
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

8

An Improved Algorithm for Efficient Mining of Frequent
Item Sets on Large Uncertain Databases

 Bala Yesu Chilakalapudi

M.Tech Student
Gudlavalleru Engineering
College, Andhra Pradesh

 Narayana Satyala
Associate Professor

Gudlavalleru Engineering
College, Andhra Pradesh

Satyanarayana Menda
Assistant Professor

Jayawant Engineering College
and Mgmt, Maharastra.

ABSTRACT

The data handled in emerging applications like location based

services, sensor monitoring systems, and data integration, are

often inexact in nature. In this paper, the important problem of

extracting frequent item sets from a large uncertain database,

interpreted under the Possible World Semantics (PWS) is

presented. This issue is technically challenging, since an

uncertain database contains an exponential number of possible

worlds. By observing that the mining process can be modeled

as a Poisson binomial distribution, an algorithm was

developed, which can efficiently and accurately discover

frequent item sets in a large uncertain database. The important

issue of maintaining the mining result for a database that is

evolving (e.g., by inserting a tuple) can be presented.

Specifically, the proposed mining algorithm can enable

Probabilistic Frequent Item set (PFI) results to be refreshed.

This reduces the need of re-executing the whole mining

algorithm on the new database, which is often more expensive

and unnecessary. The proposed algorithm can support

incremental mining and provides the accurate results on

mining the uncertain database. The extensive evaluation on

real data set to validate the approach is performed.

General Terms

Frequent item sets, uncertain data set, incremental mining

Keywords

PFI, PWS, S-PMF, CDF.

1. INTRODUCTION
The data bases used in many important and novel applications

are often uncertain. For example, the locations of users

obtained through RFID and GPS systems are not precise due

to measurement errors [22], [28]. As another example, data

collected from sensors in habitat monitoring systems (e.g.,

temperature and humidity) are noisy [17]. Customer purchase

behaviors, as captured in supermarket basket databases,

contain statistical information for predicting what a customer

will buy in the future [3], [6]. Integration and record linkage

tools also associate confidence values to the output tuples

according to the quality of matching [16]. In structured

information extractors, confidence values are appended to

rules for extracting patterns from unstructured data [31]. To

meet the increasing application needs of handling a large

amount of uncertain data, uncertain databases have been

recently developed [10], [16], [19], [20], [27]. Performing the

data mining under the possible world semantics(PWS) can be

technically challenging. In fact, the mining of uncertain data

has recently attracted research attention [3]. For example, in

[23], efficient clustering algorithm was developed for

uncertain objects; in [21] and [32], naive Bayes and decision

tree classifiers designed for uncertain data were studied. Here

,the algorithm for finding frequent item sets (i.e., sets of

attribute values that appear together frequently in tuples) for

uncertain databases was developed. The proposed algorithm

can be applied to two important uncertainty models: attribute

uncertainty and tuple uncertainty, where every tuple is

associated with a probability to indicate whether it exists [15],

[16], [19], [27], [34]. The frequent item sets discovered from

uncertain data are naturally probabilistic, in order to reflect

the confidence placed on the mining results.

 A probabilistic frequent item(PFI) is a set of attribute

values that occurs frequently with a sufficiently high

probability. A database induces a set of possible worlds, each

giving a (different) support count for a given item set. Hence,

the support of a frequent item set is described by a probability

mass function (pmf). A simple way of finding PFIs is to mine

frequent patterns from every possible world obtained by the

possible world semantics (PWS), and then record the

probabilities of the occurrences‟ of these patterns. This is

impractical, due to the exponential number of possible worlds.

To remedy this, some algorithm has been recently developed

to successfully retrieve PFIs without instantiating all possible

worlds [6], [30], [35]. These algorithm can verify whether an

item set is a PFI in O(n2) time (where n is the number of

tuples contained in the database). However, the experimental

results reveal that they can require a long time to

complete(e.g., with a 300k real data set, the dynamic

programming algorithm in [6] needs 30.1 hours to find all

PFIs). The support pmf of a PFI can be captured by a Poisson

binomial distribution, for both attribute and tuple uncertain

data. The proposed algorithm make use of this intuition to

propose a method for approximating a PFI‟s pmf with a

Poisson distribution, which can be efficiently and accurately

estimated. This algorithm can verify a PFI in O(n2), and is

thus more suitable for large databases. The algorithm can be

used to mine the frequent item sets whose probabilities of

being true frequent item sets are larger than some user defined

threshold [6]. The algorithm only needs very less time to find

all PFIs [33] when compared with the existing algorithm,

which is four orders of magnitudes faster than the method

used in [6].

1.1 Mining evolving databases.

 The important problem of maintaining mining results for

changing, or evolving, databases is prsented here. The type of

evolving data that we address here is about the appending, or

insertion of a batch of tuples to the database. Tuple insertion

is common in the applications that we consider. For example,

a GPS system may have to handle location values due to the

registration of a new user; in an online marketplace

application, information about new purchase transactions may

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

9

be appended to the database for further analysis. Notice that

these new tuples may induce changes to the mining result. A

straightforward way of refreshing the mining results is to re-

evaluate the whole mining algorithm on the new database.

This can be costly, however, when new tuples are appended to

the database at different time instants. In fact, if the new

database D is similar to its older version, D, it is likely that

most of the PFIs extracted from D remain valid for D+..Based

on this intuition, The developed mining algorithm uses the

PFIs of D to derive the PFIs of D+, instead of finding them

from scratch. In this paper, The proposed mining algorithm

for the method studied in [6], discovers the PFIs. The

algorithm discovers PFIs, which can be extended to handle

evolving data. As the experiments show, when the change of

the database is small, running the mining algorithm on D+ is

much faster than finding PFIs on D+ from scratch. In an

experiment on a real data set, the mining algorithm addresses

a fivefold performance improvement over its non counterpart.

 To summarize, an algorithm was developed, which can

reduce the amount of effort of scanning the database for

mining threshold− based PFIs. The algorithm can support

both attribute and tuple uncertainty models. The time

complexity of the proposed approach is presented.

Experiments on the real data set reveal that the proposed

method significantly improves the performance of PFI

discovery, with a high degree of accuracy. The rest of the

paper is organized as follows: in Section 2, we review the

related works. Section 3 defines the problems to be studied.

Section 4 describes efficient and accurate methods for

computing s− pmf. In Section 5, The working method of the

algorithm for discovering threshold− based PFIs is presented.

Section 8 reports the experimental results. The paper will

conclude in Section 9.

2. RELATED WORK
Mining frequent item sets is an important problem in data

mining, and is also the first step of deriving association rules

[4]. Hence, many efficient item set mining algorithm(e.g.,

Apriori [4] and FP− growth [18]) have been proposed. While

these algorithm work well for databases with precise values, it

is not clear how they can be used to mine probabilistic data.

Here an algorithm for extracting frequent item sets from

uncertain databases was developed. Although the algorithm is

developed based on the Apriori framework, they can be

considered for supporting other algorithm (e.g., FP− growth)

for handling uncertain data. For uncertain databases,

Aggarwal et al. [2] and Chui et al. [14] developed efficient

frequent pattern mining algorithm based on the expected

support counts of the patterns. However, Bernecker et al. [6],

Sun et al. [30], and Yiu et al. [35] found that the use of

expected support may render important patterns missing.

Hence, they proposed to compute the probability that a pattern

is frequent, and introduced the notion of PFI. In [6], dynamic

programming based solutions were developed to retrieve PFIs

from attribute uncertain databases. However, their algorithm

compute probabilities, and verify that an item set is a PFI in

O(n2) time. the algorithm avoid the use of dynamic

programming, and are able to verify a PFI much faster (in

O(n) time). Zhang et al. [35] only considered the extraction of

singletons (i.e., sets of single items), the solution discovers

patterns with more than one item. Recently, Sun et al. [30]

developed an threshold based PFI mining algorithm.

However, it does not support attribute uncertain data

considered in this paper other works on the retrieval of

frequent patterns from imprecise data include: [9], which

studied frequent patterns on noisy data; [24], which examined

association rules on fuzzy sets; and [26], which proposed the

notion of a “vague association rule.” However, none of these

solutions are developed on the uncertainty models studied

here. For evolving databases. A few mining algorithm that

work for data have been developed. For example, in [11], the

Fast Update algorithm (FUP) was proposed to efficiently

maintain frequent item sets, for a database to which new

tuples are inserted. the mining framework is inspired by FUP.

In [12], the FUP2 algorithm was developed to handle both

addition and deletion of tuples. ZIGZAG [1] also examines

the efficient maintenance of maximal frequent item sets for

databases that are constantly changing. In [13], a data

structure, called CATS Tree, was introduced to maintain

frequent item sets in evolving databases. Another structure,

called CanTree [25], arranges tree nodes in an order that is not

affected by changes in item frequency. The data structure is

used to support mining on a changing database. To the best

knowledge, maintaining frequent item sets in evolving

uncertain databases has not been examined before. The

proposed algorithm can also support attribute and tuple

uncertainty models.

3. PROBLEM DEFINITION
Let V be a set of items. The algorithm adopt the following

variant [6]: a database D contains n tuples, or transactions.

Each transaction, 𝑡𝑗 is associated with a set of items taken

from V. Each item v𝜖V exists in 𝑡𝑗 with an existential

probability Pr 𝑣𝜖𝑡𝑗 𝜖 0, 1 , which denotes the chance that v

belongs to 𝑡𝑗 . Under the Possible World Semantics, D

generates a set of possible worlds. Each world consists of a

subset of attributes from each transaction, occurs with

probability Pr(𝑤𝑖).

 The probabilities are one, and the number of possible

worlds is exponentially large. the goal is to discover frequent

patterns without expanding D into possible worlds. Each

transaction 𝑡𝑗 ∈ 𝐷 is associated with a set of items and an

existential probability Pr 𝑡𝑗 ∈ (0, 1] which indicates that 𝑡𝑗

exists in D with probabilityPr(𝑡𝑗). Again, the number of

possible worlds for this model is exponentially large. The

problem of mining threshold− based PFIs is then described in

Section 3.1. The below Table 1 summarizes the symbols used

in this paper .

3.1 Mining Probabilistic Frequent Item Sets
Let 𝐼 ⊆ 𝑉 a set of items, or an item set the support of I,

denoted by s(I), is the number of transactions in which I

appears in a transaction database [4]. In precise databases, s(I)

is a single value. This is no longer true in uncertain databases,

because in different possible worlds, s(I) can have different

values. Let 𝑆(𝑤𝑗 , 𝐼) be the support count of I in possible

world 𝑤𝑗 . Then, the probability that s(I) has a value of i,

denoted by 𝑃𝑟𝐼(𝑖), is

𝑃𝑟𝐼 𝑖 = Pr 𝑤𝑗

𝑤𝑗 ∈𝑊,𝑆 𝑤𝑗 ,𝐼 =𝑖

 (1)

 Hence, 𝑃𝑟𝐼(𝑖)(i =1,…..,n) form a probability mass

function (pmf) of S(I), where n is the size of database D.

Now, let minsup𝜖 (0, 1] be a percentage value, which is

generally used to define minimal support in a deterministic

database. An item set I is said to be frequent in a database D if

s 𝐼 ≥ 𝑚𝑠𝑐(𝐷) where 𝑚𝑠𝑐 𝐷 = 𝑚𝑖𝑛𝑠𝑢𝑝 × 𝑛 is called the

minimal support count of D[4].

 Table 1. Summary of Notations

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

10

Notation description

D An uncertain database of n tuples

V The set of items that appear in D

v An item, where v ∈ V

𝑡𝑗 The j-th tuple in D

W The set of all possible worlds

𝑤𝑗 A possible world wj ∈ W

I An itemset, where I ⊆ V

minsup A real value between (0, 1]

msc(D) A minimal support count in D

s(I) The support count of I in D

minprob A real value between (0, 1]

𝑃𝑟𝐼(𝑖) Support prob. (prob. I has a support count of i

)

Prfreq(I) Frequentness probability of I

 μI Expected value of XI in D

d Delta database with nI tuples

D+ New database with n+ tuples

FD Set of all PFIs in D

𝐹𝑘
𝐷 Set of all K-PFIs in D

Ck
+ Set of size k candidates for D+

DB A database, can be D, d or D+

SDB(I) The support count of I in DB

𝑃𝑟𝑓𝑟𝑒𝑞
𝐷𝐵 (𝐼) The frequentness probability I in DB

𝜇𝐼(𝐷𝐵) The expected value of 𝑋𝐼 in DB

For uncertain databases the frequentness probability of I,

denoted by 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) is the probability that an item set is

frequent [6]. Notice that 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 can be expressed as

𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 = 𝑃𝑟𝐼

𝑖≥𝑚𝑠𝑐 𝐷

 𝑖 (2)

Using frequentness probabilities, the proposed algorithm can

determine whether an item set I is frequent. In this paper, the

algorithm adopt the definition in [6]: I is a Threshold based

PFI if its frequentness probability is larger than some user

defined threshold [6]. Formally, given a real value

𝑚𝑖𝑛𝑝𝑟𝑜𝑏 𝜖(0, 1], I is a threshold− based PFI, if

 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 ≥ 𝑚𝑖𝑛𝑝𝑟𝑜𝑏 (3)

Here the minimum probability (minprob) is the frequentness

probability threshold.

4. EVALUATING S− PMF
This section deals with the computing method of the

probability of the item set which is presented in the dataset.

The s-pmf s(I) of item set I plays an important role in

determining whether I is a PFI. An interesting observation

about s(I) is that it is essentially the number of successful

Poisson trials[29]. To explain, let 𝑋𝑗
𝐼 be a random variable,

which is equal to one if I is a subset of the items associated

with transaction 𝑡𝑗 (i.e., I is a subset of 𝑡𝑗) or zero otherwise.

Given a database of size n, each I is associated with random

variables 𝑋1
𝐼 , 𝑋2

𝐼 , … , 𝑋𝑛
𝐼 . all tuples are independent. Therefore,

these n variables are independent, and they represent n

Poisson trials. Moreover,

 𝑋𝐼 = 𝑋𝑗
𝐼

𝑛

𝑗 =1

 (4)

follows a Poisson binomial distribution. Next, observe an

important relationship between 𝑋𝐼 and 𝑃𝑟𝐼(𝑖) (i.e., the

probability that the support of I is i)

 𝑃𝑟𝐼 𝑖 = 𝑃𝑟 𝑋𝐼 = 𝑖 (5)

This is simply because 𝑋𝐼 is the number of times that I exists

in the database. Hence, the s− pmf of I, i.e., 𝑃𝑟𝐼 (𝑖) is the pmf

of 𝑋𝐼, a Poisson binomial distribution. Using (5), it can

rewrite (2), which computes the frequentness probability of I,

as

𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) = 𝑃𝑟 𝑋𝐼 = 𝑖 (6)

𝑖≥𝑚𝑠𝑐 (𝐷)

 = 𝑃𝑟 𝑋𝐼 ≥ 𝑚𝑠𝑐 𝐷 (7)

Therefore, if the cumulative distribution function (cdf) of 𝑋𝐼

is known, 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼)I) can also be evaluated. Next, an

approach to this cdf, in order to compute 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 efficiently

is presented.

4.2 Approximating s− pmf
From (7), it is possible to express 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 as

𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 = 1 − 𝑃r 𝑋𝐼 ≤ 𝑚𝑠𝑐 𝐷 − 1 (8)

For notational convenience, let 𝑃𝑟𝑗
𝐼 be Pr(𝐼⊆ tj) .Then, the

expected value of 𝑋𝐼 in D, denoted by 𝜇𝐼, can be computed by

 𝜇𝐼 = 𝑃𝑗
𝐼 (9)

𝑛

𝑗 =1

Since a Poisson binomial distribution can be well

approximated by a Poisson distribution [8], (8) can be written

as

 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 ≈ 1 − 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼 (10)

Where F is the cdf of the Poisson distribution with mean μI,

i.e., 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼 = 1 −
Γ(𝑚𝑠𝑐 𝐷 ,𝜇 𝐼)

 𝑚𝑠𝑐 𝐷 −1 !
 expressed using

the incomplete gamma function

 Γ(𝑠, 𝑥) = 𝑡𝑠−1𝑒−𝑡𝑑𝑡
∞

𝑥

 Empirical results may be obtained using this

function. To estimate can first compute 𝜇𝐼 by scanning D once

and summing up 𝑃𝑗
𝐼 ‟s for all tuples 𝑡𝑗 in D.

Then, 𝐹(𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼) is evaluated, and (10) is used to

approximate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼). The following theorem can be used to

support the proposed algorithm which can be presented as

follows

Theorem 1. 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 , 𝑖𝑓 approximated by (10), increases

monotonically with 𝜇𝐼 .

Proof. The cdf of a Poisson distribution, 𝐹(𝑖, 𝜇) can be

written as

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

11

𝐹 𝑖, 𝜇 =
Γ(𝑖 + 1, 𝜇)

𝑖!
=

 𝑡 𝑖+1 −1𝑒−𝑡𝑑𝑡
∞

𝜇

𝑖!

Since minsup is fixed and independent of 𝜇, let us examine

the partial derivative w.r.t. 𝜇

𝜕𝐹(𝑖 , 𝜇)

𝜕𝜇
=

𝜕

𝜕𝜇
(

 𝑡 𝑖+1 −1𝑒−𝑡𝑑𝑡
∞

𝜇

𝑖!
)

 =
1

𝑖!

𝜕

𝜕𝜇
(𝑡𝑖𝑒−𝑡𝑑𝑡

∞

𝜇
)

 =
1

𝑖!
(− 𝜇𝑖𝑒−𝜇)

 = −𝑓 𝑖, 𝜇 ≤ 0 .

Thus, the cumulative distribution (cdf) of the Poisson

distribution 𝐹 𝑖, 𝜇 is monotonically decreasing w.r.t. 𝜇,

when i is fixed. Consequently, 1 − 𝐹(𝑖 − 1, 𝜇) increases

monotonically with 𝜇. Theorem 1 follows immediately by

substituting 𝑖 = 𝑚𝑠𝑐(𝐷) .Intuitively, Theorem 1 states that

the higher value of 𝜇𝐼, the higher is the chance that I is a PFI.

Next, the fact of how this theorem avoids the costly

computations of F, and improves the efficiency of finding

threshold-based PFIs was presented.

5. MINING THRESHOLD BASED PFIs
It is very difficult to quickly determine whether an item set I

is a threshold−based PFI. Since in typical PFI mining

algorithm (e.g., [6]), candidate item sets are first generated,

before they are tested on whether they are PFI‟s. In Section

5.1, The method of testing whether I is a threshold−based PFI,

without computing its frequentness probability is presented

below. The method can be enhanced in Section 5.2. The

adaptation of these techniques in an existing PFI− mining

algorithm was demonstrated in Section 5.3.

5.1 PFI Testing
Given the values of minsup and minprob the algorithm can

test whether I is a threshold− based PFI, in three steps.

Step-1. Find a real number µm satisfying the equation:

 𝑚𝑖𝑛𝑝𝑟𝑜𝑏 = 1 − 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼 (11)
The above equation can be solved efficiently by employing

numerical methods.

Step-2. Use (9) to compute 𝜇𝐼 Notice that the database D has

to be scanned once.

Step-3. If 𝜇𝐼 ≥ 𝜇𝑚 , The algorithm conclude that I is a PFI,

otherwise, I must not be a PFI.

 To understand this, first notice that the right side of (11) is

the same as that of (10), an expression of frequentness

probability. essentially, Step-1 finds out the value of µm that

corresponds to the frequentness probability threshold

(i.e.,.minprob). In Steps 2 and 3, if µI ≥ µm,, Theorem 2

allows us to deduce that the 𝑃𝑟𝑓𝑟𝑒𝑞 𝐼 ≥ 𝑚𝑖𝑛𝑝𝑟𝑜𝑏.

 Hence, these steps together can test whether an item set

is a PFI. In order to verify whether I is a PFI, once µm is

found, The algorithm might not have to evaluate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼).

Instead, it compute µI in Step 2, which can be done in O(n)

time. This is a more scalable method compared with solutions

in [6] and [35], which evaluate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) in O(n2) time. Next,

the process of how this method can be further improved is

presented in below section .

5.2 Improving the PFI Testing Process

In Step 2 of the last section, D has to be scanned once to

obtain µI , for every item set I. This can be costly if D is large,

and if many item sets need to be tested. For example, in the

Apriori algorithm [6], many candidate item sets are generated

first before testing whether they are PFIs. next the process of

how the PFI testing can still be carried out without scanning

the whole database was explained. Let 𝜇𝑙
𝐼 = 𝑝𝑗

𝑙
𝑗 =1 , where l

∈ (0, n]. Essentially, 𝜇𝑙
𝐼 is the “partial value” of 𝜇𝐼 which is

obtained after scanning l tuples. Notice that 𝜇𝑛
𝐼 = 𝜇𝐼 Suppose

that 𝜇𝑚 has been obtained from (11).

Corollary 1. An item set I cannot be a PFI if there exists

 I ∈ (0, µm] such that

 𝜇𝑛−𝑖
𝐼 < 𝜇𝑚 − 𝑖 (12)

The above equations can be used to improve the speed of the

PFI testing process. Specifically, after a tuple has been

scanned, The algorithm checks whether the s-pmf value of the

item set exceeds the threshold value; if so, it immediately

conclude that I is a PFI. After scanning 𝑛 − 𝜇𝑚 or more

tuples, we examine whether I is not a PFI, by using Corollary

1. These testing procedures continue until the whole database

is scanned, yielding µI , Then, the alogorithm execute Step 3

(Section 5.1) to test whether I is a PFI.

6. INCREMENTAL MINING
Now the method of how to efficiently maintain a set of PFIs

in an evolving database is presented here, where new tuples,

or transactions, are constantly appended to it. We assume that

every tuple has a timestamp attribute, which indicates the time

that it is created. This timestamp is not used for mining; it is

only used to differentiate new tuples from existing ones. Let

D be the “old” database that contains n tuples, and d be a delta

database of nI tuples, whose timestamps are larger than those

of tuples in D. Let D+ be a “new” database, which is a

concatenation of the tuples in D and d, and has a size of N+ =

n + nI. Given the set of PFIs and their s− pmfs in D, the goal

is to discover PFIs on D+, under the same minsup and minprob

values used to mine the PFIs of D. The algorithm uses sDB(I)

and PrDB
freq(I) to respectively denote the support count and the

frequentness probability of item set I in some database DB,

where DB is in{D, d, D+ }. The mining problem described

above can be treated as a special case of stream mining, which

refers to the maintenance of mining results for stream data.

Particularly, the database d as the arrival of |d| data units from

a stream source is assumed. Moreover, assume that the sliding

window initially contains D, which then expands to

incorporate new stream units. Mining D+ is then equivalent to

updating the mining results for the arrival of |d| stream units.

In Section 8.3, an adaptation of a stream algorithm in [35] for

use in mining is observed. A simple way of obtaining PFIs

from D+ is to simply rerun a PFI− mining algorithm on it.

However, this approach is not very economical, since 1)

running a PFI algorithm on a large database is not trivial; and

2) the same algorithm has to be frequently executed if a lot of

update activities occur. In fact, if only a few tuples in d are

appended to D, it may not be necessary to compute all PFIs on

D+ from scratch. This is because the PFIs found in D+ should

not be very different from those discovered in D. Based on

this intuition, a mining algorithm that finds PFIs in D+,

without rerunning a complete PFI algorithm was designed.

This algorithm works the best when the size of d is very small

compared with that of D; nevertheless, it works with any size

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

12

of d. The framework of the solution, discovers PFIs in D+,

based on the PFIs found in D. this solution is extended to

discover PFIs in Section 7.

6.1 Algorithm
The algorithm maintains frequent item set results in an

evolving database. The proposed algorithm extracts frequent

item sets in an “Apriori” fashion: it utilizes a bottom− up

approach, where (k+1)− PFIs are generated from k− PFIs. The

working process of the algorithm is shown in the below

diagram.

 Fig.1: PFI mining from the uncertain database

The algorithm contains three phases. These are given below,

1. Candidate generation. In the first iteration, size−1 item sets

that can be 1− PFIs are obtained, using the PFIs discovered

from D, as well as the delta database d. In subsequent

iterations, this phase produces size (k+1) candidate item sets,

based on the k− PFIs found in the previous iteration. If no

candidates are found, the algorithm halts.

2. Candidate pruning. With the aid of d and the PFIs found

from D, this phase filters the candidate item sets that must not

be a PFI.

3. PFI testing. For item sets that cannot be pruned, they are

tested to see whether they are the true PFIs. This involves the

use of database D+, as well as the s− pmf‟s of PFIs on D.

 Notice that in Phases 1 and 2, only d and the PFIs of D

are needed. Since these pieces of information are relatively

small in size (compared with D or D+), they are usually not

very expensive to evaluate. Phase 3 involves deriving the

s−pmf‟s of item sets, with the use of D+ , and is thus more

expensive than other phases. If Phase 2 successfully removes

a lot of candidates from consideration, the cost of executing

Phase 3 can be reduced.

 The above discussion is formalized in the Algorithm-1,

which uses the databases D and d, as well as the set of PFIs

FD collected from D (e.g., using the method of [6]). The

output of the algorithm is a set F+ of PFIs for D+ , where

𝐹𝑘
+ = {𝐹1

+, 𝐹2
+, … , 𝐹𝑛

+} and Fk
+ is the set of „k− PFIs‟ for D+

Let Ck
+ be a set of size− k candidates found from D+. Initially

k=1. The algorithm generates C1
+(Phase 1). In the kth iteration,

first the algorithm removes candidate item sets that cannot be

k− PFIs, from Ck
+ (Phase 2). if Ck

+ is not empty, the

algorithm performs testing on these candidates, in order to

find out the true k− PFIs (i.e., Fk
+,) Phase 3 generates size

(k+1)−candidate item sets by using the k− PFIs. The whole

process is repeated until no more candidates are found., The

algorithm takes D, d, minsup, minprob as inputs and produces

the output as a set of Probabilistic Frequent item sets (PFIs) in

the function F, which is given as follows,

 Algorithm- 1 For PFI mining

Input: Data base D, updated delta database d, minsup,

 minprob .

Output: PFI‟s of D
+
, Fk

+
 = { F1

+
 ,F2

+
,…,Fn

+
} // Fk

+
 is

 the set of PFI‟s .

Method:

if (deltaDb is empty) then

{

 C(1).Generate(oldDb);

 k=1;

 while(C(k)!=0) do

 {

 C(k).prune(oldDb, F, 𝜇𝑚);

 if(C(k)!=0) then

 F =C(k).Test(oldDb, d, F, 𝜇𝑚);

 else

 break;

 C(k+1).Generate(oldDb) ;

 k=k+1;

 }

}

else //deltaDb is not empty

{

 C(1).Generate(deltaDb);

 k=1;

 while(C(k)!=0)

 {

 C(k).prune(deltaDb, F, 𝜇𝑚
𝐼);

 if(C(k)!=0) then

 F=C(k).Test(oldDb, d, F, 𝜇𝑚
𝐼);

 else

 break;

 C(k+1).Generate(d);

 k=k+1;

 }

}

return 𝐹𝑘
+ = {𝐹1

+, 𝐹2
+, … , 𝐹𝑛

+}

7. RESULTS
Now the experimental results on the data set, called

accidents, comes from the Frequent Item set Mining (FIMI)

Data Set Repository. This data set is obtained from the

National Institute of Statistics (NIS) for the region of Flanders

(Belgium), for the period of 1991-2000. The data are obtained

from the “Belgian Analysis Form for Traffic Accidents,”

which are filled out by a police officer for each traffic

accident occurring on a public road in Belgium. The data set

contains 3,40,184 accident records, with a total of 572

attribute values. On average, each record has 45 attributes.

The algorithm uses the first 10k tuples as the default data set

as its input. The default value of minsup is 20 percent. To test

the mining algorithm, it uses the first 10k tuples as the old

database D, and the subsequent tuples as the delta database d.

The default size of d is 5 percent of D. , it considers both

attribute and tuple uncertainty models. For attribute

uncertainty, the existential probability of each attribute is

drawn from a Gaussian distribution with mean 0.5 and

standard deviation 0.125. This same distribution is also used

to characterize the existential probability of each tuple, for the

tuple uncertainty model. The default value of minprob is 0.4.

In the results presented, minsup is shown as a percentage of

the data set size n. Notice that when the values of minsup or

minprob are large, no PFIs can be returned; it do not show the

results for these values. The experiments were carried out on

the Windows XP operating system, on a machine with a 2.66

Updated

database

D+

Data -

base D

Candidate

Generation

Candidate

pruning

PFI

Testing

Output

all

PFI‟s

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

13

GHz Intel Core 2 Duo processor and 2 GB memory. The

programs were written in Java and compiled with J2SE

runtime environment 1.6.0. The proposed algorithm is

implemented under the java runtime environment. The

algorithm extracts the probabilistic frequent item sets within a

fraction of seconds.

8. DISCUSSION
Now the comparison of the performance of the PFI mining

algorithms mentioned in this paper:1) APM, the Apriori

algorithm used in [6] that employs the PFI testing method

and 2) PA (Proposed algorithm), the proposed algorithm that

uses the improved version of the PFI testing method is

discussed here.

 Since APM approximates s-pmf by a Poisson distribution,

first examine that its accuracy with respect to AP, which

yields PFIs based on exact frequentness probabilities. Here,

the standard recall and precision measures [7] is used, which

quantify the number of negatives and false positives.

Specifically, let 𝐹𝐴𝑃𝑀 be the set of PFIs generated by APM,

and 𝐹𝑃𝐴 be the set of PFIs produced by PA. To compare the

existing algorithm with the proposed algorithm, The recall

and precision were used. Both recall and precision have

values between 0 and 1. The recall and the precision of APM,

relative to PA, are defined as

 𝑟𝑒𝑐𝑎𝑙𝑙 =
| 𝐹𝐴𝑃𝑀 ∩ 𝐹𝐴𝑃 |

𝐹𝐴𝑃𝑀
 (13)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
| 𝐹𝐴𝑃𝑀 ∩ 𝐹𝐴𝑃 |

𝐹𝐴𝑃
 (14)

In these formulas, Also, a higher value reflects a better

accuracy. Table 2 shows the recall and the precision of APM

(Apriori algorithm), for a wide range of minsup, n, and

minprob values. As it can observed that the precision and

recall values are always higher than 98 percent. Since The

proposed algorithm PA returns the same PFIs as APM, it is

also highly accurate result. Both precision and recall are used

to compare the performance of mining algorithms.

 Table 2. Recall and Precision of APM

minsup 0.1 0.2 0.3 0.4 0.5

Recall 1 1 1 1 1

Precision 0.997 1 1 1 1

 (a) Recall and Precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 1 1

Precision 0.986 1 0.985 1 1

 (b) Recall and Precision vs. minprob

 n 1k 4k 10k 50k 100k

Recall 1 1 1 1 1

Precision 0.987 0.988 1 1 1

 (c) Recall and Precision vs. n

8.1 Efficiency of PA vs. APM .
next compare PA and APM, which both yield PFIs. The given

Figure 3(a) shows that PA is faster than APM over different

minsup values. minsup is taken on the X-axis and runtime is

taken on the Y-axis. On increasing the minsup value the

runtime decreases. Fig.3(b) examines the algorithms under a

wide range of minprob values. Again, PA runs faster than

APM. Fig. 3(b) examines the effect of using different minprob

values. Minprob is taken on X-axis and running time is taken

on the Y-axis. The details are of these distributions are listed

in Table 3.

 Fig.10(a) minsup vs. runtime

 runtime

 Fig.3(b) minprob vs. runtime

It is observed that the algorithm PA performs better than APM

over different types of distributions. The consistently high

performance gain demonstrated by AP can be explained. On

observing the figure 3(a) the existing algorithm takes longer

time than the proposed algorithm(PA), since the on increasing

the minsup value against the runtime the curve gradually

decreases in existing algorithm and also maintains constant

behavior in the proposed algorithm. The graph given in the

figure 3(b) depicts the difference in performs between the

existing algorithm APM and the proposed algorithm PA. In

this graph also the developed or proposed algorithm is faster

than the existing algorithm. The below table 3 provides the

details of the recall and precision of PA algorithm.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6

APM

PA

0

0.1

0.2

0.3

0.4

0.5

0.00 0.20 0.40 0.60 0.80 1.00

APM

PA

runtime

minsup

minprob

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

14

 TABLE 3. Recall and Precision of PA

minsup 0.1 0.2 0.3 0.4 0.5

Recall 1 1 1 1 1

Precision 0.998 1 1 1 1

 (a) Recall and Precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 0.970 1

Precision 0.986 1 1 1 1

 (b) Recall and Precision vs. minprob

 n 1k 5k 10k 50k 100k

Recall 1 1 1 1 1

Precision 1 1 1 1 0.985

 (c) Recall and Precision vs. n

The experiments on the tuple uncertainty model and on the

synthetic data set were also performed. Since they are similar

to the results presented above, The most representative ones.

For the accuracy aspect, the recall and precision values of

approximate results on these data sets are still higher than 98

percent. Thus, the proposed algorithm can return accurate

results.

9. CONCLUSIONS
In this paper, we propose a approach to extract threshold-

based PFIs from large uncertain databases. Its main idea is to

the s-pmf of a PFI by some common probability model, so

that a PFI can be verified quickly. This approach supports

retrieving PFIs from evolving databases. The experimental

results show that the proposed algorithm is highly efficient

and accurate. It supports both attribute- and tuple uncertain

data approach to develop other mining algorithm (e.g.,

clustering and classification) on uncertain data. It is also

interesting to study efficient mining algorithm for handling

tuple. Another interesting work is to investigate PFI mining

algorithm for probability models that capture correlation

among attributes and tuples.

10. REFERENCES
[1] A. Veloso, W. Meira Jr., M. de Carvalho, B. Poˆ ssas, S.

Parthasarathy, and M.J. Zaki, “Mining Frequent Itemsets

in Evolving Databases,” Proc. Second SIAM Int‟l Conf.

Data Mining (SDM), 2002.

[2] C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent

Pattern Mining with Uncertain Data, “, Proc. 15th ACM

SIGKDD Int‟l Conf. Knowledge Discovery and Data

Mining (KDD), 2009.

[3] C. Aggarwal and P. Yu, “A Survey of Uncertain Data

Algorithm and Applications,” IEEE Trans Knowledge

and Data Eng., vol. 21, no. 5, pp. 609-623, May 2009.[4]

R. Agrawal, T. Imieliμnski, and A. Swami, “Mining

Association Rules between Sets of Items in Large

Databases,” Proc.ACM SIGMOD Int‟l Conf.

Management of Data, 1993.

[5] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom,

“ULDBs: Databases with Uncertainty and Lineage,”

Proc. 32ndInt‟l Conf. Very Large Data Bases

(VLDB), 2006.

[6] T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A.

Zuefle,“Probabilistic Frequent Itemset Mining in

Uncertain Databases,” Proc. 15th ACM SIGKDD Int‟l

Conf. Knowledge Discovery and Data Mining (KDD),

2009.

[7] C.J. van Rijsbergen, Information Retrieval. Butterworth,

1979.

[8] L.L. Cam, “An Approximation Theorem for the Poisson

Binomial Distribution,” Pacific J. Math., vol. 10, pp.

1181- 1197,1960.

[9] H. Cheng, P. Yu, and J. Han, “ Frequent Itemset Mining

in the Presence of Random Noise,” Proc. Soft Computing

for Knowledge Discovery and Data Mining, pp. 363-389,

2008.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating

Probabilistic Queries over Imprecise Data,” Proc. ACM

SIGMOD Int‟l Conf. Management of Data, 2003.

[11] D. Cheung, J. Han, V. Ng, and C. Wong, “Maintenance

of Discovered Association Rules in Large Databases: An

Updating Technique,” Proc. 12th Int‟l Conf. Data Eng.

(ICDE), 1996.

[12] D. Cheung, S.D. Lee, and B. Kao, “A General Technique

for Maintaining Discovered Association Rules,” Proc.

fifth Int‟l Conf. Database Systems for Advanced

Applications (DASFAA), 1997.

[13] W. Cheung and O.R. Zaı¨ane, “ Mining of Frequent

Patterns without Candidate Generation or Support

Constraint,” Proc. Seventh Int‟l Database Eng. and

Applications Symp. (IDEAS), 2003.

[14] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent

Itemsets from Uncertain Data,” Proc. 11th Pacific-Asia

Conf. advancesin Knowledge Discovery and Data

Mining (PAKDD), 2007.

[15] G. Cormode and M. Garofalakis, “Sketching

Probabilistic Data Streams,” Proc. ACM SIGMOD Int‟l

Conf. Management of Data, 2007.

[16] N. Dalvi and D. Suciu, “Efficient Query Evaluation on

Probabilistic Databases,” Proc. 13th Int‟l Conf. Very

Large Data Bases (VLDB), 2004.

[17] A. Deshpande, C. Guestrin, S.Madden, J. Hellerstein, and

W. Hong, “Model-Driven Data Acquisition in Sensor

Networks,” Proc. 13th Int‟l Conf. Very Large Data

Bases (VLDB), 2004.

 [18] J. Han, J. Pei, and Y. Yin,“Mining Frequent Patterns

without Candidate Generation,” Proc. ACM SIGMOD

Int‟l Conf. Management of Data, 2000.

[19] J. Huang, “MayBMS: A Probabilistic Database

Management System,” Proc. 35th ACM SIGMOD Int‟l

Conf. Management of Data, 2009.

[20] R. Jampani, L. Perez, M. Wu, F. Xu, C. Jermaine, and P.

Haas, “MCDB: A Monte Carlo Approach to Managing

Uncertain Data,” Proc. ACM SIGMOD Int‟l Conf.

Management of Data 2008.

[21] J. Ren, S.D. Lee, X. Chen, B. Kao, R. Cheng, and D.W.

Cheung“ Naive Bayes Classification of Uncertain Data,”

Proc. IEEE Ninth Int‟l Conf. Data Mining (ICDM),

2009.

[22] N. Khoussainova, M. Balazinska, and D. Suciu,

“Towards Correcting Input Data Errors Probabilistically

Using Integrity Constraints,” Proc. Fifth ACM Int‟l

Workshop Data Eng. For Wireless and Mobile Access

(MobiDE), 2006.

[23] H. Kriegel and M. Pfeifle, “Density-Based Clustering of

Uncertain Data,” Proc. ACM SIGKDD Int‟l Conf.

Knowledge Discovery in Data Mining (KDD), 2005.[24]

C. Kuok, A. Fu, and M. Wong, “Mining Fuzzy

Association Rules in Databases,” SIGMOD Record, vol.

27, no. 1, pp. 41-46, 1998. Proc. IEEE Fifth Int‟l Conf.

Data Mining (ICDM), 2005

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

15

[25] C.K.-S. Leung, Q.I. Khan, and T. Hoque, “Cantree: A

Tree Structure for EfficientMining of Frequent

Patterns,”. Proc. IEEE Fifth Int‟l Conf. Data

Mining (ICDM), 2005.

 [26] A.Lu, Y. Ke, J. Cheng, and W. Ng, “Mining Vague

Association Rules,” Proc. 12th Int‟l Conf. Database

Systems for Advanced Applications (DASFAA),

2007.[27] M. Mutsuzaki, “Trio-One: Layering

Uncertainty and

 Lineage on a Conventional DBMS,” Proc. Third Biennial

Conf. Innovative Data Systems Research (CIDR),

2007.[28] P. Sistla, O. Wolfson, S. Chamberlain, and S.

Dao, “Querying the Uncertain Position of Moving

Objects,” Temporal Databases: Research and

Practice, Springer Verlag, 1998.

[29] C. Stein, Computation of Expectations, Lecture Notes

Monograph Series, vol. 7, Inst. of Math. Statistics, 1986.

[30] L. Sun, R. Cheng, D.W. Cheung, and J. Cheng, “Mining

Uncertain Data with Probabilistic Guarantees,” Proc.

16th ACM SIGKDD Int‟l Conf. Knowledge Discovery

and Data Mining, 2010.

[31] T. Jayram et al., “Avatar Information Extraction

System,” IEEE Data Eng. Bull., vol. 29, no. 1, pp. 40-48,

Mar. 2006.

[32] S. Tsang, B. Kao, K.Y. Yip, W.-S. Ho, and S.D. Lee.,

“Decision Trees for Uncertain Data,” Proc. IEEE Int‟l

Conf. Data Eng. (ICDE), 2009.

[33] L. Wang, R. Cheng, S.D. Lee, and D. Cheung,

“Accelerating Probabilistic Frequent Itemset Mining: A

Approach,” Proc.19th ACM Int‟l Conf. Information and

Knowledge Management (CIKM), 2010.

[34] M. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis,

“Efficient Evaluation of Probabilistic Advanced Spatial

Queries on existentially Uncertain Data,” IEEE Trans

Knowledge and Data Eng., vol. 21, no. 9, pp. 108-122,

Jan. 2009.

[35] Q. Zhang, F. Li, and K. Yi, “Finding Frequent Items in

Probabilistic Data,” Proc. ACM SIGMOD Int‟l Conf.

Management of Data, 2008.

IJCATM : www.ijcaonline.org

