
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.14, July 2013

42

High Speed-Low Power Radix-8 Booth Decoded
Multiplier

Praveen Kumar Patil

M.Tech Scholar
Department of Electronics and Communication
Maulana Azad National Institute of Technology

Bhopal, India

Laxmi Kumre
Assistant Professor

Department of Electronics and Communication
Maulana Azad National Institute of Technology

Bhopal, India

ABSTRACT

This paper proposed a new method for adding sum and carry

using carry look-ahead adder at the final stage of the radix-8

booth decoding multiplier. In a conventional radix-8 booth

decoded multiplier, full adders and half adders are used to add

sum and carry. After partial product reduction using booth

decoding, the partial product rows are required to add for final

result. In this method carry look-ahead adders (CLAs) are

used to add reduced partial product generated after decoding

the multiplier bits. The carry look-ahead adder generates the

carry and sum simultaneously. 5 bit and 8 bit carry look-ahead

adders are used to add reduced partial product terms in

proposed circuit. The proposed method is used to implement

8bit multiplication using radix-8 booth decoded multiplier.

The circuit is designed and simulated using cadence virtuoso

EDA tool at 180nm CMOS technology. Simulation results

shows power reduction by 11.48 % and propagation delay

reduction by 33.06 % as compared to conventional method.

Keywords

Booth Multiplier, Radix-8, Booth Decoder, Partial Product,

Carry Look-ahead Adder

1. INTRODUCTION
Now days Analog systems are replacing by digital systems

because of its high speed performance, takes less area and less

power dissipation [1]. Multiplication is one of the most

important and basic arithmetic operation that constitute

programs. In fact 8.72% of all instructions in typical scientific

programs are based on multiplication operation [2]. Many

multipliers have been proposed in the past with consideration

of small area, low power and high performance.

Multiplication is achieved by the addition of a certain number

of partial products rows. Each partial product row is generated

by multiply the multiplier bit one by one to multiplicand. In a

simple multiplier, the generated partial products rows are

equal to the number of bits in multiplier. For example, in 8×8

bit multiplication, it will produce 8 partial product rows. It

will take more adders and more time.

To improve the performance of the multiplier, Booth

multiplier is mostly used multiplier. The number of partial

products rows that must be added to give the multiplication‟s

result can be reduced by using Booth decoding. In Booth

multiplier, the numbers of reduced partial products rows are

depend on the grouping done at multiplier bits [3][4]. These

groups of multiplier perform the selected operation on

multiplicand. In booth multiplier grouping is done by 2 bits, 3

bits, 4 bits and so on. Higher order booth decoding reduces

the number of partial product rows by a greater by decoding

larger groups of multiplier bits.

This multiplication process is completed in 3 steps. First step:

multiplier bits are divided in groups then these groups are fed

to decoder at where it will indicate that which operation is to

perform on multiplicand. Second step: here indicated

operation performs on the multiplicand and it will generate

the partial products. Third step: Now generated partial

products are adding with adders [4].

After generation of these partial products, for adding them,

many techniques are used with difference performances. In

this proposed paper one of new techniques used that is carry

look-ahead adder. CLA reduces the propagation path delay

and increase the performance of the system, which is mostly

required in digital systems.

Booth

Decoder

using radix 8

algorithm

Reduced

Partial Product

Generator

Addition with Carry

Look-Ahead

Adders

Multiplicand

Final Result

Multiplier

 Figure 1: Proposed Booth Multiplication Process

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.14, July 2013

43

2. RADIX-8 BOOTH MULTIPLIER
This Booth multiplier is known as radix-8 because it perform

the 8 different types of operations on the multiplicand that are

+M, +2M, +3M, +4M, –4M, –3M, –2M and –M where M

denotes the Multiplicand. All the multiples with except 3M

are easily obtainable, by simply shifting and complementing.

The generation of the 3M (3× multiplicand), which is referred

to as a hard multiple, cannot be obtained by simple shifting

and complementation. It can be produce either M+2M or 4M–

M. Here in this project, it is produced by M+2M. For example

of 8×8 bit multiplication, a simple multiplier generates the 8

partial product rows, but by radix-8 booth multiplier it is

reduced to 3. It means that radix-8 booth multiplier reduces

the partial product rows by N/3 where „N‟ in number of bits in

multiplier [5] - [9].

Table 1: Operation to be performed on multiplicand

Group of

Multiplier bits

Operation to beperform on

Multiplicand

0000 0

0001 1 x Multiplicand

0010 1 x Multiplicand

0011 2 x Multiplicand

0100 2 x Multiplicand

0101 3 x Multiplicand

0110 3 x Multiplicand

0111 4 x Multiplicand

1000 -4 x Multiplicand

1001 -3 x Multiplicand

1010 -3 x Multiplicand

1011 -2 x Multiplicand

1100 -2 x Multiplicand

1101 -1 x Multiplicand

1110 -1 x Multiplicand

1111 0

LSB

MSB

Multiplier

Bits

M

3M

2M

4M

S’

S

Figure 2: Radix-8 Booth Decoder [10]

Using figure 2 and figure 3, the partial products are generated.

In figure 2, multiplier bits are used and then desired

operations perform on multiplicand as shown in figure 3 to

generate partial product.

M 2M 3M 4M

S

Bit k of

partial

product

Multiplicand

bit k

Multiplicand

bit k-1

Multiplicand

bit k-2

3 × Multiplicand

bit k

Bits of Multiplicand

And 3 × Multiplicand

 Figure 3: PP Generator of Radix-8 Booth multiplier [10]

Now apply the algorithm on these generated partial products.

Algorithm for radix-8 Booth multiplication [11] as below:

 1s’ 1s 1s 1s x x x x x x x x x x

 1 1 2s’ x x x x x x x x x x . . 1s

 x x x x x x x x x x . . 2s

 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Figure 4: Radix-8 Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.14, July 2013

44

Where „x‟ denotes the partial product,

„S‟ denotes the sign bit of particular group of multiplier bits.

3. CARRY LOOK-AHEAD ADDER
In a multiplier the overall computation time is mostly

dominated by the final adder stage. This presents a particular

problem when the multiplier is pipelined because the delay

introduced by the adders. The problem may be solved by also

pipelining the adder, but if the usual pipelined ripple-carry

adder having a triangular structure is used then this will

increase the flush time of the multiplier by an amount which

may prove unacceptable. The carry look-ahead adder has the

advantages of a short flush time and small stage delays, which

allow the booth multiplier to be implemented with

approximately equal stage delays throughout [12].

A carry look-ahead adder is a type of adder used in digital

arithmetic operations. A carry look-ahead adder improves

speed by reducing the amount of time required to determine

carry bits. The CLA calculates one or more carry bits before

the sum, which reduces the wait time to calculate the result of

the larger value bits. The operation perform by CLA for

adding 4 bit numbers is as-

If A= A[3]A[2]A[1]A[0] and B=B[3]B[2]B[1]B[0] then

A+B calculation using CLA

P(0)= A(0) ⊕ B(0), G(0)= A(0) .B(0),

P(1)= A(1) ⊕ B(1), G(1)= A(1) . B(1),

P(2)= A(2) ⊕ B(2), G(2)= A(2) .B(2),

P(3)= A(3) ⊕ B(3), G(3)= A(3) .B(3),

C(1)= G(0) + [P(0) . Cin]

C(2)= G(1) + [P(1) .G(0)] + [P(1) .P(0) . Cin]

C(3)= G(2) + [P(2) . G(1)] + [P(2) . P(1) . G(0)] + [P(2) .P(1) .

P(0) . Cin]

C(4)= G(3) + [P(3) . G(2)] + [P(3) . P(2) . G(1)] + [P(3) . P(2).

P(1) . G(0)] + [P(3) . P(2) . P(1) . P(0) . Cin]

And final A+B is given as

S(0)= P(0) ⊕ Cin

S(1)= P(1) ⊕ C(1)

S(2)= P(2) ⊕ C(2)

S(3)= P(3) ⊕ C(3)

S(4)= Cout = C(4)

Where „P‟ „G‟ and „C‟ are signals and taken as reference and

„S‟ is the sum of the adder.

And so on for higher bits carry look-ahead adders.

4. IMPLEMENTATION AND RESULTS
After partial product generated, there are many techniques to

add them to generate final product like using half adder and

full adder, wallace tree, carry save adder, ripple carry adder

etc. But in all these technique carry is propagates from LSB to

MSB that increases propagation delay in the circuit. proposed

Booth Decoded Multiplier final addition is done with CLAs as

shown in Figure 1. Carry look-ahead adder (CLA) is the

technique in which carry is not propagates rather it is

simultaneously generates for all the columns to be added [13].

In this paper 8x8 bit multiplication is shown using radix-8

booth multiplication, where three partial product rows are

generated. First these rows are added using conventional

method that is using half adder and full adder to generates

final product and for comparison with implemented circuit.

Now the generated partial product rows are adding using 8 bit

CLA and 5 bit CLA. Result comparison is shown in table

below, where both circuits are simulated with V=1.8 V and

transition time of 340nSec with W/L of 240nm/180nm in

cadence virtuoso ETA tool.

Figure 5: Average Power Dissipation Waveform

Figure 6: Average Power Dissipation

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.14, July 2013

45

Figure 7: Propagation Path Delay

The different parameters like nodes, equations and number of

accepted transition steps of both methods are shown in table

2. The average power dissipation in conventional method of

adding is 722.2 µW but in proposed adding method the

average power dissipation is 639.3 µW. From simulation and

results, in conventional method propagation delay is 2.656

nSec and in proposed circuit propagation delay is 1.778 nSec.

Table 2: Simulation results

S.

No.

Parameter

Conventional

Method

Proposed

Method

1.

Nodes

1759

2503

2.

Equations

8758

12478

3.

bsim3v3

3492

4980

4.

vsource

17

17

5.

Number of

Accepted Trans

Steps

22526

17940

6.

Average Power

Dissipation (µW)

722.2

639.3

7.

Maximum

Propagation

Delay (nSec)

2.656

1.778

5. CONCLUSION
In proposed paper, the design and implementation of high

performance parallel multiplier is presented usingradix-8

booth multiplier for 8x8 bit multiplication. The design for this

multiplication implemented on cadence virtuoso EDA and

simulated. From the simulation result, proposed design shows

power dissipation and delay are reduced by 11.48% and

33.06% respectively. Hence it concludes that the performance

of proposed design is better in terms of power dissipation and

propagation delay as compared to the conventional design.

6. REFERENCES
[1] Jiun-Ping Wang, Shiann-Rong Kuang, Shish Chang

Liang, “High Accuracy Fixed Width Modified Booth

Multipliers for Lossy Applications”, IEEE Trans 2011.

[2] Pouya Asadi and Keivan Navi, “A new low power

32×32 bit multiplier”, World Applied Sciences Journal 2

(4): 341-347,2007.

[3] A.D. Booth, “A signed binary multiplication technique”,

Quart. J. Mech. Appl. Marh, vol.4, pp. 236-240, 1951.

(Reprinted in [8, pp. 100-104])

[4] Razaidi Hussin, Ali Yeon Md. Shakaff, Norina Idris,

Zaliman Sauli, Rizala fande CheIIsmail, and Afzan

Kamaraudin, “An efficient modified Booth multiplier

architecture”, International Conference on Electronics

Design, 978-1-4244-2315-6/08, 2008 IEEE.

[5] Ramya Muralidharan, Chip Hong Chang,“ Radix-4 and

Radix-8 Booth encoded multi-modulas multipliers” IEEE

Trans, 2013.

[6] Vignesh Kumar R., Kamala J., “High Accuracy Fixed

Width Multipliers using Modified Booth

Algorithm”,International Conference on Modeling

Optimization and Computing, Procedia Engineering

38(2012) 2491-2498.

[7] Aparna P R, Nisha Thomas, “Design and implementation

of a High performance multiplier using HDL”, IEEE

2012.

[8] Yajuan He, Chip Hong Chang,“A New Redundant

Binary Booth Encoding for Fast 2n-Bit Multiplier

Design”, IEEE Trans 2009.

[9] Philip E. Madrid, Brian Millar, Earl E. Swartzlander,

“Modified Booth Algorithm for High Radix Fixed Point

Multiplication”, IEEE Trans 1993.

[10] Gary W. Bewick, “ Fast Multiplication: Algorithms and

Implementation” CSL-TR-94-617, Feb 1994.

[11] Ravindra P Rajput, M.N. Shanmukha Swamy, “High

speed Modified Booth Encoder multiplier for signed and

unsigned numbers”, IEEE 2012.

[12] JUMP. J.R., and AHUJA,S. R., “Effective pipelining of

digital systems”, IEEE Trans., 1978, C-27, PP.855-865.

[13] Nirlakalla Ravi, T. Subba Rao, B. Bhaskara Rao, T.

Jayachandra Prasadd, “A New Reduced Multiplication

Structure for Low Power and Low Area Modified Booth

Encoding Mulriplier”, International Conference on

Modeling Optimization and Computing, Procedia

Engineering 38(2012) 2787-2771.

IJCATM : www.ijcaonline.org

