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ABSTRACT 

The data handled in emerging applications like location based 

services, sensor monitoring systems, and data integration, are 

often inexact in nature. In this paper, the important problem of 

extracting frequent item sets from a large uncertain database, 

interpreted under the Possible World Semantics (PWS) is 

presented. This issue is technically challenging, since an 

uncertain database contains an exponential number of possible 

worlds. By observing that the mining process can be modeled 

as a Poisson binomial distribution, an algorithm was 

developed, which can efficiently and accurately discover 

frequent item sets in a large uncertain database. The important 

issue of maintaining the mining result for a database that is 

evolving (e.g., by inserting a tuple) can be presented. 

Specifically, the proposed mining algorithm can enable 

Probabilistic Frequent Item set (PFI) results to be refreshed. 

This reduces the need of re-executing the whole mining 

algorithm on the new database, which is often more expensive 

and unnecessary. The proposed algorithm can support 

incremental mining and provides the accurate results on 

mining the uncertain database. The extensive evaluation on 

real  data set to validate the approach is performed.     

General Terms 

Frequent item sets, uncertain data set, incremental mining 

Keywords 

PFI, PWS, S-PMF, CDF.  

1.  INTRODUCTION 
The data bases used in many important and novel applications 

are often uncertain. For example, the locations of users 

obtained through RFID and GPS systems are not precise due 

to measurement errors [22], [28]. As another example, data 

collected from sensors in habitat monitoring systems (e.g., 

temperature and humidity) are noisy [17]. Customer purchase 

behaviors, as captured in supermarket basket databases, 

contain statistical information for predicting what a customer 

will buy in the future [3], [6]. Integration and record linkage 

tools also associate confidence values to the output tuples 

according to the quality of matching [16]. In structured 

information extractors, confidence values are appended to 

rules for extracting patterns from unstructured data [31]. To 

meet the increasing application needs of handling a large 

amount of uncertain data, uncertain databases have been 

recently developed [10], [16], [19], [20], [27]. Performing the 

data mining under the possible world semantics(PWS) can be 

technically challenging. In fact, the mining of uncertain data 

has recently attracted research attention [3]. For example, in 

[23], efficient clustering algorithm was developed for 

uncertain objects; in [21] and [32], naive Bayes and decision 

tree classifiers designed for uncertain data were studied. Here 

,the algorithm for finding frequent item sets (i.e., sets of 

attribute values that appear together frequently in tuples) for 

uncertain databases was developed. The proposed algorithm 

can be applied to two important uncertainty models: attribute 

uncertainty and tuple uncertainty, where every tuple is 

associated with a probability to indicate whether it exists [15], 

[16], [19], [27], [34]. The frequent item sets discovered from 

uncertain data are naturally probabilistic, in order to reflect 

the confidence placed on the mining results.  

      A probabilistic frequent  item(PFI) is a set of attribute 

values that occurs frequently with a sufficiently high 

probability. A database induces a set of possible worlds, each 

giving a (different) support count for a given item set. Hence, 

the support of a frequent item set is described by a probability 

mass function (pmf). A simple way of finding PFIs is to mine 

frequent patterns from every possible world obtained by the 

possible world semantics (PWS), and then record the 

probabilities of the occurrences‟ of these patterns. This is 

impractical, due to the exponential number of possible worlds. 

To remedy this, some algorithm has been recently developed 

to successfully retrieve PFIs without instantiating all possible 

worlds [6], [30], [35]. These algorithm can verify whether an 

item set is a PFI in O(n2) time (where n is the number of 

tuples contained in the database). However, the experimental 

results reveal that they can require a long time to 

complete(e.g., with a 300k real data set, the dynamic 

programming algorithm in [6] needs 30.1 hours to find all 

PFIs). The support pmf of a PFI can be captured by a Poisson 

binomial distribution, for both attribute and tuple uncertain 

data. The proposed algorithm make use of this intuition to 

propose a method for approximating a PFI‟s pmf with a 

Poisson distribution, which can be efficiently and accurately 

estimated. This algorithm can verify a PFI in O(n2), and is 

thus more suitable for large databases. The algorithm can be 

used to mine the frequent item sets whose probabilities of 

being true frequent item sets are larger than some user defined 

threshold [6]. The algorithm only needs very less time to find 

all PFIs [33] when compared with the existing algorithm, 

which is four orders of magnitudes faster than the method 

used in [6]. 

1.1 Mining evolving databases. 

   The important problem of maintaining mining results for 

changing, or evolving, databases is prsented here. The type of 

evolving data that we address here is about the appending, or 

insertion of a batch of tuples to the database. Tuple insertion 

is common in the applications that we consider. For example, 

a GPS system may have to handle location values due to the 

registration of a new user; in an online marketplace 

application, information about new purchase transactions may 
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be appended to the database for further analysis. Notice that 

these new tuples may induce changes to the mining result. A 

straightforward way of refreshing the mining results is to re- 

evaluate the whole mining algorithm on the new database. 

This can be costly, however, when new tuples are appended to 

the database at different time instants. In fact, if the new 

database D is similar to its older version, D, it is likely that 

most of the PFIs extracted from D remain valid for D+..Based 

on this intuition, The developed mining algorithm uses the 

PFIs of D to derive the PFIs of D+, instead of finding them 

from scratch. In this paper, The proposed  mining algorithm 

for the method studied in [6], discovers the PFIs. The 

algorithm discovers PFIs, which can be extended to handle 

evolving data. As the experiments show, when the change of 

the database is small, running the mining algorithm on D+ is 

much faster than finding PFIs on D+  from scratch. In an 

experiment on a real data set, the mining algorithm addresses 

a fivefold performance improvement over its non counterpart. 

          To summarize, an algorithm was developed, which can 

reduce the amount of effort of scanning the database for 

mining threshold− based PFIs. The algorithm can support 

both attribute and tuple uncertainty models. The time 

complexity of the proposed approach is presented. 

Experiments on the real data set reveal that the proposed 

method significantly improves the performance of PFI 

discovery, with a high degree of accuracy. The rest of the 

paper is organized as follows: in Section 2, we review the 

related works. Section 3 defines the problems to be studied. 

Section 4 describes efficient and accurate methods for 

computing s− pmf. In Section 5, The working method of the 

algorithm for discovering threshold− based PFIs is presented.  

Section 8 reports the experimental results. The paper will 

conclude in Section 9. 

2.  RELATED WORK 
Mining frequent item sets is an important problem in data 

mining, and is also the first step of deriving association rules 

[4]. Hence, many efficient item set mining algorithm(e.g., 

Apriori [4] and FP− growth [18]) have been proposed. While 

these algorithm work well for databases with precise values, it 

is not clear how they can be used to mine probabilistic data. 

Here an algorithm for extracting frequent item sets from 

uncertain databases was developed. Although the algorithm is 

developed based on the Apriori framework, they can be 

considered for supporting other algorithm (e.g., FP− growth) 

for handling uncertain data. For uncertain databases, 

Aggarwal et al. [2] and Chui et al. [14] developed efficient 

frequent pattern mining algorithm based on the expected 

support counts of the patterns. However, Bernecker et al. [6], 

Sun et al. [30], and Yiu et al. [35] found that the use of 

expected support may render important patterns missing. 

Hence, they proposed to compute the probability that a pattern 

is frequent, and introduced the notion of PFI. In [6], dynamic 

programming based solutions were developed to retrieve PFIs 

from attribute uncertain databases. However, their algorithm 

compute probabilities, and verify that an item set is a PFI in 

O(n2) time. the algorithm avoid the use of dynamic 

programming, and are able to verify a PFI much faster (in 

O(n) time). Zhang et al. [35] only considered the extraction of 

singletons (i.e., sets of single items), the solution discovers 

patterns with more than one item. Recently, Sun et al. [30] 

developed an  threshold based PFI mining algorithm. 

However, it does not support attribute uncertain data 

considered in this paper other works on the retrieval of 

frequent patterns from imprecise data include: [9], which 

studied frequent patterns on noisy data; [24], which examined 

association rules on fuzzy sets; and [26], which proposed the 

notion of a “vague association rule.” However, none of these 

solutions are developed on the uncertainty models studied 

here. For evolving databases. A few mining algorithm that 

work for data have been developed. For example, in [11], the 

Fast Update algorithm (FUP) was proposed to efficiently 

maintain frequent item sets, for a database to which new 

tuples are inserted. the mining framework is inspired by FUP. 

In [12], the FUP2 algorithm was developed to handle both 

addition and deletion of tuples. ZIGZAG [1] also examines 

the efficient maintenance of maximal frequent item sets for 

databases that are constantly changing. In [13], a data 

structure, called CATS Tree, was introduced to maintain 

frequent item sets in evolving databases. Another structure, 

called CanTree [25], arranges tree nodes in an order that is not 

affected by changes in item frequency. The data structure is 

used to support mining on a changing database. To the best 

knowledge, maintaining frequent item sets in evolving 

uncertain databases has not been examined before. The 

proposed algorithm can also support attribute and tuple 

uncertainty models. 

 

3.  PROBLEM DEFINITION 
Let V be a set of items. The algorithm adopt the following 

variant [6]: a database D contains n tuples, or transactions. 

Each transaction, 𝑡𝑗  is associated with a set of items taken 

from V. Each item v𝜖V exists in 𝑡𝑗  with an existential 

probability Pr 𝑣𝜖𝑡𝑗  𝜖 0, 1 , which denotes the chance that v 

belongs to 𝑡𝑗 . Under the Possible World Semantics, D 

generates a set of possible worlds. Each world consists of a 

subset of attributes from each transaction, occurs with 

probability Pr⁡(𝑤𝑖).  

     The probabilities are one, and the number of possible 

worlds is exponentially large. the goal is to discover frequent 

patterns without expanding D into possible worlds. Each 

transaction 𝑡𝑗 ∈ 𝐷 is associated with a set of items and an 

existential probability Pr 𝑡𝑗  ∈ (0, 1] which indicates that 𝑡𝑗  

exists in D with probabilityPr⁡(𝑡𝑗 ). Again, the number of 

possible worlds for this model is exponentially large. The 

problem of mining threshold− based PFIs is then described in 

Section 3.1. The below Table 1 summarizes the symbols used 

in this paper . 

3.1 Mining Probabilistic Frequent Item Sets 
Let 𝐼 ⊆ 𝑉 a set of items, or an item set the support of I, 

denoted by s(I), is the number of transactions in which I 

appears in a transaction database [4]. In precise databases, s(I) 

is a single value. This is no longer true in uncertain databases, 

because in different possible worlds, s(I) can have different 

values. Let 𝑆(𝑤𝑗 , 𝐼)  be the support count of I in possible 

world 𝑤𝑗 . Then, the probability that s(I) has a value of i, 

denoted by 𝑃𝑟𝐼(𝑖), is 

                              

𝑃𝑟𝐼 𝑖 =  Pr 𝑤𝑗  

𝑤𝑗 ∈𝑊,𝑆 𝑤𝑗 ,𝐼 =𝑖

                      (1) 

 

      Hence,  𝑃𝑟𝐼(𝑖)( i =1,…..,n )  form a probability mass  

function (pmf) of S(I), where n is the size of database D. 

Now, let minsup𝜖 (0, 1] be a percentage value, which is 

generally used to define minimal support in a deterministic 

database. An item set I is said to be frequent in a database D if 

s 𝐼 ≥ 𝑚𝑠𝑐(𝐷) where  𝑚𝑠𝑐 𝐷 = 𝑚𝑖𝑛𝑠𝑢𝑝 × 𝑛 is called the 

minimal support count of D[4]. 

 

                      Table 1. Summary of Notations 
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Notation description 

D An uncertain database of n tuples 

V The set of items that appear in D 

v An item,  where v ∈ V 

𝑡𝑗  The j-th tuple in D 

W The set of all possible worlds 

𝑤𝑗  A possible world wj ∈ W 

I An itemset, where I ⊆ V 

minsup A real value between (0, 1] 

msc(D)  A minimal support count in D 

s(I)  The support count of I in D 

minprob A real value between (0, 1] 

𝑃𝑟𝐼(𝑖)    Support prob. ( prob. I has a support count of i 

) 

Prfreq(I) Frequentness probability of I 

 μI     Expected value of XI in D  

d Delta database with nI tuples 

D+ New database with n+ tuples 

FD Set of all PFIs in D 

𝐹𝑘
𝐷  Set of all K-PFIs in D 

Ck
+ Set of size k candidates for D+  

DB A database, can be D, d or D+ 

SDB(I) The support count of I in DB 

𝑃𝑟𝑓𝑟𝑒𝑞
𝐷𝐵 (𝐼) The frequentness probability I in DB 

𝜇𝐼(𝐷𝐵) The expected value of  𝑋𝐼 in DB 

For uncertain databases the frequentness probability of I, 

denoted by 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) is the probability that an item set is 

frequent [6]. Notice that  𝑃𝑟𝑓𝑟𝑒𝑞  𝐼  can be expressed as 

 

𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 =  𝑃𝑟𝐼

𝑖≥𝑚𝑠𝑐  𝐷 

 𝑖                                  (2) 

 

Using frequentness probabilities, the proposed algorithm can 

determine whether an item set I is frequent. In this paper, the 

algorithm adopt the definition in [6]: I is a Threshold based 

PFI if its frequentness probability is larger than some user 

defined threshold [6]. Formally, given a real value 

𝑚𝑖𝑛𝑝𝑟𝑜𝑏 𝜖(0, 1], I is a threshold− based PFI, if 

 

           𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 ≥ 𝑚𝑖𝑛𝑝𝑟𝑜𝑏                                        (3) 

 

Here the minimum probability (minprob) is the frequentness 

probability threshold.  

 

4.  EVALUATING S− PMF 
This section deals with the computing method of the 

probability of the item set which is presented in the dataset. 

The s-pmf s(I) of item set I plays an important role in 

determining whether I is a PFI. An interesting observation 

about s(I) is that it is essentially the number of successful 

Poisson trials[29]. To explain,  let 𝑋𝑗
𝐼  be a random variable, 

which is equal to one if I is a subset of the items associated 

with transaction 𝑡𝑗  (i.e., I is a subset of 𝑡𝑗 ) or zero otherwise. 

Given a database of size n, each I is associated with random 

variables 𝑋1
𝐼 , 𝑋2

𝐼 , … , 𝑋𝑛
𝐼   . all tuples are independent. Therefore, 

these n variables are independent, and they represent n 

Poisson trials. Moreover, 

 

       𝑋𝐼 =  𝑋𝑗   
𝐼    

𝑛

𝑗 =1

                                             (4) 

 

follows a Poisson binomial distribution. Next, observe an 

important relationship between 𝑋𝐼   and 𝑃𝑟𝐼(𝑖) (i.e., the 

probability that the support of I is i ) 

 

      𝑃𝑟𝐼 𝑖 = 𝑃𝑟 𝑋𝐼 = 𝑖                                (5) 

 

This is simply because 𝑋𝐼  is the number of times that I exists 

in the database. Hence, the s− pmf of I, i.e., 𝑃𝑟𝐼 (𝑖) is the pmf 

of 𝑋𝐼, a Poisson binomial distribution. Using (5), it can 

rewrite (2), which computes the frequentness probability of I, 

as 

 

𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) =  𝑃𝑟 𝑋𝐼 = 𝑖                     (6)

𝑖≥𝑚𝑠𝑐 (𝐷)

 

 

                             = 𝑃𝑟 𝑋𝐼 ≥ 𝑚𝑠𝑐 𝐷                       (7) 

 

Therefore, if the cumulative distribution function (cdf) of 𝑋𝐼 

is known, 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼)I) can also be evaluated. Next, an 

approach to  this cdf, in order to compute 𝑃𝑟𝑓𝑟𝑒𝑞  𝐼  efficiently 

is presented. 

4.2  Approximating s− pmf 
From (7), it is possible to express 𝑃𝑟𝑓𝑟𝑒𝑞  𝐼  as 

            

𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 = 1 − 𝑃r 𝑋𝐼 ≤ 𝑚𝑠𝑐 𝐷 − 1              (8) 

 

For notational convenience, let 𝑃𝑟𝑗
𝐼 be Pr( 𝐼⊆ tj ) .Then, the 

expected value of 𝑋𝐼 in D, denoted by 𝜇𝐼, can be computed by 

 

                   𝜇𝐼 =  𝑃𝑗
𝐼                                              (9)

𝑛

𝑗 =1

 

                                 

Since a Poisson binomial distribution can be well 

approximated by a Poisson distribution [8], (8) can be written 

as 

 

     𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 ≈ 1 − 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼               (10) 

 

 

Where F is the cdf of the Poisson distribution with mean μI, 

i.e., 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼 = 1 −
Γ(𝑚𝑠𝑐  𝐷 ,𝜇 𝐼)

 𝑚𝑠𝑐  𝐷 −1 !
 expressed using 

the incomplete gamma function  

                     

                 Γ(𝑠, 𝑥) =  𝑡𝑠−1𝑒−𝑡𝑑𝑡                                  
∞

𝑥
         

 

              Empirical results may be obtained using this 

function. To estimate can first compute 𝜇𝐼 by scanning D once 

and summing up 𝑃𝑗
𝐼 ‟s for all tuples 𝑡𝑗  in D.  

Then, 𝐹(𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼)  is evaluated, and (10) is used to 

approximate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼). The following theorem can be used to 

support the proposed algorithm which can be presented as 

follows 

Theorem 1.  𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 , 𝑖𝑓 approximated by (10), increases 

monotonically with 𝜇𝐼 . 

Proof.  The cdf of a Poisson distribution, 𝐹(𝑖, 𝜇) can be 

written as 
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𝐹 𝑖, 𝜇 =
Γ(𝑖 + 1, 𝜇)

𝑖!
=

 𝑡 𝑖+1 −1𝑒−𝑡𝑑𝑡
∞

𝜇

𝑖!
 

 
Since minsup is fixed and independent of 𝜇, let us examine 

the partial derivative w.r.t. 𝜇 

 

       
𝜕𝐹(𝑖,   𝜇)

𝜕𝜇
=

𝜕

𝜕𝜇
(

  𝑡  𝑖+1 −1𝑒−𝑡𝑑𝑡
∞

𝜇

𝑖!
 ) 

 

                 =
1

𝑖!

𝜕

𝜕𝜇
(  𝑡𝑖𝑒−𝑡𝑑𝑡

∞

𝜇
 )  

 

                  =
1

𝑖!
(− 𝜇𝑖𝑒−𝜇 ) 

 
                 = −𝑓 𝑖, 𝜇 ≤ 0 . 
 
Thus, the cumulative distribution (cdf) of the Poisson 

distribution 𝐹 𝑖, 𝜇  is monotonically decreasing w.r.t. 𝜇, 

when i is fixed. Consequently, 1 − 𝐹( 𝑖 − 1, 𝜇) increases 

monotonically with 𝜇. Theorem 1 follows immediately by 

substituting 𝑖 = 𝑚𝑠𝑐(𝐷) .Intuitively, Theorem 1 states that 

the higher value of  𝜇𝐼,  the higher is the chance that I is a PFI. 

Next, the fact of how this theorem avoids the costly 

computations of F, and improves the efficiency of finding 

threshold-based PFIs was presented. 

 

5.  MINING THRESHOLD BASED PFIs 
It is very difficult to quickly determine whether an item set I 

is a threshold−based PFI. Since in typical PFI mining 

algorithm (e.g., [6]), candidate item sets are first generated, 

before they are tested on whether they are PFI‟s. In Section 

5.1, The method of testing whether I is a threshold−based PFI, 

without computing its frequentness probability is presented 

below. The method can be enhanced in Section 5.2. The 

adaptation of these techniques in an existing PFI− mining 

algorithm was demonstrated in Section 5.3. 

5.1 PFI Testing 
Given the values of minsup and minprob the algorithm can 

test whether I is a threshold− based PFI, in three steps. 

Step-1. Find a real number µm satisfying the equation: 

             𝑚𝑖𝑛𝑝𝑟𝑜𝑏 = 1 − 𝐹 𝑚𝑠𝑐 𝐷 − 1, 𝜇𝐼            (11)        
The above equation can be solved efficiently by employing 

numerical methods. 

Step-2. Use (9) to compute 𝜇𝐼 Notice that the database D has 

to be scanned once. 

Step-3. If 𝜇𝐼 ≥ 𝜇𝑚 , The algorithm conclude that I is a PFI,         

otherwise, I must not be a PFI. 

  To understand this, first notice that the right side of (11) is 

the same as that of (10), an expression of frequentness 

probability. essentially, Step-1 finds out the value of µm  that 

corresponds to the frequentness probability threshold 

(i.e.,.minprob). In Steps 2 and 3, if  µI ≥ µm,, Theorem 2 

allows us to deduce that the 𝑃𝑟𝑓𝑟𝑒𝑞  𝐼 ≥ 𝑚𝑖𝑛𝑝𝑟𝑜𝑏.   

          Hence, these steps together can test whether an item set 

is a PFI. In order to verify whether I is a PFI, once µm is 

found, The algorithm might not have to evaluate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼). 

Instead, it compute µI in Step 2, which can be done in O(n) 

time. This is a more scalable method compared with solutions 

in [6] and [35], which evaluate 𝑃𝑟𝑓𝑟𝑒𝑞 (𝐼) in O(n2) time. Next, 

the process of how this method can be further improved is 

presented in below section . 

 

5.2 Improving the PFI Testing Process 

In Step 2 of the last section, D has to be scanned once to 

obtain µI , for every item set I. This can be costly if D is large, 

and if many item sets need to be tested. For example, in the 

Apriori algorithm [6], many candidate item sets are generated 

first before testing whether they are PFIs. next the process of  

how the PFI testing can still be carried out without scanning 

the whole database was explained. Let 𝜇𝑙
𝐼 =  𝑝𝑗

𝑙
𝑗 =1  , where l 

∈ (0, n]. Essentially, 𝜇𝑙
𝐼 is the “partial value” of 𝜇𝐼 which is 

obtained after scanning l tuples. Notice that 𝜇𝑛
𝐼 = 𝜇𝐼 Suppose 

that 𝜇𝑚  has been obtained from (11). 

Corollary 1.  An item set I cannot be a PFI if there exists  

 I ∈   (0, µm ] such that 

 

                        𝜇𝑛−𝑖
𝐼 < 𝜇𝑚 − 𝑖                          (12)   

 
The above equations can be used to improve the speed of the 

PFI testing process. Specifically, after a tuple has been 

scanned, The algorithm checks whether the s-pmf value of the 

item set exceeds the threshold value; if so, it immediately 

conclude that I is a PFI. After scanning  𝑛 − 𝜇𝑚  or more 

tuples, we examine whether I is not a PFI, by using Corollary 

1. These testing procedures continue until the whole database 

is scanned, yielding µI , Then, the alogorithm execute Step 3 

(Section 5.1) to test whether I is a PFI.  

 

6.  INCREMENTAL MINING 
Now the method of  how to efficiently maintain a set of PFIs 

in an evolving database is presented here, where new tuples, 

or transactions, are constantly appended to it. We assume that 

every tuple has a timestamp attribute, which indicates the time 

that it is created. This timestamp is not used for mining; it is 

only used to differentiate new tuples from existing ones. Let 

D be the “old” database that contains n tuples, and d be a delta 

database of nI tuples, whose timestamps are larger than those 

of tuples in D. Let D+ be a “new” database, which is a 

concatenation of the tuples in D and d, and has a size of N+ =  

n + nI.  Given the set of PFIs and their s− pmfs in D, the goal 

is to discover PFIs on D+, under the same minsup and minprob 

values used to mine the PFIs of D. The algorithm uses sDB(I) 

and PrDB
freq(I) to respectively denote the support count and the 

frequentness probability of item set I in some database DB, 

where DB is in{D, d, D+ }. The mining problem described 

above can be treated as a special case of stream mining, which 

refers to the maintenance of mining results for stream data. 

Particularly, the database d as the arrival of |d| data units from 

a stream source is assumed. Moreover, assume that the sliding 

window initially contains D, which then expands to 

incorporate new stream units. Mining D+ is then equivalent to 

updating the mining results for the arrival of |d| stream units. 

In Section 8.3, an adaptation of a stream algorithm in [35] for 

use in  mining is observed. A simple way of obtaining PFIs 

from D+ is to simply rerun a PFI− mining algorithm on it. 

However, this approach is not very economical, since 1) 

running a PFI algorithm on a large database is not trivial; and 

2) the same algorithm has to be frequently executed if a lot of 

update activities occur. In fact, if only a few tuples in d are 

appended to D, it may not be necessary to compute all PFIs on 

D+ from scratch. This is because the PFIs found in D+ should 

not be very different from those discovered in D. Based on 

this intuition, a mining algorithm that finds PFIs in D+, 

without rerunning a complete PFI algorithm was designed. 

This algorithm works the best when the size of d is very small 

compared with that of D; nevertheless, it works with any size 
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of d. The framework of the solution, discovers  PFIs in D+, 

based on the PFIs found in D. this solution is extended to 

discover  PFIs in Section 7. 

6.1 Algorithm  
The algorithm maintains frequent item set results in an 

evolving database. The proposed algorithm extracts frequent 

item sets in an “Apriori” fashion: it utilizes a bottom− up 

approach, where (k+1)− PFIs are generated from k− PFIs. The 

working process of the algorithm is shown in the below 

diagram. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig.1: PFI mining from the uncertain database 

 

The algorithm contains three phases. These are given below, 

1. Candidate generation. In the first iteration, size−1 item sets 

that can be 1− PFIs are obtained, using the PFIs discovered 

from D, as well as the delta database d. In subsequent 

iterations, this phase produces size (k+1) candidate item sets, 

based on the k− PFIs found in the previous iteration. If no 

candidates are found, the algorithm halts. 

2. Candidate pruning. With the aid of d and the PFIs found 

from D, this phase filters the candidate item sets that must not 

be a PFI. 

3. PFI testing. For item sets that cannot be pruned, they are 

tested to see whether they are the true PFIs. This involves the 

use of database D+, as well as the s− pmf‟s of PFIs on D. 

       Notice that in Phases 1 and 2, only d and the PFIs of D 

are needed. Since these pieces of information are relatively 

small in size (compared with D or D+ ), they are usually not 

very expensive to evaluate. Phase 3 involves deriving the     

s−pmf‟s of item sets, with the use of D+ , and is thus more 

expensive than other phases. If Phase 2 successfully removes 

a lot of candidates from consideration, the cost of executing 

Phase 3 can be reduced.   

      The above discussion is formalized in the Algorithm-1, 

which uses the databases D and d, as well as the set of  PFIs 

FD collected from D (e.g., using the method of [6]). The 

output of the algorithm is a set F+ of PFIs for D+ , where      

𝐹𝑘
+ = {𝐹1

+, 𝐹2
+, … , 𝐹𝑛

+} and Fk
+ is the set of „k− PFIs‟ for D+ 

Let Ck
+ be a set of size− k candidates found from D+. Initially 

k=1. The algorithm generates C1
+(Phase 1). In the kth iteration,  

first the algorithm removes candidate item sets that cannot be 

k− PFIs, from Ck
+ (Phase 2). if Ck

+   is not empty, the 

algorithm performs testing on these candidates, in order to 

find out the true k− PFIs (i.e., Fk
+,) Phase 3 generates size 

(k+1)−candidate item sets by using the k− PFIs. The whole 

process is repeated until no more candidates are found., The 

algorithm takes D, d, minsup, minprob as inputs and produces 

the output as a set of Probabilistic Frequent item sets (PFIs) in 

the function F, which is given as follows,  

   

                           Algorithm- 1 For PFI mining 

 

Input:    Data base D, updated delta database d, minsup,             

               minprob . 

Output: PFI‟s of D
+
,  Fk

+
 = { F1

+
  ,F2

+
,…,Fn

+
} // Fk

+ 
 is       

              the  set of PFI‟s . 

Method: 

if (deltaDb is empty) then 

{ 

        C(1).Generate( oldDb); 

         k=1; 

        while(C(k)!=0) do 

        { 

                 C(k).prune(oldDb, F, 𝜇𝑚 ); 

                 if(C(k)!=0) then 

                           F =C(k).Test( oldDb, d, F, 𝜇𝑚 ); 

                else 

                           break; 

                C(k+1).Generate( oldDb ) ; 

                k=k+1; 

        } 

} 

else  //deltaDb is not empty 

{ 

         C(1).Generate(deltaDb); 

         k=1; 

         while(C(k)!=0) 

         { 

                C(k).prune( deltaDb, F, 𝜇𝑚
𝐼 ); 

                if(C(k)!=0) then 

                         F=C(k).Test(oldDb, d, F, 𝜇𝑚
𝐼 ); 

                else 

                         break; 

                C(k+1).Generate(d); 

                k=k+1; 

         } 

} 

return 𝐹𝑘
+ = {𝐹1

+, 𝐹2
+, … , 𝐹𝑛

+} 

 

7.  RESULTS 
Now  the experimental results on the data set, called 

accidents, comes from the Frequent Item set Mining (FIMI) 

Data Set Repository. This data set is obtained from the 

National Institute of Statistics (NIS) for the region of Flanders 

(Belgium), for the period of 1991-2000. The data are obtained 

from the “Belgian Analysis Form for Traffic Accidents,” 

which are filled out by a police officer for each traffic 

accident occurring on a public road in Belgium. The data set 

contains 3,40,184 accident records, with a total of 572 

attribute values. On average, each record has 45 attributes. 

The algorithm uses the first 10k tuples as the default data set 

as its input. The default value of minsup is 20 percent. To test 

the mining algorithm, it uses the first 10k tuples as the old 

database D, and the subsequent tuples as the delta database d. 

The default size of d is 5 percent of D. , it considers both 

attribute and tuple uncertainty models. For attribute 

uncertainty, the existential probability of each attribute is 

drawn from a Gaussian distribution with mean 0.5 and 

standard deviation 0.125. This same distribution is also used 

to characterize the existential probability of each tuple, for the 

tuple uncertainty model. The default value of minprob is 0.4. 

In the results presented, minsup is shown as a percentage of 

the data set size n. Notice that when the values of minsup or 

minprob are large, no PFIs can be returned; it do not show the 

results for these values. The experiments were carried out on 

the Windows XP operating system, on a machine with a 2.66 
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Output 

all 
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GHz Intel Core 2 Duo processor and 2 GB memory. The 

programs were written in Java and compiled with J2SE 

runtime environment 1.6.0. The proposed algorithm is 

implemented under the java runtime environment. The 

algorithm extracts the probabilistic frequent item sets within a 

fraction of seconds. 
  

8.  DISCUSSION 
Now the comparison of the performance of the PFI mining 

algorithms mentioned in this paper:1) APM, the Apriori 

algorithm used in [6] that employs the PFI testing method  

and 2) PA (Proposed algorithm), the proposed algorithm that 

uses the improved version of the PFI testing method is 

discussed here. 

      Since APM approximates s-pmf by a Poisson distribution, 

first examine that its accuracy with respect to AP, which 

yields PFIs based on exact frequentness probabilities. Here, 

the standard recall and precision measures [7] is used, which 

quantify the number of negatives and false positives. 

Specifically, let 𝐹𝐴𝑃𝑀   be the set of PFIs generated by APM, 

and 𝐹𝑃𝐴  be the set of PFIs produced by PA. To compare the 

existing algorithm with the proposed algorithm, The recall 

and precision were used. Both recall and precision have 

values between 0 and 1. The recall and the precision of APM, 

relative to PA, are defined as  

 

               𝑟𝑒𝑐𝑎𝑙𝑙 =
| 𝐹𝐴𝑃𝑀  ∩  𝐹𝐴𝑃  |

𝐹𝐴𝑃𝑀
                        (13)                      

 

          𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
| 𝐹𝐴𝑃𝑀 ∩  𝐹𝐴𝑃 |

𝐹𝐴𝑃
                          (14)     

 

In these formulas, Also, a higher value reflects a better 

accuracy. Table 2 shows the recall and the precision of APM 

(Apriori algorithm), for a wide range of minsup, n, and 

minprob values. As it can observed that the precision and 

recall values are always higher than 98 percent. Since The 

proposed algorithm PA returns the same PFIs as APM, it is 

also highly accurate result. Both precision and recall are used 

to compare the performance of mining algorithms. 

 

 

           Table 2. Recall and Precision of  APM  

 

minsup 0.1 0.2 0.3 0.4 0.5 

Recall 1 1 1 1 1 

Precision 0.997 1 1 1 1 

            (a) Recall and Precision  vs. minsup 

 

minprob 0.1 0.3 0.5 0.7 0.9 

Recall 1 1 1 1 1 

Precision 0.986 1 0.985 1 1 

          (b) Recall and Precision vs. minprob 

 

  n 1k 4k 10k 50k 100k 

Recall 1 1 1 1 1 

Precision 0.987 0.988 1 1 1 

              (c)  Recall and Precision vs. n 

 

 

 

8.1  Efficiency of  PA vs. APM      .  
next compare PA and APM, which both yield PFIs. The given 

Figure 3(a) shows that PA is faster than APM over different 

minsup values. minsup is taken on the X-axis and runtime is 

taken on the Y-axis. On increasing the minsup value the 

runtime decreases.  Fig.3(b) examines the algorithms under a 

wide range of minprob values. Again, PA runs faster than 

APM. Fig. 3(b) examines the effect of using different minprob 

values. Minprob is taken on X-axis and running time is taken 

on the Y-axis. The details are of these distributions are listed 

in Table 3.  

 

 

 
                                                          

                                                                                     

                                 Fig.10(a)  minsup vs. runtime 

 

 

 

 

 

        runtime 

 
         

                                

 

                            Fig.3(b) minprob vs. runtime 

 

It is observed that the algorithm PA performs better than APM 

over different types of distributions. The consistently high 

performance gain demonstrated by AP can be explained. On 

observing the figure 3(a) the existing algorithm takes longer 

time than the proposed algorithm(PA), since the on increasing 

the minsup value against the runtime the curve gradually 

decreases in existing algorithm and also maintains constant 

behavior in the proposed algorithm. The graph given in the 

figure 3(b) depicts the difference in performs between the 

existing algorithm APM and the proposed algorithm PA. In 

this graph also the developed or proposed algorithm is faster 

than the existing algorithm. The below table 3 provides the 

details of the recall and precision of PA algorithm. 
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           TABLE 3. Recall and Precision of  PA  

 

minsup 0.1 0.2 0.3 0.4 0.5 

Recall 1 1 1 1 1 

Precision 0.998 1 1 1 1 

            (a) Recall and Precision  vs. minsup 

 

minprob 0.1 0.3 0.5 0.7 0.9 

Recall 1 1 1 0.970 1 

Precision 0.986 1 1 1 1 

          (b) Recall and Precision vs. minprob 

 

  n 1k 5k 10k 50k 100k 

Recall 1 1 1 1 1 

Precision 1 1 1 1 0.985 

              (c)  Recall and Precision vs. n 

 

The experiments on the tuple uncertainty model and on the 

synthetic data set were also performed. Since they are similar 

to the results presented above, The most representative ones. 

For the accuracy aspect, the recall and precision values of 

approximate results on these data sets are still higher than 98 

percent. Thus, the proposed algorithm can return accurate 

results.  

 

9.  CONCLUSIONS 
In this paper, we propose a approach to extract threshold-

based PFIs from large uncertain databases. Its main idea is to 

the s-pmf of a PFI by some common probability model, so 

that a PFI can be verified quickly. This approach supports 

retrieving PFIs from evolving databases. The experimental 

results show that the proposed algorithm is highly efficient 

and accurate. It supports both attribute- and tuple uncertain 

data approach to develop other mining algorithm (e.g., 

clustering and classification) on uncertain data. It is also 

interesting to study efficient mining algorithm for handling 

tuple. Another interesting work is to investigate PFI mining 

algorithm for probability models that capture correlation 

among attributes and tuples.  
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