
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

1

Review on Software Reliability
Growth Models and Software Release Planning

Rashmi Upadhyay

Scholar, Galgotias University
Greater Noida

India

Prashant Johri
Professor, Galgotias University

Greater Noida
India

ABSTRACT

In this paper, Software Reliability Engineering is a field that

developed from ancestry in the reliability disciplines of

structural, electrical, and hardware engineering. Reliability

models are powerful tools of Software Reliability Engineering

for estimating, predicting, devious, and assessing software

reliability. On the basis of the review the cataloging of

software reliability models has been presented as a major part.

This categorization is based on the various dimensions of

reliability models. Models under review reflect either infinite

or finite number of failures. This paper discusses a two-

dimensional software reliability growth modeling framework.

We measured that an actual software reliability growth

progression depends not only on testing time but also on

testing effort and also enables us to portray software release

planning problem in software reliability growth process. Thus,

we can say that software project managers can demeanor more

viable and accurate software reliability appraisal by using

two-dimensional SRGM.

 General Terms

SRGM(Software Reliability Growth Model), Software

Release Planning.

Keywords

Software Reliability, SRGM, Two dimensional, Non-

Homogeneous Poisson Process(NHPP), Release Time.

.

1. INTRODUCTION
Software reliability is essential because of our craving on

computer software system in our everyday life and to the

actuality that software system cannot be made error free. In

the former two decades diverse methodologies and techniques

have been developed and put in to observe in the hope of

producing high quality, low cost software systems. Software

is a resolute mechanism that comprised of computer

programs, procedures, rules, data and related documentation.

The enlarge in number of software failures inadequately

affected the performance of transportation,

telecommunication, military, industrial process, entertainment

offices, aircrafts and business. Therefore software reliability

has become more & more important. Reliability is the

competence of software to sustain a determined level of

performance within the time period.

Usually the software development progression is composed of

four phases: requirement phase, design phase, coding and

testing phase. The testing phase aims to perceive and get rid

of the dormant software faults in order to ensure, as far as

possible, error free process of software in a given time. In

other words, the testing phase quantifies the quality of the

software in requisites of its consistency. Therefore software

reliability is reliant on the number of errors enduring in the

software.

This paper presents a review on the software reliability

Models. The study throws the light on various dimensions of

reliability models. Section 2 have the literature review,

Section 3 describes the difference between one dimension vs.

Two Dimension, Section 4 Discussed Two dimensional

modeling Framework. Section 5 describes Software release

planning problem. At last paper concludes in section 6.

2. LITERATURE REVIEW

2.1 Software Reliability Engineering:

The genesis of Reliability Engineering can be found in the

early 19th century industrial world. Musa (1999) has defined

Software Reliability Engineering (SRE) as:

“SRE is a practice that helps one develop software that is

more reliable, and helps one develop it faster and cheaper. It

is a standard, proven, widespread best practice that is widely

applicable to systems that include software. SRE is low in

cost and its implementation has virtually no schedule impact”.

SRE works by quantitatively characterizing and applying two

things about the product: the expected relative use of its

functions and its required major quality characteristics.

Software Reliability is an important to trait of software

quality, together with functionality, usability, performance,

serviceability, capability, installability, maintainability, and

documentation. Software Reliability is hard to achieve,

because the complexity of software tends to be high. While

any system with a high degree of complexity, including

software, will be hard to reach an assured level of reliability,

system developers lean to push complexity into the software

layer, with the hasty growth of system size and ease of doing

so by upgrading the software. Software reliability is often

defined as ―the probability of failure-free operation of a

computer program for a specified time in a specified

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

2

environment. Various approaches can be used to look up the

reliability of software, nevertheless, it is hard to balance

development time and budget with software reliability.

Software reliability engineering is also anxious with the

characteristics of the software development process. In this

regard, it deals with characteristics such as cost of

development, duration of development, and risks in

development of software. Consequently choice of the

Software Development Life Cycle (SDLC) model adopted is

grave to the accomplishment of any software development

project [30, 31, and 32].

2.2. Reliability and the software lifecycle:

The methods and needs of software reliability appraisal and

prediction vary by the phase of software development

lifecycle [12,16].

• In the requirements and design phases, when no

implementation is vacant, early prediction models can be

used. Reliability must be analyzed based the architecture and

stated requirements.

• In the implementation and testing phases, software reliability

appraisal is pleasing to make the stopping decision pertaining

to testing and debugging: when the mean time to failure is

long adequate, the software can be released. Models most

relevant here are reliability growth models.

• When the software is released, it is ordinary to suppose that

all pragmatic faults have been debugged and corrected. As a

result, after release, a reliability model is used to forecast the

mean time to failure that can be predictable. The resulting

reliability estimate may be used in system reliability

assessment, as a source of maintenance recommendation, and

auxiliary upgrading, on a basis of the recommendation to

suspend the use of the software. Hence, when the software is

in equipped use, the model to be used depends on upholding

policies and incidence of failures.

•If no failures are detected in the software, or if the software is

not maintained, a reliability model is most suitable. If failures

are detected and the software is modernized, a reliability

growth model is in order.

2.2.1. Software Reliability:

According to ANSI, Software Reliability is defined as: the

probability of failure-free software operation for a specified

period of time in a specified environment. Software reliability

is one of the important parameters of software quality and its

is defined as a probabilistic function, and comes with the

concept of time. Software is an appliance for transforming a

distinct lay down of input into an obligatory distinct set of

outputs. It comprises a set of coded statements or directives

whose functions may be to assess an appearance and

accumulate the result in a provisional or eternal location, to

decide which proclamation to carry out, or to execute

input/output operations. Software is a logical method rather

than a physical system element. Consequently, software has

distinctiveness that is significantly different than those of

hardware.

1. Software is developed or engineered; it is not

manufactured in the conventional sense.

2. Software doesn‟t “wear out”.

3. Even though the trade is moving toward

component-based assembly, most software

continues to be convention built.

Figure 1.: Failure Curve for Hardware

Figure 2: Failure Curve for Software

2.3. Software reliability growth models:

Software reliability models are used for the prediction and

estimation of software reliability [9].This section reviews

some existing software reliability growth models. These

models describe how observation of failures and correcting

the underlying faults. Such as occurs in software development

when the software is being tested and debugged, influence the

reliability of software. These models are appropriate also to

assessing the reliability of software in equipped use, when the

latest reliability approximation given by the model is used.

2.3.1 NHPP based Software Reliability Growth

Models:

NHPP based SRGM are broadly classified into two categories

first – continuous time models, which uses time (CPU time,

calendar time or execution time) as a unit of fault detection

period and second – Discrete time models, which assume the

number of test occasions/cases as a constituent of fault

detection period. Models can also be categorized as concave

and S-shaped depending upon the shape of the failure curve

described by them. Concave models describe an exponential

failure curve while second category of models describes an S-

shaped failure curve.

These models are generally used to forecast the release date of

a software product. SRGMs base their predictions on data

from the testing process and, thus, reflect the testing, the fault

prologue and the fault pronouncement processes. Kapur et al

[2, 3] proposed an SRGM with three types of fault. For each

type, the FRR per remaining faults is assumed to be time

independent. The first type is modeled by an Exponentional

model of Goel and Okumoto [1]. The second type is modeled

by Delayed S-shaped model of Yamada et al. [5]. The third

type is modeled by three stage Erlang model proposed by

Khoshogoftaar [4]. Later they extended their model to cater

for more types of faults [3] Therefore, SRGMs are, in our

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

3

opinion, potentially appropriate for predicting fault inflow as

well. Many architecture based software trustworthiness

models has grown during the earlier period in a very imposing

manner. Numerous software reliability models have been

exposed since the early 1970s and lots of work has been done

on the models that approximate reliability development during

testing stage.

Various general model assumptions are as follows:

1. Software system is subject to failure during

execution caused by faults remaining in the system.

2. Failure rate of the software is equally affected by

faults remaining in the software.

3. The number of faults detected at any time instant is

proportional to the remaining number of faults in

the software.

4. On a failure, repair effort starts and fault causing the

failure is removed with certainty.

5. All faults are mutually independent from failure

detection point of view.

6. The proportionality of failure detection / fault

isolation / fault removal is constant.

7. The fault detection / removal phenomenon is

modeled by NHPP.

Notations:

 tm : Expected number of faults identified in (0,t]

a:Representing initial fault content

b: Rate of fault removal per remaining faults for software.

p, q:Proportionality constants

The brief description of some models is given in subsequent

section.

2.3.1.1. Goel-Okumoto Model (Goel and Okumoto

1979):

Goel and Okumoto [1] proposed an SRGM, which describes

the fault detection rate, as a non homogeneous poisson

process (NHPP) assuming the hazard rate is proportional to

remaining fault number.

Following differential equation results from assumption-3

)]([)(tmabtm
dt

d

 (1)

The above first order linear differential equation when solved

with the initial condition
0)0(m

gives the following

mean value function

)1()(bteatm
 (2)

The mean value function is exponential in nature and doesn't

provide a good fit to the S-Shaped growth curves that

generally occur in Software Reliability. But the model is

popular due to its simplicity.

Now we briefly discuss below some S-Shaped SRGMs.

2.3.1.2. Delayed S-Shaped SRGM (Yamada, Ohba

and Osaki 1983)

Yamada et al. [7] proposed a modified exponential SRGM

assuming the software contains two types of faults. The model

is based on the observation that in the early stages of the

software phase, the testing team removes a large number of

simple faults (faults that are easy to remove) while the hard

faults are removed in the later stages of the testing phase.

Accordingly, they assumed the fault removal process to be the

superposition of two NHPP, the first NHPP models the

removal of the simple fault while the second models the

removal of the hard faults Failure rate and isolation rate per

fault are assumed to be same and equal to b.

Thus

)]([)(tmabtm
dt

d
ff

 (3)

)]()([)(tmtmbtm
dt

d
f

 (4)

)(tm f
is the expected number of failures in

],0(t
. Solving

(3) and (4), we get the mean value function as

 btebtatm 11)(
 (5)

2.3.1.3. Inflection S-Shaped SRGM (Ohba 1984):

The model attributes S-Shapedness to the mutual dependency

between software faults. Other than assumption-3 it is also

implicit that the software contains two types of faults, namely

reciprocally dependent and reciprocally independent. The

mutually self-regulating faults are those to be found on

different execution paths of the software, consequently they

are similarly expected to be detected and removed. The

mutually dependent faults are those faults sited on the same

execution path. According to the order of the software

execution, some faults in the execution path will not be

impassive until their foregoing faults are removed.

Let r denote the ratio of independent faults to the total

number of faults in the software. This ratio is called the

inflection parameter
 10 r

. If all faults in the

software system are mutually independent (1r) then the

faults are randomly removed and the growth curve is

exponential. According to the assumptions of the model, the

fault removal intensity per unit time can be written as

)]()[()(tmatbtm
dt

d

 (6)

)(tb
, the fault removal rate at time t is defined as

)()(tbtb
 (7)

where,
)(t

the inflection function is defined as

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

4

a

tm
rrt

)(
)1()(

,
0)0(

and

1)(
 (8)

b is the fault removal rate in the steady state. Solving (8)

under the initial condition
0)0(m

 we get

bt

bt

e
r

r

e
atm

1
1

1
)(

 (9)

If 1r , the model reduces to the Goel-Okumoto model

(1979). For different values of r different growth curves can

be obtained and in that sense the model is flexible.

2.3.1.4 Flexible SRGM (Bittanti et al 1988) :

The model is based on the following differential equation:

d

m(t) k(m) a m(t)
dt (10)

Where

a

tm
kkkmk ifi

)(
)()(

 (11)

Here ki and kf are initial and final values of Fault Exposure

Coefficient. If ki = kf , then it reduces to Exponential model.

If kf >> ki ; the failure growth curve takes S-shape. If kf is

very small as compared to ki that it is almost equal to zero, the

failure growth curve becomes flat at the end.

The solution of equation (10) with initial condition m(t=0)=0

is :

tk

i

if

tk

f

f

e
k

kk

e
atm

1

1
)(

 (12)

For different values of kf and ki , it describes different growth

curves.

2.3.1.5. SRGM for an Error Removal Phenomenon

(Kapur and Garg 1992)

This model is based upon the following additional

assumption: On a failure observation, the fault removal

phenomenon also removes proportion of remaining faults,

without their causing any failure.

Based on the assumption the fault removal intensity per unit

time can be written as

)]([
)(

)]([)(tma
a

tm
qtmaptm

dt

d

 (13)

Solving equation (13) with the usual initial condition, the

expected number of faults detected in
],0(t

 is given as

tqp

tqp

e
p

q

e
atm

)(

)(

1

1
)(

 (14)

3. ONE DIMENSIONAL SRGM V/S TWO

DIMENSIONAL SRGM

Traditionally, one-dimensional models have been proposed in

the literature with respect to testing time or testing coverage,

even though not much has been done to capture the combined

effect of the testing coverage and the testing time. Ishii and

Dohi[8] proposed a two dimensional software reliability

growth model and their application .In this paper we discuss a

two-dimensional model which shows the mutual effect of

testing time and testing coverage to remove the faults lying

dormant in the software. We imagine that the number of faults

removed in the software by a fixed time is reliant on the total

testing resources accessible to the testing team. This testing

resource is a fusion of both testing time and testing coverage.

We employ Cobb-Douglas production function [17] to exhibit

the effect of both testing time and testing coverage in

removing the faults in the software. Inoue proposed a two

dimensional software reliability growth model with testing

coverage using the Cobb Douglas production function.

Further in this paper we discuss a release policy which gives

us an optimal value of the testing time and testing coverage

which minimizes the total testing cost subject to a pre

requisite level of reliability.

During the last three decades, a huge number of SRGMs have

been proposed in the literature [1, 6, 10, 11, 13, 18, and 19].

But, almost all of the SRGMs have been developed to model a

single release software development process. Moreover, they

are developed under the assumption that the software

reliability growth process depends only on testing-time. An

alternative approach based on the NHPP was proposed by

Yamada et al. [14, 15], and Huang and Kuo [20].They

developed some testing-effort dependent SRGMs. All such

models can be termed as one-dimension one release software

reliability growth models (1-D; 1-R SRGMs). However, the

time and resource usage together govern the software

reliability growth process. And 1-D; 1-R SRGMs do not

incorporate these factors simultaneously for multi releases.

Thus, to confine the mutual effect of testing time and

resources, a two dimensional multi-release software reliability

growth model (2-D; M-R SRGM) is needed.

In recent years, Ishii and Dohi [21] proposed a two

dimensional software reliability growth model and their

application. They investigate the dependence of test-execution

time as a testing effort on the software reliability appraisal,

and certify quantitatively the software reliability models with

two-time scales. Inoue and Yamada [8,22] also proposed two

dimensional software reliability growth models.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

5

However their modeling framework was not a direct

representative of using mean value functions to represent the

fault removal process. They discuss software reliability

estimation method by using two dimensional Weibull type

SRGM. This study aims to compare the predictive capability

of two popular software reliability growth models, say

flexible logistic growth and exponentiated exponential

growth. In this paper we discuss two dimensional SRGMs

which enable us to expect more feasible software reliability

assessment than the conventional software reliability

measurement approach. To start with, we describe one-

dimensional unified approach for describing failure-

occurrence or fault-detection phenomenon before discussing

our two dimensional software reliability growth modeling

framework

4. TWO DIMENSIONAL MODELING

Lately, two dimensional software reliability models have been

developed to assess the software quantitatively. The need for

developing a two dimensional model is an ideal solution to the

problem of software reliability at the hands of software

engineers. In one dimensional analysis the object variable is

dependent on one basic variable although the object takes on

many different roles based upon its dependence on various

other factors. Two dimensional models are used to capture the

joint effect of testing time and testing coverage on the number

of faults removed in the software. In economics, the Cobb-

Douglas functional form of production functions is widely

used to represent the relationship of an output to inputs. It was

proposed by Knut Wicksell (1851 - 1926), and tested against

statistical evidence by Charles Cobb and Paul Douglas in

1928. In 1928 Charles Cobb and Paul Douglas published a

study in which they modeled the growth of the American

economy during the period 1899 - 1922. They considered a

simplified view of the economy in which production output is

determined by the amount of labor involved and the amount

of capital invested. While there are many other factors

affecting economic performance, their model proved to be

remarkably accurate.

The mathematical form of the production function is given as

follows:

𝑌 = 𝐴𝐿𝑣𝐾1−𝑣

Where:

Y = total production (the monetary value of all goods

produced in a year), L = labor input; K = capital input, A =

total factor productivity v is elasticity of labor. This value is

constants and determined by available technology. Fig 1

shows graphically how the total production is influenced due

to change in the proportion of labor and capital.

Figure 3. A two-input Cobb–Douglas production function

[29].

The assumptions made by Cobb and Douglas can be stated as

follows:

1. If either labor or capital vanishes, then so will production.

2. The marginal productivity of labor is proportional to the

amount of production per unit of labor.

3. The marginal productivity of capital is proportional to the

amount of production per unit of capital.

The Cobb- Douglas function based on the above assumptions

is very appealing. The basic characteristic of this function is

linearly homogeneous with constant return to scale i.e. a

proportion increase in all inputs leads to same proportion

increase in output the testing team has many resources of

testing to make sure that software hence formed is of quality.

These include software testing man hours, CPU time, testing

effort testing coverage etc.

𝜏 ≅ 𝑠𝑟𝑡1−𝑟 0 ≤ 𝑟 ≤ 1 (15)

Where

r : testing resources

s : testing time

u : testing coverage

𝜏 : Effect of testing time

Let
{ (,), 0, 0}N s u s u

 be a two-dimensional

stochastic process representing the cumulative number of

software failures by time s and testing coverage u. A two-

dimensional NHPP with a mean value function m (s, u) is

formulated as:-

((,))
Pr((,)) exp(((,))

!

nm s u
N s u n m s u

n

,

n=0,1,2…

5. SOFTWARE RELEASE PLANNING

PROBLEM:

Choosing and developing good software is a crucial step for

organizations. A strong tendency is to follow the so-called

iterative and incremental development [25]. This

methodology is a recurring software development process in

which the diverse components of any system are tearing into

numerous parts which are developed at different stages

(iterations) and then incorporated as their developments are

accomplished. In each iteration, a preliminary version of the

software must be released to the stakeholders. There are

various optimistic characteristics that can be pointed out in

this tactic, like early criticism from stakeholders, upgrading of

subset of features in the system, better risks supervision and

incremental tests execution. A key aspect to the success of a

software project based on iterative and incremental life cycle

is the planning of which necessities are going to be delivered

in each release of the software. When starting a new project,

stakeholder‟s requirements must be recognized. Next, the

development team must decide which requirements have to be

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

6

implemented in each release. This requires a meticulous

analysis concerning numerous aspects such as stakeholder‟s

ease, costs, deadlines, available resources, and efforts needed,

risks, requirements interdependencies, and so on. The superior

and additional multifaceted the project is the more difficult

and error vulnerable the release planning will be. This paper

discusses this multifaceted task, named Software Release

Planning.

The objective was to diminish the total software development

cost focus to reliability less than a predefined reliability level,

or maximize reliability subject to cost not exceeding a

predefined budget. In 1991, Kapur and Garg [27] formulated

release policies incorporating the effect of testing resource

costs for an exponential SRGM under the other assumption

that testing resource curves are described by moreover

exponential, Rayleigh, or Weibull curves. Huang and Lyu

[26] proposed an SRGM with a generalized testing effort

function, and studied optimal release policies based on cost

and reliability allowing for testing effort and efficiency. In

2007, Kapur et al. [11] proposed an SRGM with two types of

imperfect debugging, and determined the optimal release time

of the software.

Nowadays, in mainly organizations, software release planning

is done by using ad hoc approaches, which are based merely

on manager‟s proficiency, knowledge in previous experiences

and insight. There are also methods for prioritizing software

requirements [28], which are often costly and also based on

manager‟s proficiency and perception to evaluate the

requirements. Some harmful points can be shown, most of

them due to the fact that the development gets reliant on folks

instead of depending on process. To conquer this unwanted

situation, we have to focus on software release planning.

5.1 Optimal release planning problem for

software with multiple releases:

The release time problems discussed above were considered

under the assumption that software comes in a single release.

In forecast the release decisions for software that is to be

brought into the market with new versions, the organization

has to take into consideration two things:

(i) Testing data from the new code, and

(ii) Log reports of the previous release, i.e. bugs reported by

the users in the equipped phase of the version that has been in

the market.

Where in single release software systems only (i) prevails, and

if (ii) is not taken into concern for the release planning of

multi-release software systems, then the opinion of coming up

with several versions gets lost. In the present problem, we

consider minimizing the testing cost of the release that is

under testing, with a constraint of removing a desired

proportion of faults.

6. CONCLUSION:

Various software reliability models have been revealed since

1970s. Lots of work has been done on software reliability

assessment. Some of major models that have appeared in the

literature are discussed in this paper. Reliability models are

based on the various dimensions. The major verdict of the

study is that the models under review reflect either infinite or

finite number of failures. All exponential distribution based

models reflect finite failures and logarithmic distribution

based model reflect infinite failures. The conventional one

dimensional model has been dependent upon the testing time,

testing effort or testing coverage. Conversely if the reliability

of software is considered on the basis on the number of hours

depleted on testing the software or the entitlement of software

that has been enclosed then the results are not decisive. To

accommodate the need of high accuracy software reliability

we require a software reliability growth model which caters

not only the testing time but also the testing effort. For this we

discuss a two dimensional software reliability growth model

incorporating the joint effect of testing time and testing effort

on the number of faults removed in the software. And we also

discuss the software release planning problem and optimal

release planning for multi releases.

In Future, we will use a two dimensional approach to develop

a flexible software reliability growth model using Cobb

Douglas production function. This function is used to capture

the combined effect of testing time and testing effort, and we

will also use the Genetic Algorithm (GA) for solving optimal

release planning problem as it is a complex, non linear

optimization problem.

7. REFERENCES

[1] Goel AL, Okumoto K. Time dependent error detection

rate model for software reliability and other performance

measures. IEEE Transactions on Reliability 1979; R-

28(3): 206-211.

[2] Kapur PK and R.B. Garg (1992), A software reliability

growth model for an error removal phenomenon,

Software Engineering Journal 7, 291-294.

[3] Kapur P.K., R.B. Garg and S. Kumar (1999),

Contributions to Hardware and Software Reliability,

World Scientific, Singapore.

[4] Khoshogoftaar TM and Woodcock TG (1991), “Software

Reliability Model Selection: A case study”, Proceedings

of the international symposium on software reliability

Engineering, pp.183-191.

[5] Yamada S, Ohba M, and Osaki S. (1984) S-shaped

software reliability growth models and their applications,

IEEE Transactions on Reliability, 1984; R-33: 169-175.

[6] Ohba, M. (1984), Software reliability analysis models,

IBM Journal of research and Development 28, 428-443.

[7] Yashwant K. Malaiya, Michael Naixin, James M.

Bieman and Rick Karcich; Software Reliability Growth

with Testing Coverage, IEEE Transactions on

Reliability,Vol. 51(4), pp.420-426, 2002.

[8] Inoue S, Yamada S “Testing-Coverage Dependent

Software Reliability Growth Modeling” International

Journal of Reliability, Quality and Safety Engineering,

Vol. 11, No. 4, 303-312, 2004.

[9] Jintao zeng, Jinzhong Li, Xiaohui Zeng, Wenlang Luo

“A Prototype System of Software Reliability Prediction

and Estimation”. IITSI 2010.

[10] P.K. Kapur, R.B. Garg and S. Kumar; “Contributions to

Hardware and Software Reliability”, World Scientific

Singapore, 1999.

[11] P.K. Kapur, H. Pham, Anshu Gupta, P.C. Jha; “Software

reliability Assessment with OR application”, Springer

London, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.12, July 2013

7

[12] Asad, C.A., Ullah, M.I. & Rehman, M.J.-U. An

approach for software reliability model selection.

Proceedings of the 28th Annual International Computer

Software and

[13] Applications Conference (COMPSAC.04), Vol. 1,

534.539.

[14] J.D. Musa, D. Iannio and K. Okumoto; “Software

Reliability Measurement”, Prediction, Application,

McGraw-Hill, New York, 1987.

[15] S. Yamada, H. Ohtera, and H. Narihisa; “Software

reliability growth models with testingeffort”, IEEE

Trans. Reliab., Vol. R-35(1), pp. 19-23, 1986.

[16] S. Yamada, J. Hishitani and S. Osaki; “Software

reliability growth with a Weibull test-effort”, IEEE

Trans. Reliab., Vol. 42(1), pp. 100-106, 1993.

[17] Hamlet, D. Are we testing for true reliability? IEEE

Software, Vol. 9, No. 4 (July 1992),21.27.

[18] Shinji Inoue and Shigeru Yamada “Two-Dimensional

Software Reliability Assessment with Testing-Coverage”

2008 Second International Conference on Secure System

Integration and Reliability Improvement July 14-July 17.

[19] H. Pham, System Software Reliability. : Springer, 2006.

[20] M. R. Lyu, Handbook of Software Reliability

Engineering. New York: McGraw-Hill, 1996.

[21] C. Y.Huang and S. Y. Kuo, “Analysis of incorporating

logistic testingeffort function into software reliability

modeling,” IEEE Trans. Reliability, vol. 51, no. 3, pp.

261–270, 2002.

[22] T. Ishii and T. Dohi, “Two-dimensional software

reliability models and their application,” in Proc. 12th

Pacific Rim Intern. Symp. Dependa. Comput., 2006, pp.

3–10.

[23] S. Inoue and S. Yamada; “Two-dimensional software

reliability measurement technologies”,

[24] Proceedings of IEEE IEEEM, pp. 223-227, 2009.

[25] S. Inoue and S. Yamada; “Two-dimensional software

reliability assessment with testing coverage”, Second

International Conference on Secure System Integration

and Reliability Improvement, pp. 150-156, 14-17 July

2008.

[26] P.K. Kapur, R.B. Garg, G.A. Aggarwal and A. Tandon;

“Two-dimensional flexible software reliability growth

model and release policy”, Proceedings of the Fourth

National Conference on Computing for Nation

Development-INDIA Com-2010, 25-26, New Delhi, pp.

431-438, February 2010.

[27] C. Larman and V. R. Basili, “Iterative and incremental

development: A brief history,” Computer, vol. 36, no. 6,

pp. 47–56, 2003.

[28] C. Y. Huang andM. R.Lyu, “Optimal release time for

software systems considering cost, testing effort, and

testing efficiency,” IEEE Trans. Reliability, vol. 54, no.

4, Dec. 2005.

[29] P. K. Kapurand and R. B. Garg, “Optimal release

policies for software systems with testing effort,”

International J. System Science, vol. 22, no. 9, pp. 1563–

1571, 1991.

[30] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation

of methods for prioritizing software requirements,”

Information and Software Technology, vol. 39, no. 14-

15, pp. 939–947, 1998.

[31] .P. K. Kapur, H. Pham, Fellow, IEEE, Anu G. Aggarwal,

and Gurjeet Kaur, “Two Dimensional Multi-Release

Software Reliability Modeling and Optimal Release

Planning”, IEEE TRANSACTIONS ON RELIABILITY,

VOL. 61, NO. 3, SEPTEMBER 2012.

[32] Lyu, M.R. (ed.). Handbook of Software Reliability

Engineering. IEEE Computer Society Press and

McGraw-Hill, 1996.

[33] Boehm, B.W. (1981), „Software Engineering

Economics‟, Englewood Cliffs, N.J.: Prentice Hall.

[34] Pressman R.S.(2001), „Software Engineering: A

Practitioner‟s Approach‟, McGraw-Hill: Fifth Edition.

IJCATM : www.ijcaonline.org

