
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

18

Methodology for Performance Improvement of Future
Request Predicting Disk Scheduler for Virtualization

Ashwini Meshram
Department of Computer Science and Engineering
G.H.Raisoni College of Engineering, Nagpur, India

Urmila Shrawankar
Department of Computer Science and Engineering
G.H.Raisoni College of Engineering, Nagpur, India

ABSTRACT

Virtualization enables to switch different operating systems

without reboot. It enables live migration from one Operating

System (OS) to another and results in proportional sharing of

storage resources. Virtualization is gaining importance day by

day in the fields of academics, industry and business.

Performance is the major requirement to fulfill today’s need.

As far as, computer’s workload is concerned, there is a need

of high performance computing system. As the use of

virtualization has increased tremendously there is much focus

on optimizing the virtual machine performance. Disk

scheduling within the virtual environment plays a key role in

optimizing the overall system performance. Prior works on

disk scheduling in virtual environment found it difficult to

achieve system performance because of the high disk seek

time. This paper presents an approach towards the

performance improvement of disk scheduling in virtualized

environment by future request arrival prediction. The basic

idea is to examine whether the traditional High Throughput

Token Bucket Disk Scheduling algorithm (HTBS) is still

efficient for the performance improvement in virtualized

environment.

General Terms

Virtualization, Operating System and Algorithms

Keywords

Disk Scheduling, Virtualization, Throughput, Seek Time,

Future Request

1. INTRODUCTION
Disk Scheduler is an important component of operating

system which aims to improve disk utilization and to achieve

high throughput by proportionally sharing the storage

resources. All the information produced in the world is stored

on the disk [1]. For controlling and providing the memory to

all the requests, operating system uses the concept of Disk

Scheduling. Today’s, modern computers are powerful enough

to run entire operating systems within the main operating

systems which is nothing, but operating system virtualization.

Virtualization allows emulation of one operating system

within another. Without rebooting from one OS to another,

virtualization allows to run applications on different operating

systems by allowing live migration.

The disk is a resource which is shared by different

applications. Although there is more than one operating

system, but the disk is a single resource which is shared by all.

As there is sharing of disk, there must be a policy to use disk

properly. Virtualization has brought several different

challenges to disk scheduling as the disk technology

advances. The disk scheduler within the Virtual Machine

Monitor (VMM) plays a very important role in determining

the overall fairness and performance characteristics of the

virtualized system. As virtualization allows multiple operating

systems on the same set up, these multiple system can be used

by different users. Users requirement differ according to their

need and time. From the users log it is helpful to schedule

their recent requests using a better scheduling algorithm so

that it improves the overall system throughput by minimizing

seek time.

The latency of a disk plays an important role in the design of

disk schedulers. But, disk latency characteristics in the virtual

environment depends not only on the disk being used but the

additional queuing and processing that happens in the

virtualization layer. Furthermore, virtual machine is being

provided with the virtual disk which shows the limitations of

existing disk schedulers [2]. In order to improve the

performance of the system, the HTBS algorithm is

implemented in order to improve the seek time of the system.

The disk scheduling algorithm HTBS has been successfully

implemented for the traditional disk scheduling [3].

The paper is organized as follows: Section 2 describes the

related work. Section 3 gives experimental set up. Section 4

and 5 discusses the complete results and conclusion.

2. RELATED WORK
The virtualization technology is basically used for storage

consolidation which permits independent configuration of

multiple operating systems, software, and device drivers

[4][5]. Virtualization helps to achieve greater system

utilization and it lowers the total cost of implementation. It is

helpful as it responds more effectively to changing business

conditions in enterprise, government and organizations [6].

Operating system virtualization is, conceptually, a virtualized

operating environment [7]. Scheduling brings new issues in

the virtual environment because virtual machine contains

more properties which are used for scheduling [8]. In the

virtual environment each guest operating system runs on top

of the virtual machine monitor. The virtual machine shares all

the physical devices available with the host operating system

[9]. Each guest has virtual disk share of the single shared

physical disk [10]. The aim for using disk scheduling

algorithms is to minimize the seek time required to reach the

particular memory block. In virtual environment there is a

sharing of hard disk between the host OS and guest OS.

Hence to minimize the total seek time the HTBS algorithm is

being presented in the virtual environment.

Most of the work on traditional disk scheduler concentrates on

workloads running on native operating systems [11, 12]. As

the storage system has evolved to new technologies, the

traditional disk scheduling algorithms which are used in

virtual environment have become obsolete.

In the recent studies by Boutcher et.al. [13] about the disk

scheduling in virtual environment, suggests the right

combination of schedulers to maximize throughput and

fairness between VMs. Seelam and Teller proposed the

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

19

Virtual I/O scheduler [14]. The scheduler is work –conserving

scheduler which in the presence of multiple VM’s provides

fairness among them. Gulati, Ahmad, and Waldspurger

suggested the PARDA system which uses proportional

allocation of a distributed storage resource among virtualized

environments [15]. It employs a global scheduler that enforces

proportionality across hosts and a local scheduler for VMs

running on a single host. In [16], the authors studies the

impact of virtualization and shared disk usage in virtualized

environments on the guest VM-level I/O scheduler, and its

ability to continue to enforce isolation and fair utilization of

the VM's. VM shares I/O resources among applications and

application components deployed within the VM.

All the prior work carried out in disk scheduling in virtual

environment uses work conserving algorithms which does not

predict the arrival of future request. The paper presents an

algorithm for disk scheduling is non-work conserving in

nature. It introduces the concept of prediction of future

request [17]. The concept is used in the case of virtual

environment to improve the system performance.

3. EXPERIMENTAL SETUP
VM used in this experiment is VMware player 5.0. It requires

minimum of 6 GB of free disk for guest OS to run on the host

OS. Each guest operating system is viewed as a single process

of the host operating system that runs in the user space. The

virtual machine is configured with 40 GB of hard disk space

and 512 MB of RAM. The host operating system used in this

experiment is Windows 7 Ultimate. Through the VMware

player the guest operating system that is installed is Window

XP.

The space required for guest OS is greater than or equal to the

sum of space required by the guest's raw image files, the space

required by the host operating system and the swap space that

guest OS will require and can be expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝐺𝑢𝑒𝑠𝑡 = 𝐼𝑚𝑎𝑔𝑒𝑠 + 𝐻𝑜𝑠𝑡 +
𝑆𝑤𝑎𝑝 𝑠𝑝𝑎𝑐𝑒----- (1)

Using swap space can provide additional memory beyond the

available physical memory.

Figure 1 shows the complete virtualization scenario. The host

OS is the main operating system and the guest OS is the one

which is installed through virtual machine monitor

(VMM).The VMM acts as an abstraction layer between host

and guest OS. The task of VMM is to allocate the virtual

resources to the guest OS. The resources are shared among

host and guest operating system through the VMM.

The High Throughput Token Bucket (HTBS) scheduling

algorithm uses the concept of future request prediction. The

algorithm dispatches the disk requests so that spatial locality

is maintained, which improves the overall system

performance in terms of seek time. In this experiment, the

same algorithm is used in the virtual environment to examine

its working whether it improves the system performance in

terms of seek time. To compare the results existing disk

scheduling algorithms are implemented which are the NOOP

scheduler (No Operation) and CFQ (Commonly Fair

Queuing) scheduler. NOOP follows simple uses the FIFO

policy where the files are read or written according to their

order of arrival. CFQ being fair allocates equal time slice to

each request. The flowchart of the HTBS algorithm which is

going to be used in the virtual environment is as shown in

figure 2.

The stepwise description of the HTBS disk scheduling

algorithm is as follows:

Step1: Maintain a queue to hold at max 10 file read requests.

Step2: Add file read/write requests in the queue.

Step3: If number of files exceeds 10

 Then display message “Number of files should be

 less than 10”

Step4: Call Get_Volume_Map () to calculate the start address

 and end address of files

Step5: Select the request from the user’s log with maximum

 frequency of occurrences

Step6: Apply loop from 1 to number of files

Step7: Dispatch the request having smallest Start LBN

Step8: Note the Start Time and End time of each file read

 request.

Step9: Calculate:

𝐷𝑖𝑠𝑘 𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑒 𝑅𝑎𝑡𝑒 =
𝐵𝑙𝑜𝑐𝑘 𝑅𝑒𝑎𝑑/𝑊𝑟𝑖𝑡𝑡𝑒𝑛 𝑝𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑆𝑒𝑒𝑘_𝑇𝑖𝑚𝑒 = 𝑆𝑒𝑒𝑘_𝐹𝑎𝑐𝑡𝑜𝑟 ∗ [𝑎𝑏𝑠(𝐵𝑙𝑜𝑐𝑘 𝐴𝑐𝑐𝑒𝑠𝑠 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)]

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
= 𝑇𝑜𝑡𝑎𝑙 𝐸𝑙𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒/𝑁𝑜. 𝑜𝑓 𝐹𝑖𝑙𝑒𝑠

The system is provided with the user login. The user can read

/write up to 10 files at a time and every time, the user data is

maintained in a separate log file. From the respective user’s

log file the future request is predicted. To search for the

arrival of future request, the disk must wait for a specific time

period. This time period is known as Twait. This factor limits

the time the disk can be kept idle. At a time, limited number

of consecutive requests can be issued which is being

controlled by the factor Bmax. Greater the number of requests

with locality grater is the performance of the system. The

seek_time, required to the disk head from current position to

the to the target track, is given by:

Fig 1: Virtual Environment

Application

 Operating System

Virtual Hardware

Virtual Machine

Monitor

 Operating System

Hardware

Guest

Operating
System

Environment

Host

Operating

System

Environment

Allocates Virtual Resources

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

20

𝑆𝑒𝑒𝑘_𝑇𝑖𝑚𝑒 = 𝑆𝑒𝑒𝑘_𝐹𝑎𝑐𝑡𝑜𝑟 ∗ [𝑎𝑏𝑠(𝐵𝑙𝑜𝑐𝑘 𝐴𝑐𝑐𝑒𝑠𝑠 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)] ----- (2) [18]

Where, Block access is the block location on the disk.

Seek_factor will be assumed as 0.3.

A drive of size 63.8 GB is being shared among host OS and

guest OS. Different files of variable sizes are maintained in

the shared drive. The scheduler is provided with the file read

write operation from the shared drive. At a time, different files

of varying sizes are given as input to the scheduler. All the

files residing on the disk has a physical address in the form of

Cylinder Head and Sector. This physical address is converted

into Logical Block Numbers (LBN) using following formula.

𝐿𝐵𝑁 = ((𝐶 ∗ 𝐻𝑃𝐶) + 𝐻) ∗ 𝑆𝑃𝑇 + 𝑆 − 1 ----- (3)

Where, HPC: Heads per Cylinder, SPT: Sectors per Track,

C: Cylinder, S: Sector

4. RESULTS AND DISSCUSION
When the file read/write requests are given to the scheduler

their starting LBNs are calculated. The scheduler dispatches

the requests with strongest spatial locality on the basis of

LBNs. As the algorithm being used is non-work conserving, it

will predict the arrival of future request i.e. instead of

considering the requests from the pending queue only; the

scheduler will also consider the future request. If the incoming

future request is nearer than the request in the pending queue,

the scheduler will dispatch the future request else the request

from the pending queue.

Table 1 and figure 3 show the result of the HTBS scheduler

implemented in host and in guest OS. Table 1 gives the

numerical data and figure 3 shows the graphical results for the

same. The scheduler has been tested in the host as well as in

the guest. 12 files with different sizes has been given as input

to the scheduler and time required for reading those files in

the host as well as in the guest has been noted. In addition

with the HTBS, NOOP and CFQ has also been implemented

in the guest OS.

The results show that, the HTBS algorithm improves the

execution time as compared with the CFQ and NOOP. When

the file size is small the execution time required by all the

three algorithms is same. But, as the file size grows gradually

HTBS requires minimum execution time. From the table, it is

also observed that, in spite of having the sharing of disk there

is a slight difference between the execution time in host and in

guest OS by HTBS algorithm.

Table 2 and figure 5 shows the average disk read/write rate

for the three algorithms. Table 2 shows the numerical data and

figure 5 shows the graphical results for the same. From the

graph, it is observed that the disk read write rate using HTBS

is high as compared to NOOP and CFQ. CFQ gives the lowest

disk read/write rate.

Table 3 shows the seek time required by the three schedulers.

Figure 6 shows the graphical results for the average seek time

by three algorithms.

The maximum queue limit of these schedulers is 10. The

number of files is varied and for each one the three schedulers

are tested.

Table 1. Request Execution Time in Guest OS

S
r.

 N
o

.

F
il

e
S

iz
e

E
x

ec
u

ti
o

n
 t

im
e

in
 G

u
es

t
O

S

(S
ec

)N
O

O
P

E
x

ec
u

ti
o

n
 t

im
e

in
 G

u
es

t
O

S

(S
ec

)C
F

Q

E
x

ec
u

ti
o

n
 t

im
e

in
 G

u
es

t
O

S

(S
ec

)H
T

B
S

E
x

ec
u

ti
o

n
 t

im
e

in
 H

o
st

 O
S

(S
ec

)
H

T
B

S

1 577 0.6567 0.6412 1.3901 1.3416

2 2389 2.7192 2.6551 2.5773 2.4648

3 2481 2.8239 2.7573 2.7959 2.6208

4 2929 3.3338 3.2552 3.2489 3.1117

5 4033 4.5904 4.4822 4.4517 3.1264

6 4961 5.6467 5.5135 5.5763 5.1792

7 5441 6.1932 6.047 5.2876 5.231

8 5457 6.2113 6.0648 6.0761 5.7408

9 8593 9.7801 9.5501 5.5619 4.1652

10 9185 10.4549 10.208 10 9.516

11 9201 10.4728 10.2258 9.5125 8.9076

12 9777 11.1284 10.866 10.8715 10.218

A
v

g
.E

x
ec

u
ti

o
n

T
im

e(
S

ec
)

8.2568 8.0621 7.3122
5.1352

8.2568

Fig3. Execution Time (Sec) in Guest OS by NOOP, CFQ

and HTBS

0

2

4

6

8

10

12

T
im

e(
S

ec
)

File Size (KB)

Average Execution Time

Execution

time in

Guest OS

(Sec)

NOOP

Execution

time in

Guest OS

(Sec)

CFQ

Execution

time in

Guest OS

(Sec)

HTBS

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

21

CFQ, as being fair, allocates equal time slice to each of the

file and executes each file, until its time slice is expired in a

round robin fashion. From the graph, it is observed that the

average seek time using CFQ is maximum as compared to

NOOP. NOOP uses the FIFO policy, and executes the

requests in the order of their arrival. So in the case of this

scheduler the average seeks time is found to be minimum as

compared to CFQ. HTBS dispatches the request in order to

maintain spatial locality, so in the case of HTBS, average seek

time is lowest as compared to both NOOP and CFQ.

Fig4. Average Execution Time (Sec) in Guest OS by

NOOP, CFQ

Table 2. Disk Read/Write Rate (MB/Sec)

N
o

.
o

f

F
il

es
 Disk Read/Write Rate(MB/Sec)

NOOP CFQ HTBS

5 1.555 1.5601 1.5601

7 2.8146 2.8167 2.8276

10 3.1889 3.2013 3.1988

A
v

g
.

D
is

k

R
ea

d
/W

ri
te

R
a

te

(M
B

/S
ec

)

2.5195 2.5260333 2.5288333

Fig 5. Average Disk Read/ Write Rate (MB/Sec) in Guest

OS by NOOP, CFQ and HTBS

Table 3. Seek time (Millisecond)

N
o

.
o

f

fi
le

s

Seek time (Millisecond)

NOOP CFQ HTBS

5 390 734 437

7 421 620 375

10 984 625 515

A
v

g
.
S

ee
k

T
im

e

(M
il

li
se

co
n

d
)

598.3333 659.6667 442.3333

Fig 6. Average Seek Time (Sec) in Guest OS by NOOP,

CFQ and HTBS

5. CONCLUSION
The work presented in this paper implements HTBS disk

scheduling algorithm in the virtual environment. The

algorithm is working fine for the traditional disk scheduling.

As, the algorithm is non-work conserving, it predicts the

arrival of future requests. It dispatches the request with the

strongest spatial locality. While dispatching the requests, it

not only considers the requests from the pending queue but

the future request as well which is predicted on the basis of

concurrency of occurrences. This reduces the seek time

overhead. After comparing the results with the existing virtual

disk scheduling algorithm i.e. NOOP and CFQ, it is observed

that HTBS improves the overall system performance by

minimizing execution time and the seek time as well as

maximizing the disk read write rate. Ultimately, this will

result in the better utilization of system resources even if they

are in sharing mode. Therefore, it can be concluded that the

same algorithm can be used for disk scheduling in the virtual

environment where there is a competition of resources to

increase the performance of the system.

6.5

7

7.5

8

8.5

NOOP CFQ HTBS

Average Execution Time(Sec)

Average

Execution

Time(Sec)

0

20

40

60

80

NOOP CFQ HTBS

R
ea

d
/W

ri
te

 R
a
te

 (
M

B
/S

ec
)

Scheduler Used

Average Disk Read/Write Rate(MB/Sec)

Average

Disk

Read/Write

Rate(MB/Sec

)

200

300

400

500

600

700

NOOP CFQ HTBS

T
im

e(
M

il
li

se
co

n
d

)

Average Seek Time

Average

Seek Time

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

22

Fig 1: HTBS Algorithm

YES

NO

Start

Enter no. of files in the queue

Calculate the start address Start Address and End Address of files

Call Get_Volume_Map();

If number of files

exceeds 10?

Search User’s Log for the prediction of Future Request

Apply Loop for 1 to No. of

files

Select the file from the log with Maximum Frequency as the Future Request

Dispatch the request from the queue in the Increasing order of their Start LBN

Continue the process till the queue becomes empty

Note the Start Time and End Time of reading for each file

Calculate Disk Read/Write Rate=Blocks Read/Written/Second*Block Size

Calculate Seek Time= Seek_factor *[abs(Block_Accessed-Current Head Position)]

Calculate Avg Execution Time= Total Elapsed Time/ No.Of Files

Stop

Display “Number Of Files Should Be

Less Than 10”

Measure Disk Read/Write Rate,

Avg. Execution time, Seek Time

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

23

6. REFERENCES
[1] George Amvrosiadis, Alina Oprea, Bianca Schroeder

“Practical Scrubbing: Getting to the bad sector at the

right time”, in the Proceedings of 42nd Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2012, USA,pp. 1-12

[2] Y.Zhang, B.Bhargava “Self Learning disk Scheduling” ,

in IEEE Transaactions on Knowledge and Data

Engineering, vol. 21, IEEE computer Society,Jan 2009,

pp. 50-65

[3] P.E.Rocha,Luis C. E. Bona “A QoS Aware Non-work-

conserving Disk Scheduler” in the 28th symposium on

Mass Storage System And Technologies(MSST) 2012,

IEEE, San Diegao, CA,pp.1-5

[4] Ignacio M. Llorente “An Introduction To Virtualiaztion

And Cloud Technologies To Support Grid Computing” ,

New Paradigms: Clouds, Virtualization and Co.

EGEE08, Istanbul, September 25, 2008

[5] Ahmed Elnably, Kai Du, Peter Varman, “Reward

Scheduling for QoS in Cloud Applications” in the

proceedings of 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(ccgrid 2012), USA,pp. 98-106

[6] Yiduo Mei , Ling Liu and Xing Pu “Performance

measurement and alalysis of network io applications in

virtualized cloud” 3rd IEEE International Conference on

Cloud computing, USA,2010,pp.59-66

[7] Mendel Rosenblum , Tal Garfinkel “Virtual Machine

Monitors: Current Technology and Future Trends” in the

proceedings of IEEE Computer Society, Los Alamitos,

CA, USA, May 2005, pp. 39-47

[8] Hsu Mon Kyi and Thinn Thu Naing “An Efficient

Approach for Virtual Machine Scheduling on a Private

Cloud Environment”,4th IEEE International Conference

on Broadcast Network and Multimedia Technology (IC-

BNMT), Myanmar,2011,pp.365-369

[9] Kuan-Rong Lee, Meng-Hsuan Fu, Yau-Hwang Kuo “A

Hierarchical Scheduling Strategy for the Composition

[10] Tim Kaldewey, Theodore M. Wong, Richard Golding,

Anna Povzner, Scott Brandt, Carlos Maltzahn,

“Virtualizing Disk Performance” in the proceedings of

IEEE Real-Time and Embedded Technology and

Applications Symposium, 2008, USA,pp. 319-330

[11] S. Pratt and D. Heger. Workload dependent performance

evaluation of the linux 2.6 i/o schedulers. In Proceedings

o the Linux Symposium, volume 2. Ottawa Linux

Symposium, 2004.

[12] S. Seelam, R. Romero, and P. Teller. Enhancements to

linux i/o scheduling. In Proceedings of the Linux

Symposium Volume Two, pages 175{192. Ottawa Linux

Symposium, July 2005.

[13] D.Bouthcher and A.Chandra “Does Virtualization Make

Disk Scheduling Passe?” in Proceedings of ACM

SIGPOS Operating System Review Volume 44, January

2010, New York, USA,pp 20-24

[14] S. R. Seelam and P. J. Teller “Virtual i/o scheduler: a

scheduler of schedulers for performance virtualization”

In VEE '07: Proceedings of the 3rd international

conference on Virtual execution

environments,2007,USA,pp.105-115

[15] A. Gulati, I. Ahmad, and C. A. Waldspurger “Parda:

proportional allocation of resources for distributed

storage access” In FAST '09: Proccedings of the 7th

conference on File and storage technologies. USENIX

Association, 2009.

[16] Mukil Kesavan, Ada Gavrilovska, Karsten Schwan “On

Disk I/O Scheduling in Virtual Machines” in the Second

Workshop on I/O Virtualization (WIOV ’10), March 13,

2010, Pittsburgh, PA, USA.

[17] Ashwini Meshram, Urmila Shrawankar “Future Request

Predicting Disk Scheduler For Virtualization” in the

proceedings of Journal of Computer Science and

Engineering, Vol.16, Issue 2, Dec.2012.

[18] S. Y. Amdani M. S. Ali S. M. Mundada “Mathematical

Model for Real Time Disk Scheduling Problem” in the

special issue on Emerging Trends in Computer Science

and Information Technology-2012(ETCSIT2012) of

International Journal of Computer Applications

Time

(SEC)

IJCATM : www.ijcaonline.org

