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ABSTRACT 

Cloud data centres improve CPU utilization of their servers 

(physical machines or PMs) through Virtualization (virtual 

machines or VMs). Over virtualised and under virtualized 

PMs suffer performance degradation and power dissipation 

respectively. This work presents a stochastic modular scheme 

for allocating VM requests to a PM by avoiding overloading 

of PM and keeping the global load characteristics under 

specified QoS goal. The proposed approach categorizes PMs 

into three groups (Under Load, Normal Load, Over Load) in a 

way that minimizes number of PMs in Under Load and Over 

Load groups and maximizes number of PMs in Normal Load 

group. We compute VM request rejection probability, 

response time, service time and number of PMs that are 

overload or under loaded for evaluating the performance of 

our model. The results show that these parameters do not 

degrade with increasing arrival rate. Thus the proposed model 

is simple yet efficient approach for VM placement problem.   

Keywords 

Markov Chain, Virtual Machine, Physical Machine, Virtual 

Chunks, VM Consolidation. 

1. INTRODUCTION 
Cloud Computing is based on Autonomic Computing Model 

with access to a vast and shared pool of resources (e.g.   

servers, storage, applications, services) that are subject to 

rapid provisioning and deployment at the user‟s site with 

minimal effort on the part of resource service provider. It is 

becoming a pervasive model [1] in which achieving high 

reliability and scalability of applications and enabling the 

cloud resource provider to maximize CPU utilization subject 

to the constraints imposed by the need to optimize QoS are 

certain conflicting objectives [1][12][16]. Therefore, 

developing a model that captures resiliency and yet be 

tractable, is an area of active research [3]. 

 

The integral component of the next generation cloud data 

centers is the virtualization [9][10] of compute and storage 

resources which enables a number of virtual machines (VMs) 

to be deployed and scaled on a single physical machine (PM) 

or host, corresponding to the input workload. A VM refers to 

the software implementation of a computer that runs its own 

OS and applications as if it were a physical machine. Most 

cloud data centers implement automatic VM placement 

algorithms [2][4][5][8][9][10][12][15][19][20][22][23], in 

which the most suitable host is selected by categorizing VM 

resource requirements and its anticipated expansion while 

optimizing the placement goals. There are numerous 

placement goals which include maximizing the usage of 

available resources, power saving by switching idle hosts to 

sleep mode, meeting SLA and optimizing server consolidation 

[11][14][16][25]. In order to meet one or more of the 

placement goals and depending upon the dynamic workload 

submitted to the hosts, the placement controller component 

allows VMs to move from one physical machine to another, 

under state consistency preservation constraints. This form of 

movement is termed as live migration, in the 

literature[11][14][16][25](a sub process of VM 

consolidation), which is desirable, yet, being a resource 

intensive operation, consumes several CPU cycles and 

appreciable network bandwidth, affects the performance of 

applications as well as resource usage of the migrating and 

collocated VMs. Therefore, a model that avoids overloading 

and under loading of PMs directly influences VM migrations.   

 

PMs become under loaded or overload by dynamic departure 

and deployment of VMs to PMs [13]. This work proposes a 

VM placement algorithm that places VMs to PMs in such a 

way so as to keep the number of overloaded and under loaded 

PMs to a minimum so that the interval between successive 

VM consolidations is maximized. The VM placement 

algorithm is described as a continuous time Markov Chain 

model, which has the knowledge of the current and future 

load characteristics of the PMs in the cloud data centre in 

terms of computed probabilities. The model is essentially a 

collection of interacting sub-models that exchange their 

outputs to minimize VM request rejection probability and the 

response time. The proposed model efficiently represents the 

dynamics of today‟s cloud centers as compared to the earlier 

monolithic models that were more restrictive in nature.  

 

The rest of the paper is organized in the following manner. In 

section 2, we discuss the related work, followed by a CPU 

utilization model in section 3. We present System Model of 

VM placement technique in section 4 and the associated sub 

models with mathematical formulations in sections 5, 6, 7, 8 

respectively Section 9 presents the VM placement Algorithm. 

Simulation and numerical result analysis is given in section 

10. Finally we give conclusion and future directions in section 

11. 

 

2. RELATED WORK 
Stochastic models for data centre performance have been 

proposed in literature [1][5][6].  In [1], the authors proposed a 

statistical model for PM overload detection for stationary 

workload that maximizes mean inter migration time. The 

authors give the categorization of dynamic VM consolidation 

as periodic, heuristic-based and thresh-hold based. A degree 

constraint is introduced in [2], and using this constraint a 

model of virtual machine allocation problem is developed. 

However, after theoritical modeling several heuristics has 

been proposed to solve the on-line version of the problem. An 

efficient and responsive economic resource allocation in high-
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performance computing environments is proposed in [4] by 

avoiding repeated allocation and commitment of resources. 

But the associated penalty functions also play their role. An 

analytical performance model, similar to our work, is 

proposed in [5] that assigns „supertasks‟ to hot, warm and 

cold PMs in the given order. This paper, along with [1] 

motivated us towards incorporating load aspects to managing 

load on cloud servers.   

A heuristic methodology for resource mapping to federated 

infrastructures is formulated as mixed integer problem in [9]. 

Similar work is carried out in [8, 12] where several conflicting 

objectives are attempted to solve through a single aggregate 

function. The underlying concept is not comparable to ours 

because of the difference in the mode of solution. The work  

involve efficient control on VM migrations and are based on 

active strategies of balancing idle and overload hosts. We 

propose a pro-active solution to this problem by controlling 

workload right from the placement phase. The work in [10] 

supports green computing, optimizes the number of servers in 

use by introducing the concept of „skewness‟ and overload 

avoidance on PMs. [11] proposes a LP formulation and 

heuristics to control VM migration by giving priority  to those 

VMs that have steady state capacities. The approach is 

different from ours because the proposed non-eager migration 

based VM placement algorithm also controls overloaded 

servers. [14] gives an entirely different methodology that 

combines peak power demand energy consumption on 

cooling, designed for tightly coupled parallel applications. 

The load balancing is based on frequency aware dynamic 

voltage scaling approach. 

The authors of [15][16][28], have taken energy constraints as 

their main consideration for management and consolidation of 

data centres. In [17][18] client server and multitier system 

performance is discussed by allowing applications to 

elastically scale.[21][25][26][27] investigate virtualization by 

bounding migrations to reduce overheads. The underlying 

idea in [20][22][23] is to built QoS constraints in server 

management models. [28][29] give the foundation for 

mathematical set-up of VM placement. In [30] a policy  

optimization for managing power  is given. 

 

3. CPU UTILIZATION MODEL 
We assume that the total CPU capacity of each host is divided 

into small units of allocation and we call this division a 

Virtual Chunk (VC). Each Virtual Machine (VM) consumes 

certain number of Virtual Chunks on a given host, given that 

number of VCs required by VM is known apriori. Thus CPU 

utilization of PM is expressed in terms of the number of VC 

consumed on it. The division of C into VC also helps to 

measure the load characteristics of the PM. In order to give a 

mathematical formulation of VM placement algorithm, we 

assume that CPU utilization on a PM progresses by 

consuming VCs in three types of region on PMs which we 

name as, Under Load (UL), Normal Load (NL) and Over 

Load (OL). Let c1, c2, c3 be the number of chunks in UL, NL 

and OL regions respectively. 

4. SYSTEM MODEL 

 

Figure1. System Model 

Under this model, we categorize PMs into three groups, GUL 

(operating in Under Load region), GNL (operating in Normal 

Load region), GOL (operating in Over Load region) 

respectively. All VMs and PMs are homogeneous and  

uniform instantiation, provisioning and deployment delays are 

suffered by the VMs. 

As the number of users in a cloud environment is quite high, 

the VM request arrival can be modeled as a Poisson Process 

with arrival rate λvm. A user submitted VM request joins the 

finite input queue (IQ) of length QL. A VM request is rejected 

if the number of VM requests in IQ equals QL. If the VM 

request is admitted to IQ, it waits for processing by the VM 

Placement Controller (VMPC). The VMPC tries to map the 

VM request at the head of IQ by looking up (with Look-up 

Delay βn) the required number of chunks in a PM belonging 

to GNL. If a PM cannot be found there, VMPC moves to 

GUL. If sufficient chunks cannot be found in GUL (with 

Look-up Delay βu) also, then VMPC calls for VM 

Consolidation Controller (VMCC) for further action. The 

VMCC can respond to VMPC (Response Delay (RD)) in two 

ways. First, it redistributes the workloads among the PMs in 

the group GUL, finds a PM with required VCs and reports it 

to the VMPC. In doing so, the VMCC may or may not initiate 

movement of PMs from GUL to GNL or GOL. Second, it tells 

the VMPC that required VCs cannot be made available. A 

VM request is eventually rejected in the second case. When a 

VM request is mapped to PM by VMPC, the VM must wait in 

the input queue for that PM until PM‟s Virtual Machine 

Chunk Management (VMM) module can actually deploy the 

required VCs. Thus the total response time (RT) for a VM 

request is the sum of all the delays in passing through groups 

as well as the Service Time ST, i.e.  
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Response Time (RT) = βn + βu + RD + ST……………… (1) 

When a VM finishes its assigned request, it releases the VCs 

held by it and the PM‟s operating region (OL, NL, UL) 

changes. Accordingly it may move to another group.  

The movement of PMs in and out of groups is handled by 

Group Movement Controller (GMC). The GMC‟s prime 

objective is to minimize number of PMs in the groups GUL 

and GOL. This is desirable because overloaded PMs suffer 

performance degradation and under loaded PMs dissipate 

power. Hence GMC must ensure that the number of PMs in 

the group GOL must be maintained at a level „α‟, where α is a 

design parameter which depends on traffic workload and level 

of performance required. 

To give the mathematical formulation of the proposed system 

model, we give individual sub models for VMPC, VMCC, 

VCM and GMC. The sub models interact with each other by 

sharing their outputs to provide minimum task rejection and 

response time under overload avoidance of the PMs. We 

integrate the sub models to provide the overall optimum 

solution of VM placement under given constraints. Our 

integrated model is scalable to cover the dynamic nature of 

the cloud. It is also better than the earlier monolithic models 

as they are difficult to analyze and extend. 

5. VM PLACEMENT CONTROLLER 

(VMPC) SUB MODEL 
The placement of a VM request to a suitable PM is handled by 

VMPC as shown in the figure 2. As we mentioned above, the 

VM request arrival pattern is according to Poisson Process 

with arrival rate λvm. Therefore we model the VMPC as a 

continuous state Markov chain whose state space consists of 

2D tuples (x, y). The attribute x shows the current group (GUL, 

GNL, GOL) in which VCs are available and the attribute y 

shows the number of VM requests in IQ. At the initial stage 

the system is empty which means that neither the VM requests 

are being mapped to the groups nor they are waiting in IQ.  It 

must be noted here that, initially all PMs belong to the GUL 

group. Let us denote the first PM to be chosen for mapping 

VM requests by PM1. When the c1 chunks of PM1 are 

consumed, then PM1 joins the GNL group. Thereafter, if 

further VM request for VCs can be accommodated on PM1 

itself, then PM1 can either become overloaded after 

consuming c2 chunks or new PMs from GUL group can be 

initiated to satisfy the requests. For the purpose of our 

experiment, we assume that GNL group has at least one PM 

and no VM request is pending in IQ.  

 

Under this assumption, when the „first’ VM request arrives, 

the system moves to state (GNL, 0) indicating that it is mapped 

to a PM in normal load group GNL. Thereafter, depending 

upon the successive VM requests, the possible transitions are 

explained as follows. 

 

1. A new VM request arrives at the rate of λvm and the 

state changes to (GNL, 1). 

 

2. The newly arrived VM request can be allocated 

required VCs in a PM belonging to GNL, producing a 

transition back to the state (GNL, 0). 

3. There is not sufficient VCs on any of the PMs in 

GNL group, so that VMPC checks the GUL group for required 

VCs, producing the state change to (GNL, 0).Let P acc1 be the 

probability of success of finding a PM with required number 

of VCs in the group GNL and βn be the average lookup delay 

for finding a PM in GNL, then the transition to state (GUL, 0) 

occurs at the rate of (1- P acc1)/ βn. 

 

On the transition (GUL, 0), the VMPC will attempt to map the 

request to a PM in GUL group and if found(with the 

probability P acc2), the system moves back to the state (0, 0) at 

the rate (1-Pacc2)/ βu, where βu is the average look-up delay for 

finding a PM in the group GUL. Otherwise the VMPC invokes 

VMCC for a response. VMCC attempts to redistribute the 

workload among the PMs in GUL. Redistribution of workload 

may (or may not) force transition of under loaded PMs to 

normal load region or overload region. Let GCON be the group 

of PMs affected by VMCC. GCON can be further grouped as 

GCON(OL), GCON(NL), GCON(UL) respectively. The VMCC 

selects a suitable PM from GCON (NL) or GCON(UL) if 

possible, otherwise request is rejected due to insufficient 

resources. 

 Let Pacc3
 be the probability of success of finding a PM with 

required number of VCs in the group GCON after consolidation 

and βcon be the average lookup delay for finding a PM in 

GCON. If none of the PMs can accommodate VM request even 

after consolidation then a state transition occurs from (GCON, 

0) to (0, 0) at the rate of (1-Pacc3)/ βcon which means that the 

VM request is eventually rejected. 

While an accepted VM request is being mapped to a suitable 

PM, the VMPC will forward the waiting VM request at the 

head of the IQ to be considered for mapping in GNL group in 

the same way as described above. 

Above discussion brings out that the VM request can be 

rejected in two cases- 

Figure 2. VM Placement Controller Sub Model 
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1) The input queue is full (number of requests waiting is QL). 

Request Rejection due to IQ being full (RR1) occurs with the 

probability – 

Request Rejection 1=Π (GNL, QL) + Π (GUL, QL) + Π (GUL, QL)…(2)  

 

2)There are insufficient VCs in the PMs.  

 

6. VIRTUAL CHUNK MANAGEMENT 

(VCM) SUB MODEL 
The VCM sub model is responsible for allocating, servicing 

and releasing VCs corresponding to VM requests. The VCM 

sub model is described as a 2D CTMC. Each state in the state 

space of VCM is represented as a 2D tuple (w, z) in which w 

denotes the number of VM requests in the PM‟s queue, z 

denotes the number of VCs already consumed on the PM. If 

μvm is the service rate of each VM then the total service rate 

(TSR) of each PM is given as- 

TSR = μvm * Number of VMs running on PM……….... (3) 

or 

TSR = μvm * Number of VCs consumed on the PM……. (4) 

Since all PMs and VMs are homogeneous the working of 

VCM sub model for PMs in each of the groups is same. We 

give VCM sub model for the normal load group in the next 

section. 

6(A). VCM SUB MODEL FOR NORMAL 

LOAD GROUP 

 
Figure 3. VCM Sub Model for Normal Load Group 

The state transition diagram for VCM sub model for PMs in 

GNL group is shown in the figure 3. We set the queue size to 

c2. This avoids allocation of a new VM request beyond the 

normal load region.  The initial state is (0, c1) which means 

that the PM queue is empty, c1 VCs are already consumed on 

the PM, and c2 VCs of the normal load region are free. The 

arrival rate of VM requests to PMs in GNL is λGNL. We 

calculate λ GNL as – 

λGNL= λvm(1-RR1)/ NNL…………….(5) 

Since a VM request can ask for more than one VC, we derive 

λt, the arrival rate of requests for t virtual chunks (t =1, 2,.., 

c2)  for the group GNL as – 

λ t = λ GNL * pt …………………….….(6) 

Where, pt is the probability of having a VM request for t 

chunks.  

With these notations the state transitions in the figure are 

explained as follows. From the initial state (0, c1) the system 

can move to any of the state (0, c1+1), (0, c1+2), (0, c1+3)… 

(0, c1+c2) depending on the arriving VM request for 1, 2, 3, 

…, c1+c2 VCs respectively. State (0, c1+1) goes back to (0, 

c1) when VM finishes the service with service rate μvm and 

the corresponding VC is released. Hence with the admitted 

VM request the chunk utilization grows and with the 

completion of the service the chunk utilization the number of 

free chunks each state (w, z) is given as – shrinks. The steady 

state probabilities are given by   Π (GNL, w, z) and 

fc(w, z) = c2 – (w + z)………………………...(7) 

The VM request will be rejected when number of VCs 

requested (t) are less than the number of free chunks (fc). Let 

U be the set of all those states (w, z) where t >fc. Then, the 

probability that GNL will reject a VM request due to 

insufficient VCs in normal load group (P rej1) is given by- 

P rej1
= ∑ Π( GNL, U) * pt ……………………..…(8) 

 

Therefore, probability that GNL will accept a VM request (P 
acc1) is given as- 

P acc1= 1- (P rej1) NNL …………………………. (9) 

 

6(B). VCM SUB MODEL FOR UNDER 

LOAD GROUP 
When a VM request is rejected from the Normal Load group, 

it is forwarded to Under Load group for allocation. As 

mentioned above, the state transitions in 2D CTMC VCM sub 

model for Under Load group works similar to Normal Load 

group. However, the starting state is (0, 0) which means that 

no VM requests are in the PM‟s queue and all VCs are free.  

The queue size is set to c1+c2, the service rate remains 

μvm.VM requests arrive at the rate of  λ UNL given by- 

λ UNL = λ vm(1-RR1)(1- P acc1)/NUL……...(10) 

 

Where, NUL is the number of PMs in the group GUL. From the 

steady state probabilities, Π(UNL, w, z), the number VCs 

requested (t) and the number of VCs available (fc),  in each 

state of VCM sub model for GUL group, we compute the 

probability that GUL will accept a VM request (P acc2) as- 

P acc2= 1- (P rej2) NUL………………………... (11) 

7. VM CONSOLIDATION 

CONTROLLER SUB MODEL FOR 

CONSOLIDATED GROUP 

When a VM request has been rejected by GUL, the placement 

controller calls the VM consolidation controller to redistribute 

the workload among the PMs in GUL. Redistribution of 

workload may (or may not) force transition of under loaded 

PMs to normal load region or overload region affecting the 

Global Load Characteristics of the system.  The GLC are 

measured in terms of number of PMs in under load and 

overload regions respectively. If GLC are within the specified 

limits, the VMCC initiates VM consolidation and finds an 

appropriate PM for request allocation.  

Let GCON be the group of PMs affected by VMCC. GCON can 

be further grouped as GCON(OL), GCON(NL), GCON(UL) 

respectively. The VMCC selects a suitable PM from 

GCON(NL) or GCON(UL) if possible, otherwise request is 

rejected due to insufficient resources. Let the arrival rate to 

GCON be denoted by λCON which is calculated as- 

λ CON = λ vm(1-RR1)(1- P acc1)(1-Pacc2)/NCON............(12) 
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where, NCON is the number of PMs affected by consolidation. 

The probability that GCON will accept a VM request (P acc3) is 

given as- 

P acc3= 1- (P rej3) NCON………………. ……………….(13) 

8. GROUP MOVEMENT CONTROLLER 

SUB MODEL 

 The GMC sub model is described as 2D CTMC as 

shown in figure 4. Each state (p, q) represents number of PMs 

in GNL and GUL respectively. If the new VM request finds 

allocation in the group GNL then the state (p, q) does not 

change otherwise an under loaded PM may enter the normal 

load region (at rate r1) and the state changes to (p+1, q). 

When VCs are released from PMs in GNL, p decrements and q 

increments (some PMs get under loaded at the rate r2).When 

VCs are allocated on PMs in GUL, p increments and q 

decrements. The number of PMs in GOL is A- (p + q), where 

A, is the total number of active PMs.  

 

 Figure 4. GMC Sub Model 

The value of A serves as an important QoS metric. VMCC 

will not allow movement of PMs to GOL if A > α. In this way- 

i. We control number of overloaded PMs in the group 

GOL. 

ii. We restrict CPU capacity utilization of overloaded 

PMs.  

Therefore our objective of avoiding overload on PMs in cloud 

data centers is achieved. We summarize the discussion in the 

above sections and present our VM placement Algorithm, in 

the next section. 

9. VM PLACEMENT ALGORITHM 

Input:  

1. A set of PMs with at least one machine operating in 

the normal load region. 

2. A set of VM requests in terms of Virtual Chunks 

requirements. 

3. Initialize Size of input queue (QL), Maximum 

number of PMs allowed in Over Load group (α).  

4. For each VM request in the input queue- 

a. If (PM in Normal Load group is available with 

required number of Virtual Chunks) 

{Allocate VCs to VM request} 

Else 

b. If (PM in Under Load group is available with 

required number of Virtual Chunks) 

{Allocate VCs to VM request} 

Else 

c. If PMs in Over Load group < α, consolidate PMs 

and repeat the steps a, b. 

Else 

d. Reject VM request. 

Output: 

1. Probability of Task Rejection (Prej2) 

2. Mean Service Time 

3. Number of PMs in each group (Normal Load, 

Under Load and Over Load ) 

10. SIMULATION RESULTS AND 

DISCUSSION 
The proposed model as well as sub models is simulated 

using NS2 simulator. The performance of the model is studied 

by varying input parameters settings and collecting their 

influences on request rejection, service time, global load 

characteristics and probabilities of success of finding PMs in 

each of the three groups. 

As can be seen from figure 5, as the arrivals of VM request 

increases, the service time does not degrade. Also, the number 

of PMs in the overload group does not exceed a given 

threshold value. Thus figure 5 justifies our assumptions that 

avoiding overload on PMs, keeps the performance of physical 

machines consistent. 

 
 

Figure 5. Effect of request arrivals on service time and 

number of PMs in overload group. 

 

The request arrival does not built long queues in each of 

the groups and does not degrades the service time(figure 5), 

therefore request rejection is sufficiently low. This is depicted 

in figure 6. which shows that the request rejection with the 

same arrival rate as in the above case. The QoS parameter „α‟ 

does not get violated.  

 

 
 

Figure 6. Effect of request arrivals on request rejection 

and number of PMs in overload group. 

 

Figure 7, shows the Global Load Status of all the machines 

in each of the groups, under the different arrival rate as in 

figure 5. The number of machines in each of the groups is 

taken on y-axis while the x- axis represents time in hours. 

As can be seen from the graph, the number of PMs in 

normal load group is maximum at all points of time while 

the number of PMs in overload group is significantly small.  

The PMs in under load group lie intermediate between the 

normal load and overload groups. Thus the objective VM 

request placement while avoiding PMs in underload and 

overload groups is achieved.  
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Figure 7. Number of PMs in each group(NL, UL, OL) 

 

Figure 8, 9, 10 show the probabilities of success of finding a 

PM with required number of virtual chunks in the groups - 

GNL(normal load), GUL (under load)  and GCON 

(consolidated PMs), respectively. Figure 8 depicts that there is 

a high probability of finding a PM in the normal load group 

while figure 10 shows that the probability of finding PM in 

overload group, Pacc3, is low. The probability Pacc2 (figure 

9) lies intermediate to Pacc1 and Pacc3. The results show that 

the proposed model accurately describes global load 

characteristics and is successful in avoiding overload and 

under load conditions.   

 

 
Figure 8. Effect of arrival rate on success prob. of 

finding VM in NL group 

 

 

 
Figure 9. Effect of arrival rate on success prob. of finding - 

in UL group 

 

 

 
 

Figure 10. Effect of arrival rate on success prob. of finding 

VM in OL group 

11. CONCLUSION AND FUTURE 

DIRECTIONS 

In this paper we have used the Markov Chain Model to solve 

the problem of  placing VM requests to PMs in such a way so 

as to minimize the number of over loaded and under loaded 

PMs in a cloud data centre. Our model helps to quantify CPU 

utilization and is therefore scalable and tractable.  A work 

load based grouping scheme proposed by us limits the number 

of PMs in over load group to the value „α‟. The parameter „α‟ 

is used as QoS metric by us. This is because, as the workload 

on cloud data centres and hence overloaded servers increase in 

cloud data centres, the performance decreases due to 

insufficiency of resources. Under the proposed model, we 

calculated VM request rejection probability, response time as 

well service time of the incoming requests. The results of 

simulation confirm that as the arrival of requests grows, the 

service time does not degrade and request rejection is 

sufficiently low. Also, the number of PMs in overload group 

is minimum, number of PMs in normal group is maximum 

while number of PMs in under load group is intermediate 

between the two.  

As a part of limitations, the model based on Markov Chains 

requires certain basic assumptions. Sometimes, the input 

workload may not satisfy Markovian property in which the 

future state is predicted only on the basis of the current state 

configurations. However, among the approaches for stationary 

workloads, the proposed model gives appreciable 

performance results and is scalable and tractable. The model 

is also extendible to cases where there are multiple CPU cores 

in cloud servers.  
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