

u
ti

o
n

 

T
im

e(
S

ec
) 

8.2568 8.0621 7.3122 
5.1352 

 

8.2568 

 

 

Fig3. Execution Time (Sec) in Guest OS by NOOP, CFQ 

and HTBS  
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CFQ, as being fair, allocates equal time slice to each of the 

file and executes each file, until its time slice is expired in a 

round robin fashion. From the graph, it is observed that the 

average seek time using CFQ is maximum as compared to 

NOOP. NOOP uses the FIFO policy, and executes the 

requests in the order of their arrival. So in the case of this 

scheduler the average seeks time is found to be minimum as 

compared to CFQ. HTBS dispatches the request in order to 

maintain spatial locality, so in the case of HTBS, average seek 

time is lowest as compared to both NOOP and CFQ. 

 

Fig4. Average Execution Time (Sec) in Guest OS by 

NOOP, CFQ 
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Fig 5.  Average Disk Read/ Write Rate (MB/Sec) in Guest 

OS by NOOP, CFQ and HTBS  

Table 3. Seek time (Millisecond)  
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Fig 6. Average Seek Time (Sec) in Guest OS by NOOP, 

CFQ and HTBS 

5. CONCLUSION 
The work presented in this paper implements HTBS disk 

scheduling algorithm in the virtual environment. The 

algorithm is working fine for the traditional disk scheduling. 

As, the algorithm is non-work conserving, it predicts the 

arrival of future requests. It dispatches the request with the 

strongest spatial locality. While dispatching the requests, it 

not only considers the requests from the pending queue but 

the future request as well which is predicted on the basis of 

concurrency of occurrences. This reduces the seek time 

overhead. After comparing the results with the existing virtual 

disk scheduling algorithm i.e. NOOP and CFQ, it is observed 

that HTBS improves the overall system performance by 

minimizing execution time and the seek time as well as 

maximizing the disk read write rate. Ultimately, this will 

result in the better utilization of system resources even if they 

are in sharing mode. Therefore, it can be concluded that the 

same algorithm can be used for disk scheduling in the virtual 

environment where there is a competition of resources to 

increase the performance of the system. 
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Fig 1: HTBS Algorithm  
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