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ABSTRACT
The multidimensional multi-choice knapsack problem (MMKP) is
one of the most complex members of the Knapsack Problem (KP)
family. It has been used to model large problems such as telecom-
munications, quality of service (QoS), management problem in
computer networks and admission control problem in the adap-
tive multimedia systems. In this paper, we propose a new approach
based on strategic oscillation using surrogate constraint informa-
tion. We introduce new rules to control oscillation process to solve
the MMKP. The main idea is to explore both sides of the feasibility
border that consists in alternating both constructive and destructive
phases in a strategic oscillating manner. In order to strengthen the
surrogate constraint information, we enhance the method with con-
straints normalization. This may improve the computational results.
Numerical results show that the performance of this approach is
competitive with previously published results. Performance analy-
sis of the method shows the merits of its using in this problem class.

General Terms:
Metaheuristic, knapsack problem

Keywords:
Combinatorial optimization, multiple choice, knapsack problem,
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1. INTRODUCTION
The MMKP is a NP-hard problem [7] as it generalizes the stan-
dard knapsack problem (KP), a combinatorial optimization prob-
lem, one of the most complex members of the knapsack problem
family. Unlike the majority variants of the knapsack problem, the
MMKP is very difficult to solve in practice. This is partly due to
its choice constraints. Furthermore, even finding a feasible solution

for the problem is NP-hard. Consider a set of item groups. Each
item has a particular value in the objective function and requires
certain amount of resources. The goal of the MMKP is to pick ex-
actly one item from each group such that the resource constraints
are not violated and the revenue is maximized, as well. Mathemat-
ical formulation of MMKP can be written as follows :

Maximise
n∑

i=1

ni∑
j=1

cijxij (1)

Subject to
n∑

i=o1

ni∑
j=1

akijxij ≤ bk , k = 1, . . . ,m (2)

ni∑
j=1

xij = 1 , i = 1, . . . , n (3)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ni (4)

where b=(b1, b2, . . . , bm)is the capacity vector of the multi-
constrained knapsack resources, and a set of n disjoint item groups
N={N1, . . . ,Ni, . . . ,Nn} where each group i, i=1, . . . , n has ni

items. Each item j, j=1, . . . ni, of the ith group has a non-negative
profit value cij , and requires an amount of resources represented by
the weight vector aij=(a1

ij , a
2
ij , . . . , a

k
ij). Note that weight terms

akij (with 1 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ ni) are nonnegative.
It is worthy to note that xij takes either 1 or 0, which means that
item j of the ith group is picked or not, respectively. To eliminate
trivial solutions, we assume that for all 1 ≤ j ≤ ni we have :

n∑
i=1

min{akij} ≤ bk ≤
n∑

i=1

min{akij} k = 1, . . . ,m (5)

Recently, Romain et al. [42] interested by an original real-world
problem coming from tourism field and describe a modeling of
the problem like an MMKP. They give a first approach that mixes
knowledge management and operational research. In [31], the
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MMKP has been used to model the quality of service (QoS) man-
agement problem in computer networks and the admission control
problem in the adaptive multimedia systems [7][26][32]. Various
other resource allocation problems can also be mapped directly to
MMKP [28][33]. Multimedia server is also equivalent to the knap-
sack with limited resources, e.g. CPU cycles, I/O bandwidth and
memory. Applications of the UM are presented in [6][8]. The pre-
cision of results provided by previously published heuristics de-
signed for MMKP depends on the quality of the start solution usu-
ally provided by another algorithm. This initial condition is harder
to find for MMKP than for standard KP. The goal of this paper is to
design a new oscillation heuristic to solve the MMKP which con-
vergence is independent of the initial solution. This new heuristic
involves tabu search techniques and starts by either feasible or not
feasible solution without affecting the result quality at the cost of
negligible computing time fluctuation. This property is induced by
the oscillation nature of the proposed heuristic between both sides
of feasibility border. This new heuristic shows competitive results
compared to most recent published results and namely much lower
computing time.
This paper is organized as follows; context for our study are given
in section 2; Relevant related works on KP and MMKP are de-
scribed in section 3. Section 4 presents our contribution details.
First, choice rules based on surrogate constraint information are
defined. Then, a constraint normalization scheme is utilized to
strengthen the surrogate constraint used to implement the oscilla-
tion based heuristic. The computational results are reported in Sec-
tion 5. Section 6 summarizes the contributions of this work and
discusses directions for further works.

2. CONTEXT AND MOTIVATIONS
Many different classes of knapsack problems are found in the lit-
erature [33][11], including multi-objective [11], multidimensional
(MDKP)[2][3], multiple-choice (MCKP) [12][13], and bounded
problems [14], and others. The classical knapsack problem (KP)
aims to choose a subset from an infinite set of items. The latter
should satisfy the capacity constraint. As cited in [11], KP has
many practical applications such as cargo loading, cutting stock,
capital budgeting and project selection applications. The 0-1 knap-
sack problem (KP 0-1), using binary variables, is a special MDKP
case. In this KP class, the capacity vector size m is equal to 1. KP 0-
1 could be solved by pseudo-polynomial time function [2][3]. The
MDKP extends the classical knapsack problem to m constraints.
For example, if m=2, the MDKP becomes a bi-dimensional prob-
lem. The MDKP makes up the framework to evaluate new meta-
heuristics. The MCKP is an other extension of the KP in which
the items are divided into several classes. In each class, only one
item has to be selected [33]. The MMKP can be defined from the
MCKP in the same way as the MDKP is derived from the KP. So,
MMKP could be seen as the combination of MDKP and MCKP
[7]. The MMKP is a variant of the MDKP where items are divided
into classes, and exactly one item per class has to be selected. Be-
cause of its choice constraints, MMKP is more difficult to solve.
For these reasons, complete methods are thwarted by combinato-
rial explosion. However, many metaheuristics could be used for its
resolution. In this paper, we present a new metaheuristic for solv-
ing MMKP. This approach introduces a new level where balancing
between intensification and diversification can be realized.

3. LITERATURE REVIEW
The classical KP is known as a special case of the MMKP [10].
In addition it is well known that MMKP is NP-hard [11]. The
MMKP is also closely related to some other well known non-
standard knapsack problems such as the multiple-choice knap-
sack problem [12][13] and the multidimensional knapsack prob-
lem [2][3][23][24]. Actually, the MMKP is the combination of the
MDKP and the MCKP [7][9]. Although very little literature is di-
rectly related to the MMKP. In fact, most works deal with the
multiple-choice knapsack problem (MCKP), a special case of the
MMKP with only one resource constraint (m = 1) and a set of
mutually disjoint multiple-choice constraints. Multiple-choice pro-
gramming can also be traced back as done by Healy Jr [12]. Per-
tinent details of multiple-choice programming fundamentals are
given in [13][14]. A simple dominance concept has been widely
used in the MCKP literature to eliminate dominated variables prior
to the enumeration stage from each multiple-choice group [14].
Dyer and Walker [15] extended the dominance issue to the MMKP
and showed that the expected proportion of nondominated variables
in the MMKP is a function of the number of resource constraints
and the cardinality of the multiple-choice sets. Another variant of
the MMKP is the multidimensional knapsack problem (MDKP)
(n = 1 and eliminating the constraint (3)), which has a sizable
literature [7]. The MDKP has a large domain of applications such
as project selection [16], cargo loading [17], capital budgeting [18]
and cutting stock [19]. A variety of approaches have been applied
to the MDKP such as exact algorithms, greedy heuristic methods,
bound based heuristics and approximate dynamic programming.
The constraint aggregation techniques, such as Lagrangian relax-
ation [20] and surrogate constraint information [21] and [22], have
been extensively applied for solving the MDKP. More detailed in-
formation for the MDKP literature can be found in [14][23][24]
and [37]. Depending on the nature of the solution, the algorithms
for MMKP can be divided into two families: complete methods
and incomplete methods. First ones striving for exact solutions
are, also, known as exact algorithms. Incomplete methods scarify
completeness for efficiency and generate near-optimal solutions.
Finding exact solutions is NP-hard [7][40]. Khan [7], Khan et al.
[26] and Hifi et al. [25] designed exact algorithms for solving the
MMKP. The latter uses Branch and Bound method with Linear Pro-
gramming (BBLP) techniques. Sbihi [40], described a branch-and-
bound algorithm that starts by computing a feasible solution using
the heuristic proposed in [27]. In on hand, the branching scheme
of this algorithm consists in fixing one item in the solution. In the
other hand, it explores the search tree using a best-first strategy.
Razzazi et al. [47] proposed a different branch-and-bound method
in which the nodes are explored using a depth-first strategy, and
upper bounds are obtained by solving a surrogate relaxation of the
problem. In [46], Ghasemi et al. describes an exact algorithm for
the MMKP based on an approximate core. The authors report on
promising results for large uncorrelated instances and for correlated
instances with up to 5 constraints.
Since MMKP is NP-hard in the strong sense, it is often possible that
an optimal solution may not be found within a reasonable compu-
tational time. In the case of MMKP, not only exact methods are
thwarted by exponential combinatorial time but also incomplete
method results stand very close to exact ones [29][39][34][35][41].
For these reasons, incomplete approaches are preferred. Crevits et
al. [44] uses the similar approach proposed in [46] to explore a
heuristic based on a new relaxation. This approach stands on re-
moving the integrality constraints and forcing the variables to be
close to 0 or 1. This relaxation is more general than the linear pro-
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gramming (LP) and mixed integer programming relaxations used in
[45]. Recently, Cherfi et al. [48] describes three new approaches for
the MMKP. The patters are, respectively, based on a local branch-
ing algorithm, on a hybrid algorithm combining local branching
with column generation, and on a truncated branch-and-bound al-
gorithm that embeds the previous hybrid method. Iqbal et al. [35]
developed also an ant colony optimization approach for the MMKP.
The authors improved the convergence of their approach by using
a local search routine in their algorithm. More recently, Mansi et
al. [49] describe a new linear programming relaxations based solu-
tion which reduces the problem by fixing some its variables. These
solutions are used to update the global lower and upper bounds.

4. OUR APPROACH : OSC
4.1 Foundation and basis
Glover and Kochenberger [2] introduced a critical-event tabu
search approach which assumes that the memory structure is ar-
ranged around the feasibility border of the MDKP. This heuristic
(referred to GK) uses a strategic oscillation that navigates both
sides of the border to achieve a balance between intensification
and diversification procedures. A parameter span is used to indi-
cate the depth of the oscillation about the boundary, measured in
terms of the number of variables added after crossing the boundary
from the feasible side in a constructive phase and the number of
variables dropped after crossing the boundary from the infeasible
side in a destructive phase. Starting by a minimum value, the span
is gradually increased to a maximum value. A series of construc-
tive and destructive phases is performed for each value of the span
parameter. When the span reaches the maximum value, it is grad-
ually decreased to the minimum value. Once the span decreases to
the minimum value, it is again gradually increased to the maximum
value, and this oscillation process continues [2]. Hanafi and Freville
[3] also demonstrated special version of this method that balances
the interaction between intensification and diversification strategies
for the MDKP. Tabu search fundamentals and strategies are widely
discussed in Glover and Laguna [1].

4.2 General oscillation strategy for MMKP
In tabu search methods [2], intensification forces the search to ex-
amine attractive regions while diversification drives the search into
new unexplored regions. The main goal is then to find an efficient
balance between intensification and diversification strategies. Pro-
posed by Glover [21], surrogate relaxation consists in replacing
a problem constraints set by only one, called surrogate constraint
[4][22]. Crossing and intensive exploration of the promising region
is controlled by using information deduced from the surrogate con-
straints and the memory of the search. We introduce an adaptive
and flexible memory subdivided into short and long term by incor-
porating recency-based and frequency-based memory. Algorithm 1
makes up the framework of our strategic oscillation method.

4.3 Surrogate constraint based choice rules
In order to determine which variables to add, drop or swap, our
choice is based on using surrogate constraint information. Since
MCKP is much easier to solve than the MMKP [7], we replace all
knapsack constraints of equation (2) by surrogate constraints. So
equation (2) is replaced by equation (6) as follows :

m∑
k=1

µk

n∑
i=1

ni∑
j=1

akijxij ≤
m∑

k=1

bk (6)

Algorithm 1 Oscillation for the MMKP
1. Initialization
Initialize tabu search and oscillation parameters
Generate an initial solution x to be feasible or infeasible
2. General Step
repeat

/ * Intensification* /
if the current solution is feasible then

repeat
Intensification phase around the current solution to im-
prove it. (swap move)

until no improvement after a numbermax of movements
end if
/ * Diversification * /
repeat

switch direction of research
repeat

Constructive phase : add Move from the current zone to
the infeasible region
span = span+ 1

until span = spanmax

repeat
Destructive phase : drop move from the current solution
to feasible region
span = span− 1

until span = spanmin

until Stop
Updating oscillation parameters and tabu search
if the current solution is feasible then

go to 2.
end if

until the stopping criterion is satisfied
return best solution found

Where µ is an m-dimensional non-negative multiplier vector.
Equation (6) can, then, be reformulated by equation (7). And so
our reasoning on the variable sij become more easier.

n∑
i=1

ni∑
j=1

sijxij ≤ s0 (7)

where sij =
∑m

k=1 µka
k
ij and s0 =

∑m
k=1 µkb

k. To generate a
surrogate constraint, we compute first a set of multipliers values λk

as in [2]. λk values are determined not only considering the sur-
rogate constraint multipliers but also depending on the feasibility
of the current solution. In addition to that, we consider the state of
the search process. In all cases, we compute equation (8) for each
constraint k = 1, . . . ,m.

∆k = bk −
n∑

i=1

ni∑
{j/xij=1}

akij (8)

Thus ∆k (initially equal to bk) indicates the remaining right-
hand-side (RHS) value after the current assignment for the
kthconstraint. Note that this value is negative if the constraint k is
violated. Each knapsack constraint is multiplied by its correspond-
ing multiplier λk and the weighted sum provides the surrogate
constraint. In the first case, when the solution is feasible, the λk

for each constraint is always set up to (∆k)−1. In the second case,
when the solution is infeasible and the search is in the constructive
phase, then for all k = 1, . . . ,m
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λk =

{
(∆k)−1 if ∆k >0
2+ | ∆k | if ∆k ≤ 0

In the last case, when the solution is infeasible and the search is in
the destructive phase

λk =

{
0 if ∆k ≥0
(| ∆k | +

∑n
i=1

∑ni

{j/xij=0} a
k
ij)
−1 if ∆k < 0

for all k = 1, . . . ,m. When ∆k < 0, λk can be expressed
as : (

∑n
i=1

∑ni
j=1 a

k
ij − bk)−1.

The setting rules above focus on the influence of the most tight
or violated constraints and, therefore, encourage the search around
critical solutions. Recall that critical solutions are those obtained
immediately before and after crossing the feasibility boundary. In
the same way, critical events correspond to solutions generated by
the constructive phase at the final moment prior to becoming infea-
sible and by the destructive phase at the first moment after regaining
feasibility.
Since µk ≥ 0 and akij ≥ 0, it follows that sij ≥ 0. The choice rule
for the constructive phase selects the variable xij to switch from 0
to 1 in order to

Maximise
{
rij =

cij
sij
|xij = 0

}
(9)

The choice rule for the destructive phase of our approach selects
the variable xij to switch from 1 to 0 in order to

Minimise
{
rij =

cij
sij
|xij = 1

}
(10)

When the solution is feasible, swap moves are chosen to improve
the quality of the current solution. We do this by selecting the vari-
able xij to switch from 0 to 1. Otherwise we select the variable xih
to switch from 1 to 0. The feature considered in our choice of xij
and xih have to

Maximise
{
rijh =

cij/sij
cih/sih

|xij = 0, xih = 1

}
(11)

Where items j and h are in the same group i.

4.4 Normalization for surrogate constraint
To strengthen the surrogate constraint we implement the normal-
ization scheme developed by Glover [4]. The normalization of each
constraint depends on the state of the search and also the current so-
lution (More detailed information about the normalization for sur-
rogate constraint can be found in [2], [21] and [22].

—Case 1: in the constructive phase, firstly, we divide every k
constraint in (2) by the updated (RHS) value to create a
first-level normalization. Secondly, we multiply by the sum of
the normalized left-hand-side (LHS) coefficients. This is done
for every current unassigned variable, in order to create the
second level normalization. Last of all, we sum up the second
level normalization constraints to form a surrogate constraint.
After consecutive levels of normalization, sij can be expressed
as :
sij =

∑m
k=1

Ak.e

(∆k)2
akij

and s0 can be expressed as :
s0 =

∑m
k=1

Ak.e

∆k , where e is a unit vector and

Ak = (
∑n

i=1

∑ni
j=1 a

k
ij |xij = 0).

—Case 2: in the destructive phase, firstly, we divide every k con-
straint in (2) by the updated (RHS) value to create a first-level

normalization. Secondly, we divide by the sum of the normal-
ized left-hand-side (LHS) coefficients. This is done for every
current unassigned variable, in order to create the second level
normalization. Last of all, we add a second level normalization
constraints to form a surrogate constraint. After consecutive lev-
els of normalization, sij and s0 can be expressed as :

sij =
∑m

k=1

ak
ij

Ak.e
and s0 =

∑m
k=1

∆k

Ak.e
,

where Ak = (
∑n

i=1

∑ni
j=1 a

k
ij |xij = 1).

4.5 Add, drop and swap moves
4.5.1 Add move. The add move is the principal move of the con-
structive phase of our approach. Adding a variable to the current
solution S (initially equal to 0) is equivalent to set it up to 1. In
this current step, the object added maximizes the quantity rij as
described in algorithm 2.

Algorithm 2 procedure addMove(S)

G∗ = Argmin
{∑ni

j=1 xij |i ∈ G
}

ri∗j∗ = max {rij |xij = 0, i ∈ G∗, j = 1, . . . , ni}
xi∗j∗ = 1
S∗ = S∗ + xi∗j∗

4.5.2 Drop move. The heuristic gradually chooses which vari-
ables to drop during the destructive phase. Drop an object from
the current solution S (initially equal to 1) is equivalent to reset it
to 0. In this step, the dropped object minimizes the quantity rij as
described in algorithm 3.

Algorithm 3 procedure DropMove(S)

G∗ = Argmax
{∑ni

j=1 xij |i ∈ G
}

ri∗j∗ = min {rij |xij = 0, i ∈ G∗, j = 1, . . . , ni}
xi∗j∗ = 0
S∗ = S∗ − xi∗j∗

4.5.3 Swap move. When the solution is feasible, our approach
improves, step by step, its quality. The improvement should respect
the feasibility of the solution and it is done by swap moves. Algo-
rithm 4 shows how the objects to be swapped from the same group
maximizes the quantity rijh.

Algorithm 4 procedure SwapMove(S)
ri∗j∗h∗ = max {rijh|i ∈ G, j = 1, . . . , ni, h = 1, . . . , ni, }
such as xij = 0, xih = 1 and∑n

i=1

∑ni
j=1 a

k
ijxij − aki∗h∗ + aki∗j∗ ≤ bk, k = 1, . . . ,m,

and ci∗j∗ < ci∗j∗
xi∗j∗ = 1
xi∗h∗ = 0
S∗ = S∗ + xi∗j∗ − xi∗h∗

4
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4.6 Span control
The depth of oscillations on both sides of the boundary can be man-
aged in several ways [30]. In Glover and Kochenberger [2], the
depth of the oscillations is predetermined. It consequently confers
periodic and symmetrical movements on both sides of the boundary
of the feasible space. The oscillation about the feasibility boundary
is controlled by the span parameter δ counting the add/drop moves
and varying between 1 and an upper bound. The periodicity of the
oscillations is controlled by the parameters p1 and p2. δ depends
primarily on the number of iterations and changes as follows :
Increasing span : if the span value is in [1, p1] then allow p2×δ
iterations i.e we increase δ by 1.
If the span value is in [p1+1, p2] allow p2 iterations i.e we increase
the span by 1. When δ exceeds p2, we set it up back to p2 and start
to decreasing the span parameter.
Decreasing span : if the span value is in [p2, p1+1] allow p2 itera-
tions i.e we decrease the span by 1.
If the span value is in [p1, 1] allow p2×δ iterations i.e we decrease
the δ by 1.
When the δ reaches 0, we set up it back to 1 and start increasing
the span parameter.

4.7 Memory management
In order to avoid local optima looping and neighborhoods, we de-
termine the tabu state of a potential move by adding the recency-
based and frequency-based memory information. To slightly
scramble the search using the recency information, we record last
t solutions in a tabu circular list. The latter is updated for each os-
cillation iteration. Hence the recency tabu vector RT is computed
by summing up the last t solutions. It is tempting to note that if
RTij > 0 then the variable xij is currently on the tabu list. There-
fore, this variable should no longer change. Besides, the long term
frequency information is captured by summing up all the collected
solutions. The resulting vector is called FT .
The flexibility is provided by introducing a penalty term when
evaluating the ratio rij for each variable. Let rmax be the max-
imum ratios value of all eligible variables and PenR (equal to
rmax×RTij) the penalty coefficient associated with the recency
information subtracted from the original rij . In addition, we as-
sociate another penalty term with the frequency information. This
penalty term is subtracted from the original rij to penalize the fre-
quently appeared variables in current solutions. We calculate this
value denoted PenF as indicated in equation (12):

rmax

index of the current iteration×C
(12)

Where C is a frequency penalty scalar.
Immediately after a ”turn around”, we apply these penalty terms
in the first k adds or drops. This manipulation aims to more fos-
ter the diversity in the search process. The parameter k starts from
1, after 2t iterations (here t corresponds to the tabu list size).
k is incremented to k + 1. We continue the same process until
k reaches kmax, the maximum value of k. Then k is decreased
by 1 every 2t iterations until it becomes equal to 1 again and
so on. Here countvar is a number of adds or drops after a last
”turn around”. Let i∗j∗ the index of the next object to choose. In
the constructive (respectively destructive) phase (xij = 0) (resp.
xij = 1), we choose the object i∗j∗ with max (respectively min)
Evaluation(i, j) calculated as follow :
If countvar > k, then Evaluation(i, j) = rij
If countvar < k, then
Evaluation(i, j) = rij − PenR×RTij − PenF×FTij

Table 1. Details of Khan’s
instances

Inst n ni m N

I01 5 5 5 25
I02 5 10 5 50
I03 15 10 10 150
I04 20 10 10 200
I05 25 10 10 250
I06 30 10 10 300
I07 100 10 10 1000
I08 150 10 10 1500
I09 200 10 10 2000
I10 250 10 10 2500
I11 300 10 10 3000
I12 350 10 10 3500
I13 400 10 10 4000

5. EXPERIMENTATIONS AND TESTS
5.1 Experimental design
We compare the performance of our new appraoch (Osc) to other
heuristic algorithms from the literature. The benchmarks data set
on the MMKP are given in [30]. For each instance, we present in
Table 1 the number of groups n, the number of items ni in each
group i, the number of constraints m and the total number N of
variables N =

∑n
i=1 ni. We set up our approach parameters as

follow:

—Span control : p1 = 3, p2 = 7
—Tabu list size t = 4
—kmax = 5
—frequency penalty scalar: 1000
—Initial solution: every variable is 0 (xij = 0 for all i = 1, ..., n

and j = 1, ..., ni )
—NumIter= n×ni : number of iterations. Iteration corresponds to

a pass of both a constructive phase and a destructive phase.
—IterAutorized=50 : number of iterations authorized without ame-

lioration

5.2 Experimental results
Table 2 shows the performance results of different approaches in-
cluding ours. For each instance, it reports the obtained results by
CPLEX, Khan [7], CPC [27], FanTabu [34], HIFI [29] and Ant
[35].
We can clearly see that our approach gives the optimal solution for
instances I01, I02, I05 and I06. In one hand, we come to this suc-
cess thanks to the strategic oscillation which betters not only the
diversification but also the intensification of the search process. Es-
pecially it gives its proofs at the feasibility boundary regions. In
the other hand, this good result could be explained by using sur-
rogate constraints informations. This use guides the search process
to worthy neighborhoods. Note that the normalization of surrogate
constraint informations strengthens the optimization process.
For the same reasons cited before, our approach improves the best
literature results, although that it cannot attain CPLEX ones. In fact,
for the instances I08, I09, I10, I11, I12 and I13 our approach outper-
forms all the other well known approaches i.e Heu, Cpc, F.Tabu,
Hifi and Ant.
Unfortunately, for instances I03, I04 and I07,OSC results are very
close to the best result but the approach is unable to attain them. It
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Table 2. Solution Quality Comparison

Inst Cplex Heu Cpc F.Tabu Hifi Ant OSC

1 173 154 159 169 173 173 173
I02 364 354 312 354 364 364 364
I03 1602 1518 1407 1557 1602 1598 1594
I04 3597 3297 3322 3473 3569 3562 3514
I05 3905.7 3894.5 3889.9 3905.7 3905.7 3905.7 3905.7
I06 4799.3 4788.2 4723.1 4799.3 4799.3 4799.3 4799.3
I07 24587 - 23237 23691 24159 24170 24162
I08 36877 - 35403 35684 36401 36211 36405
I09 49167 - 47154 47202 48367 48204 48567
I10 61437 - 58990 58964 60475 60258 60858
I11 73773 - 70685 70555 72558 72240 73022
I12 86071 - 82754 81833 84707 84282 85284
I13 98429 - 94465 94168 96834 96343 97545

is tempting to note that the given result for these instances is ob-
tained by using the same parameters values indicated in our exper-
imental design. Moreover, if we change these parameters values,
our approach will easily raise to the best results. Indeed, in these
instances the oscillations should be minimized due to the relatively
easiness of these instances.
OSC provides solutions with total value on average equal to 1.03%
close to the optimum and better performance than those obtained
by Khan[7], Hifi et al.[29] and Iqbal et al.[35]. The surrogate con-
straint approach achieves better solutions over 10 out of the 13 in-
stances. The exceptions being for instances I03, I04 and I07 that
achieve an objective function value 1, 73% close to optimum are
due to the parameters choice. The insight here is that where ex-
ploration area is comparatively small, OSC explores better areas
and can give better solutions. But for large instances (I08, I09, I10,
I11, I12 and I13) the exploration area is much larger. It should
be noted that if we increase the number of iterations allowed to
n2 × ni, OSC algorithm finds the optimal solution for I03 and
I04. In the first six instances, our method is 0, 63% close to optima
values given in [7]. However, the quality of the seven instances are
improved (6 instances of 7) in average term by 0, 96% compared
with the results published in [35] which are the best known solu-
tions found after 100 runs. For instance I13 (which is a very large
instance of MMKP; 4000 variables), note that our approach takes
more lower computational time to reach its result which is 0, 89%
of the optimal solution . So our approach is very significant for
large-scale real-time problems. Remember that OSC starts execu-
tion with the trivial initial solution (every variable xij = 0 ), which
can be not feasible, which increases the effort to find a good first
feasible solutions. This is why we assume that a feasible solution
starting provided by a fast algorithm like the one used in [43] can
significantly improve the quality of solution or the run time.

6. CONCLUSION
In this paper, we have introduced a new oscillation approach which
explores both sides of the feasibility border to solve MMKP. Sur-
rogate constraint information is used to build the choice rules. A
constraint normalization scheme was implemented to strengthen
the surrogate constraint. OSC would be a very good candidate
for time-critical applications such as adaptive multimedia systems
where a near-optimal solution is acceptable, and fast computation
is more important than guaranteeing the truly optimal value. To fur-
ther improve our approach, a more sophisticated use of intelligent
algorithms like in [50][51] can be investigated.
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