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ABSTRACT 
Artificial neural networks (ANNs) are weightily parallels, 

distributed processors, constituting of numerous simple 

processing units that are used to solve the complex problems. 

In this paper ANN was used to present complex relation 

between water-oil relative permeability key points and rock 

and fluid properties for multiphase flow in porous media. In 

this research 200 relative permeability curves from Iranian 

carbonate were used to reach the ultimate goal. 6 key points 

which contains end points and the crossover points, were 

considered for each curve. ANN was then used to predict 

these key points from different rock and fluid properties. 

ANN presents very high correlation coefficients in the range 

of 0.85 to 0.95 for Kr key points. The results proved that 

ANN is an appropriated tool to predict water-oil relative 

permeability in porous media with high accuracy when the 

needed core and fluid properties are available. 
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1. INTRODUCTION 
Relative permeability (Kr) is explained as the ratio of effective 

phase permeability to absolute permeability and it is 

expressed as a function of saturation. Relative permeability is 

computed from capillary pressure curves, and also it is 

commonly measured in laboratory by unsteady or steady state 

methods [1][2]. Ultimate recovery and oil production rate of 

reservoirs are generously affected by the relative permeability 

curves. 

The effects of some parameters such as fluid viscosity, 

interfacial tension, wettability, density, displacement rate, 

capillary number, pore size distribution and temperature on 

relative permeability curves are studied which are different 

and even opposing in many cases [3][4][5][6].  

Some mathematical models have been constructed for 

prediction and calculation of the relative permeability. It is 

just because of laboratory measurements are expensive and  

 

 

complex, and it is taking a long time. Diversity of correlations 

from simple models to classified models based on lithology, 

wettability and imbibitions or drainage processes were 

proposed [7][8][9][10][11][12].  

One of the most important parameters for fluid flow 

calculations of the water and oil phases in the porous media is 

Water-Oil permeability. Prediction of Kr end points is the 

most importance for engineering applications. Roghanian et 

al. [13] used linear regression method to find credible 

correlations for key points of water-oil relative permeability 

curves from different rocks and fluid properties. This was the 

only approach that could predict Kr end points and provide 

un-normalized curves. 

In this paper ANN method is used in place of linear regression 

to obtain relations between key points of water-oil relative 

permeability and rock and fluid properties. To gain this 

objective relative permeability curves from Iranian fractured 

reservoirs with different rock and fluid properties were used. 

Six key points, including the end points and the crossover 

points were determined for each curve. The data were divided 

into training data sets (85%) and testing data sets (15%). 

Relationship between key points of water oil relative 

permeability curves and rock and fluid properties are 

established by using ANN toolbox. Then full curves of the 

relative permeability are created very simple by having known 

these key points. 

 

2. ARTIFICIAL NEURAL NETWORK 

Artificial neural networks (ANNs) developed in an important 

manner in the mid-1980s after major developments in 

neuroscience. Artificial Neural Network is a computer model 

that is planned to mimic the behavior of the human brain in 

terms of the learning process and pattern recognition. 

Artificial neural networks are information process systems 

that are a rough approximation and a simplified simulation of 

the biological process. They have the performance 

characteristics similar to those of biological neural networks. 

In fact neural networks realize the nature of the dependency 

between input and output parameters and so work very well at 

solving problems when it is difficult to suggest extremely 

accurate mathematical model. A neuron is the basically 

processing element of a neural network.  Fundamentally a 

biological neuron gets inputs from other sources, unites them 

in some way, carries out an ordinarily nonlinear operation on 

the results, and then outputs the results. A neuron includes 

dendrites, a cell body and an axon. Figure 1 shows schematic 

diagram of a biological neuron.  

A typical ANN has three layers of neurons includes input, 

hidden or and output layer. Figure 2 shows a schematic 

diagram of three-layer artificial neural network system. 

Neural networks are so suitable for complex problems. They 

generally have large degrees of freedom, therefore they can 

capture the nonlinearity of the process being studied better 

than conventional regression methods. ANN is relatively 

insensitive to data noise, as they can present the underlying 

relationship between model inputs and outputs, resulting in 

good generalization capacity [14]. In predictive modeling, the 

performance of suggested network highly depends on correct 

network training choice and correct data processing [15]. A 

feed forward neural network is ordinarily used in different 
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area such as petroleum engineering such as reservoir 

characterization, optimization of field operations and 

optimization of simulation treatments design [16]. Simple 

structure of neural network such as three layered feed-forward 

with back propagation can utilized for nonlinear continuous 

problems [17]. The mean squared error of the network is 

delineated as: 
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where U is sum of the mean squared error, m is the number of 

output nodes, G is the number of training samples, Tj(k) is the 

expected output and Yj(k) is the actual output. Data used 

under study is separated in two different sets, first is training 

data set and second is testing data set. The neuron output is 

“weighted” by the model in order to present results that are 

close to the correct outputs in the training set. The 

mathematical function that was described above occurs in the 

middle layer. Optimization set of weights in network is 

purpose of training process and if the number of weights in 

network is higher than useable data, the error in fitting the 

non-trained data firstly decreases, but then increases as the 

network become over trained and over fitting problem is 

occurred. An applicable ANN must be capable of predict an 

output with good results for data not previously seen by the 

network. 

3. RELATIVE PERMEABILITY CURVE 
In this paper unsteady state approach during the imbibition 

process of water-oil system is used to achieve all relative 

permeability curves and air permeability is assumed as the 

basis for all relative permeability estimations. For this study 

core samples from Asmari formation were used to measure 

the relative permeabilities. Asmari formation is located in 

South-West of Iran. The Oligocene Miocene Asmari 

formation is a thick sequence of shallow water carbonate. 

The main characteristics of relative permeability curves are 

indicated by key points. The key points are initial water 

saturation (Swi), maximum water saturation (Swmax), oil 

relative permeability at Swi (Krom), water relative permeability 

at Swmax (Krwm), cross point saturation (Sx) and relative 

permeability at Sx (Krx). Oil relative permeability has its 

maximum value at initial water saturation where the most of 

pores are available for the oil to flow and water relative 

permeability has its maximum value at maximum water 

saturation. A typical set of Kr curves with six key points is 

shown in figure 3. Core and fluid properties for each set of Kr 

test contain: porosity, water permeability, air permeability, 

pressure drop, oil and water viscosities, initial water 

saturation, maximum oil relative permeability, maximum 

water relative permeability, cross point saturation, cross point 

relative permeability, residual oil saturation (maximum water 

saturation), formation type and lithology.   

Frequency and the standard deviation of these data are 

calculated.  Data in the range of 2 times of the standard 

deviation around the mean was considered, which left 200 

data sets of water-oil relative permeability for analysis. 

Summary of core and fluid properties is provided in table 1. 

A parameter selection code developed in MATLAB to find 

effective variables for each key point calculation. This 

program searches for all possible combinations in input space 

to closely calculate key points by a well ANN architecture. 

The group of independent variables with the highest R2 was 

considered as the most appropriate combination.  

 

4. KNOWN KEY POINTS 

4.1 Maximum water saturation (Swm) 
Maximum water saturation in a core sample is commonly 

measured in spontaneous and forced water-oil capillary 

pressure test. It is important to know maximum water 

saturation in reservoir is caused by competition between 

capillary, viscous and gravity forces. Swm varies between 25% 

and 95% in data bank. 

 

4.2 Initial water saturation (Swi) 
Distribution of Swi in the reservoir condition can be 

determined from the resistivity logs or capillary pressure 

curves or both of them. When capillary and gravity forces are 

in balance initial water saturation is obtained in any points of 

reservoir. The quantity of Swi is a complicated function of 

wattability, interfacial tension of fluids, pore geometry and 

their viscosities and densities. Core samples with different 

lithology have broad range of Swi from 4.4% to 59.1%. The 

initial water saturation is assumed as one of the input 

parameters for prediction of the other key points.  

 

5. ESTIMATION OF UNKNOWN KEY 

POINTS 

5.1 Cross Point Saturation 
Cross point saturation (Sx) is an important point in developing 

of a relative permeability curve. It is a point where the relative 

permeability curves intersect each other, that means the phase 

permeabilities of two phases are equal. The values of Sx in 

data bank vary between 19.9% and 79.7% with normal 

distribution. The following functionality for Sx is considered: 

  , , , , log ,log ,log ,log ,log /wi w wm wi a w o wSx F S S S K     

 (2) 

Final ANN model presented high R2=0.95 for both the 

training and testing data sets. Figures 4 and 5 show the cross 

plot of the calculated values vs. actual Sx for the training and 

testing data sets respectively. It is a very sufficient result that 

is obtained by ANN. 

 

5.2 Relative Permeability at Cross Point 

Saturation 
Cross point relative permeabilities (Krx) did not show a 

normal distribution. Their logarithmic values provided a 

normal distribution and were used in the analysis. Krx in data 

bank is changed from very low values in the order of less than 

thousandth up to 0.2. Krx values Functional relationships with 

R2=0.95 and R2=0.89 for the training and testing data sets 

respectively that are achieved with the following variables and 

by using ANN:  

  log , , log ,log ,log ,log ,log ,log /w o a w o wKrx F P K K      

  (3) 

Calculated Krx versus actual values for training and testing 

data sets are presented in figure 6 and 7 respectively. It is 

clear that ANN is a strong method to estimate Krwm from 

above mentioned variables. 

 

5.3 Water Relative Permeability at Swm 
Water relative permeability reaches its maximum (Krwm) at 

Swm while that of the oil decreases to zero. Krwm in data bank 

varies from less than 0.0015 to 0.61 with normal distribution 

of their logarithmic values. ANN could estimate Krwm with 
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R2= 0.87 and R2=0.91 for the testing and training data sets 

respectively. In this study Krwm is considered as a function of: 

  , , , log ,log ,log / , log ,log ,log ,logo w o w w a wKrwm F Swc Swc K K P       

(4) 

Estimated versus actual Krwm for the training and testing data 

sets are presented in Figure 8 and 9 respectively. These 

figures indicate very satisfactory act of ANN model for 

prediction of Krom from previously mentioned input core and 

fluids properties. 

 

5.4 Maximum Oil Relative Permeability 
Oil relative permeability has its maximum value at initial 

water saturation where the most of pores are valid for the oil 

to flow. Krom in data bank is changed from less than 0.002 to 

0.95 with normal distribution of their logarithmic values. 

Final ANN model presented high R2=0.94 and R2=0.93 for the 

training and testing data sets respectively. Selected input 

parameters are shown below: 

  , , , , log ,log ,log ,log ,log ,logo wc o w o w w a o w wcKrom F p S K K S       

(5) 

Calculated versus actual Krom for training and testing data sets 

are presented in figures 10 and 11 respectively. These graphs 

also show very well and sufficient performance of ANN 

model for calculation of Krom from above mentioned input 

variables.  

 

6. CONCLUSION AND DISCUSSION  
There is no mathematical formula can exactly predict relative 

permeability for any specific rock and fluid system. Relative 

permeability is influenced by many variables such as porosity, 

pore geometry, wettability, interfacial tension, temperature, 

displacement rate, etc which are not included in Darcy's 

equation. It can be said that it is originally explained to extend 

Darcy's equation to multi-phase systems. In this paper to have 

a proper comparison, linear regression method is used to 

predict water-oil relative permeability key points from 

different rock and fluid properties. R2 values in their 

suggested correlations for Sx, Krx and Krwm were in the range 

of 0.65 to 0.8. Also in this study, ANN is used to investigate 

dependency of the same key points to the porosity, initial and 

maximum water saturation, water and air permeability, oil and 

water viscosities and pressure drop. High R2 values for Sx and 

Krx indicate that they are mostly affected by the assumed 

independent parameters. However, in some manner lower R2 

for Krwm indicates it possibly influenced by other parameters 

like wettability, interfacial tension, temperature, displacement 

rate and pore geometry that were not considered in this study. 

Table 2 presented comparison of their R2 values which proves 

higher capability of ANN in data modeling than linear 

regression techniques. The suggested models can be made an 

application for all variety of core and fluid properties which 

are given in table 1. 

It is very simple to develop full curves of water and oil 

relative permeability curves by using simple polynomials and 

having known these 6 characteristic points where each Kro and 

Krw curve is characterized by 3 points. Such predictions are 

carried out for 3 core samples. The properties of each core 

sample are presented in table 3. Comparison between 

measured and estimated relative permeability of these samples 

are indicated in figures 12 to 14. As these figures prove, 

measured relative permeabilities are extremely matched by the 

computed curves in their un-normalized forms.  

So this paper proves that the considered key points are 

sufficient to construct full relative permeability curves and the 

suggested functional relationships by ANN are extremely 

exact to achieve these key points from simple rock and fluid 

characteristics. 
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Table 1. Properties of core samples 

 
   Ka Kw μo μw ∆P Swi Swm Krwm Krom Sx Krx 

 (%) (md) (md) (cp) (cp) (psi) (%) (%) (Frac.) (Frac.) (Frac) (Frac.) 

No 200 200 200 200 200 200 200 200 200 200 200 200 

Min 2.1 0.15 0.004 1.1 1 0.69 4.4 25 <0.0015 <0.002 19.9 <0.001 

Max 30.8 2142 636 20 1.86 5245 59.1 95 0.61 0.95 79.7 0.2 
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Table 2. Comparison between R2 values of linear regression and ANN data modelling 

 
 

Cross point 

saturation 

Cross point  

relative 

permeability 

Maximum water 

relative permeability 

Maximum oil 

relative 

permeability 

Linear regression 0.79 0.78 0.8 0.65 

ANN 
Training data sets 0.95 0.94 0.95 0.91 

Test data sets 0.95 0.93 0.89 0.87 

 
 
 
 

Table 3. Properties of compared samples 

 
sample   Ka Kw μo μw Swi 

No (%) (md) (md) (cp) (cp) (%) 

1 21.6 45.7 19.2 19.4 1.51 36 

2 9.7 0.48 0.053 21.5 1.38 16 

3 9.1 5.6 0.4 20.7 1.64 25 

 
 
 

 

 

Fig 1: Schematic diagram of a biological neuron 
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Fig 2: schematic diagram of three-layer artificial neural network system 

 

 

 

Fig 3: A typical water-oil relative permeability curve 
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Fig 4: Crossover saturation point for training data set 

 

 

 

Fig 5: Crossover saturation point for testing data set 
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Fig 6: relative permeability for training data set 

 

 

Fig 7: Crossover relative permeability for testing data set 
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Fig 8: Maximum water relative permeability for training data set 

 

 

Fig 9: Maximum water relative permeability for testing data set 

 

 

Fig 10: Maximum oil relative permeability for training data set 
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Fig 11: Maximum oil relative permeability for testing data set 

 

 

 

Fig 12: A comparison between measured and predicted Kr for core sample.1 
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Fig 13: A comparison between measured and predicted Kr for core sample.2 

 

 

Fig 14: A comparison between measured and predicted Kr for core sample.3 
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