
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.15, July 2013

36

Advanced Testbench Design using Reusable Verification
Component and OVM

Viney Malik
M.E Student (ECE Deptt.)

NITTTR, Sec - 26, Chandigarh
India

Rajesh Mehra
Assoc. Professor (ECE Deptt.)
NITTTR, Sec - 26, Chandigarh

India

Surender Ahlawat
Senior Manager
Mentor Graphics

India

ABSTRACT
The paper describes the additional proven techniques for

creating highly effective testbenches. This paper presents

topics that are likely to be used by most test-benches. Samples

of the techniques, as well as the underlying concepts, are

presented. The paper shows several ways to use VIP with

OVM technology and provides the knowledge to customize,

modify, and extend the techniques to suit the needs of SoC

designers. The basic steps to create a first constrained random

testbench with VIP and OVM is also presented. It can be a

template to develop more complex and powerful test-benches

using other computing methods and features of OVM and

VIP.

Keywords
Open Verification Methodology, Verification Intellectual

Property, System on Chip, Design Under Test, Transaction

Level Modeling.

1. INTRODUCTION
Open Verification Methodology (OVM) [1]–[2] is a complete

verification methodology that codifies the best practices for

development of verification environments targeted at

verifying large gate-count, IP-based SoCs. Verification

productivity stems from the ability to quickly develop

individual verification components, encapsulate them into

larger reusable verification components, and reuse them in

different configurations and at different levels of abstraction.

OVM supports ―bottom-up‖ reuse by allowing block-level

components and environments to be encapsulated and reused

as blocks that can be composed into a system. ―Top-down‖

reuse allows transaction-level verification environments to be

assembled with system-level models of the design, and then

reused as the design is refined down to RTL. The remainder

of this paper is organized as follows. Section 2 presents

features of OVM for modular communication between

components. Section 3 explains about reusable verification

components. In Section 4, Transaction Level Modeling with

Multiple Abstraction Levels is provided in VIPs by providing

complete stimulus control to user at any abstraction level.

Section 5, explains the steps for building a test environment

using Verification IP (VIP) and OVM. Section 6 draws final

conclusions.

2. FEATURES OF OVM
The Open Verification Methodology (OVM) is an open-

source System Verilog class library and advanced

methodology that defines a framework for reusable

verification IP (VIP) and tests. It is based on the IEEE 1800

System Verilog standard and provides building blocks

(objects) and a common set of verification-related utilities.

The features of OVM are as under:

i. Data Design - Infrastructure for class property

abstracting and simplifying the user code for setting,

getting, and printing property variables.

ii. Stimulus Generation - Classes and infrastructure to

enable fine-grain control of sequential data streams for

module- and system-level stimulus generation. Users can

randomize data based on the current state of the

environment, including the Design Under Test (DUT)

state, interface, or previously-generated data. Users are

provided out-of-the-box stimulus generation, which can

be customized to include user defined hierarchical

transactions and transaction streams.

iii. Building and Running the Verification Environment -

Creating a complete verification environment for a SoC

containing different protocols, interfaces and processors

is becoming more and more difficult. Base classes are

provided for each functional aspect of a verification

environment in the System Verilog OVM Class Library

[3]. The library provides facilities for streamlining the

integration of user-defined types into the verification

environment. A topology build infrastructure and

methodology provide users flexibility in defining

required testbench structures. A common configuration

interface enables the user to query and set fields in order

to customize run-time behavior and topology.

iv. Coverage Model Design - Best-known practices for

incorporating coverage into a reusable verification

component.

v. Built-in Checking Support - Best-known practices for

incorporating physical- and functional layer checks into a

reusable verification component.

OVM [4] has features that greatly help with reuse such as the

configuration mechanism, class factories, TLMs and

sequences.

3. VERIFICATION & MODELING
The reusable components, called intellectual property (IP)

blocks or cores, are typically synthesizable register-transfer

level (RTL) designs (often called soft cores) or layout level

designs (often called hard cores). The concept of reuse can be

carried out at the block, platform, or chip levels, and involves

making the IP sufficiently general, configurable, or

programmable, for use in a wide range of applications [5].

Reusable verification components are system which works at

multiple abstraction levels and one only need to replace

Transaction Level Modeling (TLM) level master/slave with

RTL master/slave once cores are ready. These are system

verilog based OVM compliant verification component. [6].

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.15, July 2013

37

 Transaction Level Modeling with multiple abstraction levels

is provided in VIPs by providing complete stimulus control to

user at any abstraction level. For e.g. in OCP VIP there are 2

abstraction levels - Phase level (with Request, Data-

handshake and Response phases) and Transfer level (Simple

transfer and Burst transfer). It makes much easy for user to

move from one abstraction level to another. This provides

user a flexibility to provide different pattern of delays

between phases by running stimulus at Phase level, this helps

in running different scenarios of in order as well as out of

order stimulus. It also provides full freedom to control

pipelining in transactions. [7]. As mentioned above, VIP

provides flexibility of running stimulus at mixed abstraction

levels. Further, Simulator transaction viewing capability

feature provides view of all the VIP transactions in its

waveform display. The transactions hierarchically from top to

bottom abstraction can be viewed in this display. Using this

unique transaction viewing feature along with VIP extends

level of debugging. VIP provides full logging capability for

all the transactions. Logging can be turned on or off according

to user requirement. [8].

Figure 1 exhibits a snapshot of VIP transactions viewing with

simulator waveform transaction viewing. Both Phase and

Transfer level transactions can be easily seen and parameters

of the respective transaction can also be seen.

Figure 1: Exhibits a snapshot of VIP transactions viewing with simulator waveform

4. PROPOSED TESTBENCH DESIGN
VIP and OVM provide the option to rapidly build a well-

architected, advanced verification infrastructure. In this

section, a few basic OVM concepts and techniques have been

applied to quickly achieve a basic constrained random

testbench. The major steps to create a test environment using

VIP and OVM are:

i. Creation of test environment

ii. VIP Configuration

iii. Constrained random sequence generation

iv. Control the test (Start and Stop)

i. Creation of Test Environment

The testbench is instantiated in a top-level module to create a

 class-based simulation environment. The top module contains

the typical HDL constructs and a configuration class which

contains a System Verilog interface. This interface is used to

connect the class-based testbench to the DUT. The

environment inside the testbench uses a virtual interface

variable to refer to the System Verilog interface (Abstraction

Adaptor / VIP BFM). Protocol checking assertion monitor can

also be instantiated and connected to the DUT in this top level

module. [9] - [12]. The basic architecture of a VIP is as shown

below:

The main feature of this new architecture of test bench is that

it requires very few connections of ports and exports of the

TLM components to get the test up and running. In some

cases it might even not require any connections to be done

and just requires the instantiation of the TLM components.

VIP includes VIP_base library which takes care of the

connections of ports and exports.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.15, July 2013

38

Figure 2: Basic Architecture of VIP

The agent at either end of the bus plays an active part in the

protocol. A master agent might send requests to and get

responses from the DUT, while a slave agent will get requests

and send responses. Both master and slave agents will also

have passive functionality. A monitor inside the agents

observes interesting transactions on the bus and publishes

those transactions for use inside or outside the agent.

// Top level testbench module

module env ();

 top_level_config top_cfg; // MVC top level configuration

object

 usb usb_if(1'bz); // MVC BFM interface

 mvc_env env;

// Setting environment configuration

 initial

 begin

 top_cfg = new (usb_if);

 set_config_object("*", s_top_level_config_id , top_cfg , 0);

 mvc_env_config::configure_interfaces();

 env = new("env");

 mvc_barrier_pool::run_test();

 end

endmodule

ii. VIP Configuration

The configuration class contains a virtual System Verilog

interface which is used to connect the testbench to DUT.

Apart from this, it is used to configure the VIP. This includes

passing the information how the VIP is going to be used and

protocol related parameter values. This may also be used to

instantiate internal passive components (scoreboard and

coverage).

// MVC top level Configuration class

 class top_level_config extends mvc_env_config;

 typedef top_level_config this_t;

 typedef axi_vip_config config_t; // MVC BFM

configuration class

 typedef virtual axi axi_if_t;

 typedef axi_master_rw_nolock_transaction

axi_rw_nolock_trans_t;

 typedef axi_master_rw_transaction axi_rw_trans_t;

 config_t m_master_config , m_slave_config;

 extern function new(axi_if_t axi_if);

 extern task do_configure_interfaces();

 extern local function void do_master_config(axi_if_t

 axi_if);

 extern local function void do_slave_config(axi_if_t axi_if);

 extern local function void do_common_config(config_t t ,

axi_if_t axi_if);

endclass

function top_level_config::new(axi_if_t axi_if);

 m_master_config = new();

 m_slave_config = new();

 do_master_config(axi_if); // Master agent configuration

 do_slave_config(axi_if); // Slave agent configuration

// Creation of master and slave agents and assigning config to

agent

 m_configs["master"] = m_master_config;

 m_configs["slave"] = m_slave_config;

endfunction

function void top_level_config::do_master_config(axi_if_t

axi_if);

 do_common_config(m_master_config , axi_if);

 // Adding sequence item to library

DUT

Scoreboard

VIP Agent VIP Agent

Protocol

Checker

Test

sequence

Long lived

slave

sequence

Slave

Short lived slave

sequences

External

Coverage

Abstraction Adaptor

(VIP BFM)

Pin interface

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.15, July 2013

39

 m_master_config.add_item_to_library(

axi_rw_nolock_trans_t::get_type());

 // Setting master default sequence item

 m_master_config.set_default_sequence(

axi_random_sequence::get_type() , 10);

 // Adding listener item which can be used by the passive

components

 m_master_config.set_analysis_component("trans_ap" ,

"listener" ,

 mvc_item_listener #(axi_rw_trans_t)::get_type());

endfunction

function void top_level_config::do_slave_config(axi_if_t

axi_if);

 do_common_config(m_slave_config , axi_if);

 //Setting slave default sequence item

 m_slave_config.set_default_sequence(axi_slave_sequence ::

get_type() , 1);

endfunction

function void top_level_config::do_common_config(config_t

t , axi_if_t axi_if);

 // Master + Slave are TLM

 t.m_master_map = TLM; // This can be set to RTL when

Master is DUT

 t.m_slave_map = TLM; // This can be set to RTL when

Slave id DUT

 // VIP generates clock and reset

 t.m_clock_source = TLM;

 t.m_reset_source = TLM;

 t.m_write_data_before_addr = 0;

 t.m_write_addr_to_data_mintime = 0;

 t.m_write_data_to_addr_mintime = 0;

 t.per_instance = 0;

 t.coverage_name ="coverage";

 t.m_bfm = axi_if;

endfunction

task top_level_config::do_configure_interfaces();

 m_master_config.configure_interface();

endtask

endclass

iii. Constrained Random Sequence

Generation

Sequence Writing
A bfm supports a set of sequence items. These items are

different to normal sequence items in that they have methods

which know how to apply the item to the bfm (in VIP_driver)

and receive it from the bfm (in VIP_monitor). The VIP_driver

and VIP_monitor are part of the VIP_base library which is

provided with the VIP.

Using VIP sequence items is no different to using any other

kind of item. The start and finish a VIP_sequence_item would

be created like any other sequence item. The only restriction

is that it has been done so from inside an VIP_sequence

provided in the VIP_base library. While creating the sequence

item, the sequence item properties can be randomized with

constraints as shown in the below code snippet.

class apb3_test_sequence #(int SLAVE_COUNT = 1 ,

 int ADDRESS_WIDTH = 32,

 int WDATA_WIDTH = 32,

 int RDATA_WIDTH = 32) extends

mvc_sequence;

 typedef apb3_host_read

#(SLAVE_COUNT,ADDRESS_WIDTH,

 WDATA_WIDTH, RDATA_WIDTH)

write_read_t;

 …

 task body();

 write_item_t write_item =

write_item_t::type_id::create("write_seq");

 read_item_t read_item =

read_item_t::type_id::create("read_seq");

 …

 forever

 begin

 assert(write_item.randomize() with {write_item.addr

inside {[m_slave_start_address : m_slave_end_address]};});

 read_item.addr = write_item.addr;

 read_item.slave_id = write_item.slave_id;

 start_item(write_item);

 finish_item(write_item);

 start_item(read_item);

 finish_item(read_item);

 end

 endtask

 …

 endclass

iv. Control the test (Start/Stop)

Sequence Starting
Having written a sequence, it is required to start it on an

agent. There are two ways to do this. One is to explicitly call

start; the other is set the default sequence in the configuration.

Starting a sequence by calling start
class env …

 mvc_agent master_agent;

 …

 task run ();

 test_sequence_t test_seq;

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.15, July 2013

40

 test_seq =

test_sequence_t::type_id::create("test_sequence");

 fork

 master_agent.mvc_export.start(test_seq);

 time_out();

 join_any

 global_stop_request();

 endtask

 task time_out();

 #10000;

 `mvc_report_info("sample_environment", "Test completed

due to timeout")

 endtask

 …

endclass

The run task above declares and creates a test sequence. It

then calls the start method of the master agent‘s VIP_export.

This export is connected to the sequencer, so the call to start is

routed to the sequencer inside the agent.

In the code above, it is terminated either when a timeout or

the sequence ends.

Starting a sequence by setting the default sequence
The sequence can be started by simply setting the default

sequence in the configuration. This can be done as shown in

the below code snippet:

 m_master_config.set_default_sequence(

axi_random_sequence::get_type() , 10);

This means that axi_random_sequence will execute 10

random items on the master.

5. CONCLUSION
As evident from the result in the previous sections with the

most latest technologies, VIP and OVM present new concepts

and techniques. When applied effectively, the new practices

will provide the maximum benefit from a constrained random

verification methodology i.e. save verification time and effort,

increase test effectiveness and coverage, increase reuse etc.

The presented work provides an introduction to the use of VIP

with OVM and opens avenues for researchers to work on VIP

& OVM for new developments. It also, lays a solid foundation

for creating advanced test-benches.

6. REFERENCES
[1] Mark Glasser―Open Verification Methodology

Cookbook‖ 1st edition, Springer, 2009.

[2] ―OVM Golden Reference Guide‖, version2.0, Doulos,

2008.

[3] Thomas L. Anderson, “Open Verification Methodology:

Fulfilling the Promise of System Verilog‖ Information

Quarterly (IQ) Volume 7, Number 1, pp. 52-54, 2008.

[4] Bryan Ramirez, Michael Horn ―Parameters and OVM -

Can‘t They Just Get Along?‖ Proceedings of Design and

Verification Conference & Exhibition (DVCon ‘11),

2011.

[5] Stephen D‘Onofrio, Ning Guo ―Building reusable

verification environments with OVM‖ proceedings of

EDA Tech Design Forum - 08, pp. 1-9, 2008.

[6] A.Wakefield, B.J. Mohd, ―Constructing Reusable

Testbenches‖ Proceedings of the IEEE Conference,

High-Level Design Validation and Test Workshop, pp.

151-155, 2002.

[7] Mikhail Chupilko, A. Kamkin, ―A TLM-Based

Approach to Functional Verification of Hardware

Components at Different Abstraction Levels‖

Proceedings of the IEEE Conference, Test Workshop

(LATW), pp. 1-6, 2011.

[8] L. Cai, D. Gajski, ―Transaction Level Modeling: an

Overview‖ First International IEEE Conference on

Hardware/Software Co-design and System Synthesis

(CODESS ‗03), pp. 19-24, 2003.

[9] Chris Spares ―System Verilog for verification‖ 2nd

edition Springer 2008.

[10] Rudra Mukherjee, Sachin Kakkar ―Towards an Object-

Oriented Design Methodology using SystemVerilog‖

Proceedings of Design and Verification Conference &

Exhibition (DVCon ‘09), pp. 234-239, 2009

[11] ―IEEE Standard for System Verilog—IEEE std.1800-

2009‖

[12] ―System Verilog Testbench Constructs‖

www.testbench.in

IJCATM : www.ijcaonline.org

