
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

5

Design of a Hybrid Intrusion Detection System using
Snort and Hadoop

 Prathibha.P.G Dileesh.E.D
 P G Scholar Assistant Professor

 Government Engineering College Government Engineering College

 Thrissur, Kerala, India Thrissur, Kerala, India

ABSTRACT

Security is the most important issue that is to be considered in

any environment. Any attack can be launched from any node.

Any of these attacks should be identified and subsequent

actions should be taken to avoid further consequences. An

intrusion detection system helps in identifying the attacks at the

early stage and give alarms. These intrusion detection systems

should be able to identify almost any kind of attacks, be it a

newly launched one or a pre-established one. In this work, the

intrusion detection system Snort is made use of .In this work,

the packets captured by Snort is analyzed by the Grid

computing framework Hadoop, which is used for Big Data

Analysis. For more user friendlier analysis a data warehouse

system for Hadoop, Hive is also provided. For those ip

addresses that generate large number of packets, Snort rules

will be generated so that when the number of packets from a

particular source exceeds a number, the node will generate

alerts to other nodes since there is a possibility of attack.

General Terms

 Security, Big-Data Analysis

Keywords

Hadoop, Hive, MapReduce, Snort, RulesKeyword.

1. INTRODUCTION

The most important issue that is to be given greatest

consideration is the security of an environment. Be it a single

host or a LAN or any complex environment like Grid or Cloud

attacks are always there. It can be attacks on a single host, port

scans to check vulnerabilities, flooding attacks, denial of

service etc. All these attacks have severe consequences in an

environment. Therefore it is good to identify these attacks at

any early stage itself, so that the attacker can be blocked and

avoid further effects. This is possible by an intrusion detection

system (ids), which can identify the intrusions before attack can

take place and can give a notification that it is possible to have

an attack

Most of the ids identify attacks at an early stage itself. There are

several open source ids present. Some of them are Snort, Bro,

and Suricata etc. They are very strong and efficient in

identifying attacks. Most of them identify pre-defined attacks.

These kind of intrusion detection systems are called as

Signature based Intrusion Detection Systems. Signature based

ids have a set of rules. The incoming packets are compared with

the set of rules. If any of the packets matches with the set of

rules, actions specified in the corresponding rules are

performed. Therefore by writing a wide variety of rules one can

detect any attack with these kind of intrusion detection systems.

The main disadvantage of Signature based intrusion detection

system is that it is unable to identify unknown attacks. This

kind of intrusion detection systems work with rules. Therefore

those attacks those are not present as rule cannot be detected.

Such kind of attacks are identified by Anomaly based Intrusion

Detection Systems. Anomaly based ids, as the name suggests

typically works on any anomaly .i.e. any deviation from the

normal pattern is treated as anomaly and such anomalies will be

classified as attacks. Thus it will be able to identify newly

launched ones also. The main disadvantage of this system is the

generation of large number of false attacks.

In this work, the famous open source intrusion detection system

Snort is made use of. Snort is basically a Signature based ids

which typically works on set of rules .When the incoming

packets matches with a set of rules, corresponding actions

specified in the rules will be performed. Snort can identify only

those attacks that are present in rules. For better performance it

should be able to identify unknown attacks also. To identify

unknown attacks, any unknown behavior should be first known,

then corresponding rules must be written to rule database, so

that again if such attacks occur the node will perform the action

specified in the rule.

In this work, the count of the number of packets is analyzed.

This analysis is done by Hadoop. Snort is worked in one of its

modes called as packet logger mode and the packets obtained

are given for analysis to Hadoop. Hadoop analyses the set of

packets and corresponding customized Snort rules are
generated if number of packets exceeds a count than the normal

one.

For more user friendliness the work is supplemented by the

data-ware house system called as Hive. In short the work gives

an integration of Snort with Hadoop and Hive.

The remaining paper consist of related works, description of

Snort, Hadoop, Hive, about the Overview and Proposed

Architecture along with implementation details and results

2. RELATED WORKS

There are several works related to analysis in Hadoop. Wei- Yu

Chen et al. [1] developed a Snort log analysis system using

Hadoop. They also proposed a map reduce algorithm for

merging alerts obtained from Snort. Y.Lee et.al. [2] Developed

a Hadoop based packet trace tool. In this paper for handling the

packet traces a new binary input format called Pcap Input-

Format was developed. For this tool, several map reduce jobs

were modeled and they compared their work with famous

packet processing tool Coral Reef. Y. Lee et al. [3] also propose

an Internet traffic analysis with Map Reduce. They collected

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

6

packets with Net Flow and trimmed them down with suitable

map reduce algorithm

There are several research works being done to impart better

performance to Snort. X.Fang [4] did a work for integrating

artificial intelligence to Snort using Elmann Neural Network.

The improved Snort was able to differentiate between normal

traffic and malicious one. B.E.Lavender [5] did a thesis work

for integrating Genetic Algorithms to Snort. This work also

improved the performance of Snort. Gomez et al.[6] developed

a Hybrid IDS based on Snort. In this anomaly detection pre-

processor was added to Snort which has got access to MySQL.

The work was also complemented with a website for

monitoring the administration.

3. SNORT

Snort is a libpcap- based packet sniffer and logger that can be

used as a lightweight network intrusion detection system

(NIDS). It features rules based logging to perform content

pattern matching and detect a variety of attacks and probes,

such as buffer overflows , stealth port scans, CGI attacks, SMB

probes, and much more. Snort has real-time alerting capability,

with alerts being sent to syslog, databases or a separate “alert”

file [7]. Snort works on network layer protocol such as ip and

transport layer protocols TCP and UDP.

 Snort is an open source Signature based IDS. There are

predefined rules for finding attacks. Snort rules are provided by

Sourcefire and can be downloaded by registered users for their

use. To include rules one has to change the configuration file.

When a packet comes, rules are matched with the packet. If

matching occurs with any of the rules, actions specified in the

rule will be performed. The actions can be of four types. It can

be to alert the nodes, log the incoming matched packet, pass

the packet without any action or to drop the packet.

There are three subsystems for Snort. They are packet decoder,

detection engine and the logging and alerting subsystem. The

decoder as the name suggests decodes the incoming packets to

the network .The subroutines present in the decoder overlays

data structures on the network traffic. These sub-routines which

are responsible for decoding are called in the order through

protocol stack from the data link layer up to the application

layer. The detection engine maintains the detection rules in a

two dimensional linked list. These rule chains are searched for

each incoming packet in both directions. When a rule in the

detection engine matches the incoming packet, the action

specified in the definition of rule, which will be either to alert

or to log the packets.

Snort rules are very simple .Snort rules have the following

format action protocol source_ip source_port -> destination_ip

destination_port (options)[7]. An example of a Snort rule is

alert tcp any any >any any (msg:”Possibility of an attack”),

which means Snort should alert any ip address if TCP packets

comes from any source port or destination port. The logging

and alerting subsystem can be selected by commands. In the

logging subsystem, the packets will be logged to a subdirectory

in a human readable format or in a tcpdump binary format.

Alerting subsystem send alerts to normal text file or a database

like MySql or to Syslog. According to different options either

the alerts can display the entire packet information or

condensed subset of the header information to the alert file.

Snort works in three different modes, sniffer mode, packet

logger mode and network intrusion detection mode. Sniffer

mode detects the incoming packets and displays them in

console. In packet logger mode, Snort collects the packets and

logs them to disk. In network intrusion detection system

(NIDS) mode alerts will be generated. Alerts can be generated

in different ways. It can be logged or can be displayed to

console. Alerts can also be generated in such a way that it will

display only useful information or will display the entire header

information. All these options can be chosen by suitable Snort

commands. In this work, the incoming packets are captured for

analysis by running Snort in packet logger mode.

4. HADOOP

 Fig 1:Hadoop Architecture

Figure 1 shows the Hadoop’s architecture. Hadoop is for Big

Data Analysis. Hadoop is basically a framework for running

applications on large clusters .It enables thousands of nodes to

work together in parallel for doing a single job. Hadoop is for

analyzing peta bytes of data in a very short span of time. As the

number of nodes increases, the time taken to process the data

decreases. Hadoop is written in Java and client applications can

be written in Java, Python, and Ruby etc. Hadoop is used in

batch data processing and for highly parallel data intensive

applications

The two important features of Hadoop are Distributed Storage

and Distributed processing [8].Distributed Storage is given by

Hadoop Distributed File System (HDFS) and Distributed

Processing is done by the concept known as Map Reduce.

These are the backbones of Hadoop architecture.

A small Hadoop cluster will include a single master and

multiple worker nodes (slaves). The master node consists of a

JobTracker, TaskTracker, NameNode and DataNode. A slave or

worker node acts as both a Data Node and TaskTracker.

JobTracker and

TaskTrackers are responsible for doing the mapreduce jobs.

Name nodes and Datanodes are the part of the distributed file

system.

4.1 Hadoop Distributed File System (HDFS)

HDFS is a distributed, scalable, and portable file system written

in Java for the Hadoop framework. Files are divided into large

blocks and are distributed across the cluster. Typical block size

is 64 MB. Block sizes can be changed. To handle failures,

blocks will be replicated by appropriate replication factor.

Each node in a Hadoop instance typically has a single Data

Node. HDFS cluster is formed by a cluster of Data Nodes. A

Name Node performs various file system operation such as

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

7

close, open rename etc. Name Node also manages block

replication. Data Nodes run operations such as read and write

that file system clients require. A file is divided into more than

a block that is stored in a Data Node and HDFS determines

mapping between Data Nodes and blocks [1]

4.2 MapReduce

Map Reduce is a software framework for writing applications

which process vast amounts of data in-parallel on large clusters

having thousands of nodes in a reliable, fault-tolerant manner.

The MapReduce engine which is placed above the file system

consists of one JobTracker. Client applications submit

MapReduce jobs to this JobTracker. The JobTracker pushes

work out to available TaskTracker. One of the most highlighted

feature of Hadoop is that is rack-aware. With rack-aware file

system, the JobTracker knows which node contains the data,

and which other machines are nearby. If node fails, work is

given to nodes in the same rack. This reduces network traffic on

the main backbone network.

By MapReduce programming model many complex data

intensive jobs can be made into simple ones and can perform

distributed concurrent processing. A developer only need to

know how to write appropriate map and reduce functions.

In the MapReduce programming model used in Hadoop, the

computation takes a set of input key/value pairs, and produces a

set of out-put key/value pairs. Map and Reduce are two basic

functions in the MapReduce computation. Map’s idea is to
break the given input which is a big one into smaller ones.

Suitable jobs are performed on these smaller data parallel.

Reducer’s merge these parallel processed data and produce a

single output.

Fig 2: MapReduce Model

 Figure 2 shows the mapreduce model. Users write Map that

takes an input pair and produces intermediate key/value pairs.

The Hadoop MapReduce library will group the intermediate

values according to the same key. Reduce that is also written by

users will merge the intermediate values for smaller values [8].

5. HIVE

 Hive is a data warehouse system for Hadoop that facilitates

easy data summarization, ad-hoc queries, and the analysis of

large datasets stored in Hadoop compatible file systems. Large

data can be queried and analyzed by SQL like language

HiveQL. Map Reduce programs can also be written for

querying [9]

As mentioned earlier Hive has three main functions: data

summarization, query and analysis. Queries expressed in

HiveQL, gets automatically translated into Map Reduce jobs

executed on Hadoop. The main advantage of Hive is that its

user-friendliness. Even after big-data analysis, the result will be

bigger for a human to manipulate faster. There is where Hive

comes into. The result of big data analysis can be loaded to

HDFS and through Hive one can query for better outputs in a

short span of time.

Three types of files Text Files, Sequence File and Record

columnar files are supported by Hive. By default metadata is

stored in the embedded database derby. Other relational

databases such as MySQL can be also added to store the Meta

data.

 Fig 3:Hive Architecture

Figure 3 shows architecture of Hive. A HiveQL statement is

submitted via the CLI, the web UI or an external client using

the thrift, odbc or jdbc interfaces. The driver, which manages

the HiveQL life cycle first passes the query to the compiler

where it goes through the typical parse, type check and

semantic analysis phases, using the metadata stored in the

Metastore, where Metastore is the component which stores

about columns, partitions etc. The compiler generates a logical

plan that is then optimized through a simple rule based

optimizer. Finally an optimized plan in the form of a DAG of

map-reduce tasks and hdfs tasks is generated. The execution

engine then executes these tasks in the order of their

dependencies, using Hadoop [8]

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

8

6. OVERVIEW

The main purpose of this work is to integrate Snort with

Hadoop. Snort as mentioned earlier is a Signature based system.

For better performance, it should be able to detect unknown

attacks also. Several works are done to include a hybrid nature

to Snort by including both the capabilities of Signature based

and Anomaly based. For including the Anomaly based features

several classification algorithms have been used.

In this work, simple mapreduce is being used. Sending large

number of packets from a source can be considered as an attack.

This idea is made use in this work. There are several kind of

attacks possible in the network like ICMP attack, ping of death

attack, Smurf attack, UDP attack and others. All these launch

attacks by sending a large number of packets to the particular

victim. Therefore this should be identified and the packets from

the corresponding source should be blocked.

 In this work, for analyzing the packets Hadoop is made use of.

If a source sends packets in normal intention, the number of

packets will be very less say about the thousands range. But if

lakhs of packets are seen from a particular source is seen, it can

be doubted as an attack. This is actually a deviation from the

normal behavior or anomaly. The work can also be used to find

whether there is port scan attacks .i.e. the numbers of packets

send from a particular source ip and particular port to

destination ip and particular destination ports. So if there are

large numbers of packets send to a particular port it can be a

possibility of portscan attack.

 By identifying such anomalies, suitable Snort rules

should be written so that it can alert other nodes or can drop the

packets coming into. Thus snort will be having the capability of

both Signature based and Anomaly based.

6.1 Proposed Architecture

Fig 4:Proposed Architecture

 Figure 4 shows the proposed architecture for the work. Packets

are collected by running Snort in packet logger mode. Each of

the packets contain several features including timestamp,

protocol, source ip, destination ip, port numbers, protocol or

type of packet and other fields relevant to type of packet such as

flags etc.

 There will be large number of packets logged in local disk all

the files will be either in tcpdump format or in binary format.

Therefore some preprocessing should be done to make it into a

readable format. This is done by suitable Snort commands.

For analysis by Hadoop these files should be loaded to the file

system HDFS. The MapReduce engine located above HDFS is

the analysis part of the Hadoop. The mapper and reducer

extracts the most important features of the packets such as the

source ip , destination ip, type of packet, port numbers etc. Also

it gives the number of packets from a particular source to a

destination of specific type.

 For managing bigdata the data warehouse system for Hadoop,

Hive is made used of. Even after analysis, the file may be large.

So for better results, user can query about the necessary details

which gives output in a very short span of time
 After identifying the source ip, destination ip Snort rules can be

generated if there are large numbers of packets send from a

source to a particular destination. Therefore when further such

packet comes, snort rules will be matched and the actions

performed in the snort rules will take place

 Fig 5:Flow of data

 Fig. 5 show the flow of data. Initially the data, the packets will

be stored as logs. They are loaded to HDFS. Then depending on

the number of files, there will be mappers present. These

mappers produce an intermediate result, which is taken up by

the reducers. The reducers sorts and merges the output. The

resultant data is given to Hive and HDFS from which rules are

formed

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

9

6.2 Packet Analysis with MapReduce

For analyzing packets obtained from Snort, MapReduce is

made of use. There are several tools like Wireshark, tshark etc

for displaying the packets. But when it comes to large number

of packets say petabytes and terabytes, these tools don’t

contribute much. Hadoop is the best framework for doing such

work.

Clients can write suitable map and reduce function for the

particular task. As mentioned earlier MapReduce framework

requires a key value pair. In this work key is the source ip ,

destination ip address and the protocol and the value is count.

Mapper part gets the keys and the value. Reducer part shuffles,

sorts and merges and gets the output as the number of packets

of specific type from a particular source to destination. It can

also be used to find the number of packets send to specific ports

also

6.3 Querying with Hive

Hive as mentioned earlier is for data summarization and adhoc

querying. The main feature of hive is the simplicity and SQL

like queries. Tables are created which stores the addresses

protocol and count. The output of the mapreduce analysis will

be loaded from HDFS to Hive. Almost all queries are same as

SQL and such queries in Hive is named as HiveQL. Select

queries with conditions will be performed as mapreduce jobs

and output will be shown along with the time to complete the

job. The output of the query can be written to files.

 Hive is added mainly for user friendly analysis and for better

management of data. This output will be present in HDFS

which can be loaded to the local file system. In this work for

better analysis the output of mapreduce analysis is loaded to

Hive. With Hive, the person can query about the packets with

HiveQL about the type of protocol, destination ip port numbers

etc.

6.4 Rule Generation

By detecting anomalies Snort rules has to be added, so that

when further such attack comes suitable action should be taken.

Here the no: of packets is taken as a constraint for identifying

an attack, .i.e. if no of packets from a particular source to a

particular destination exceeds a count can identified as an

attack, as the attacker may be trying to launch the attack to the

victim by continuously sending packets. Other constraints can

also be chosen. These kinds of rules will enhance Snort because

of the ability to find new attacks. By adding such rules, when

such packets comes Snort will give alerts to the user.

7 IMPLEMENTATION AND RESULTS

 The proposed work is implemented with Hadoop cdh4.1.2,

Snort 2.9.1, Hive 0.9.0. Hadoop cluster is implemented as

pseudo distributed mode. Hping3 was used to generate packets.

Packets were send in such a way that there where hundreds of

packets send in every second to simulate the flood attack. The

packets were logged by running Snort in packet logger mode

for five minutes. The log files where then converted into

suitable readable format and each of them had an average of

400Mb size. Each of the packets where in different size and in

different format. Out of them source ip, destination ip, protocol

and count where extracted.

 MapReduce job was done on Hadoop cluster with various file

sizes of 419.9Mb, 843.5 Mb, 1.7 Gb, 2.5 Gb. Each of them had

an average of fifty thousand to two lakh packets. Table 1 shows

the CPU times and number of map tasks.

The number of reduce tasks in all cases is one. As shown in

results the analysis process does not take much time to perform

the task. In a single node, for the wall clock time an average of

15 minutes is taken. Therefore it can be concluded that as the

number of nodes increases the time will be greatly reduced and

thus efficiency will be improved.

 TABLE I

RESULTS OF RUNNING MAPREDUCE JOB

Experiments were conducted with various block size of 32 Mb,

64 Mb, 128 Mb with the packet file size of 421.8 Mb. Table 2

shows the performance, with the number of map tasks and the

CPU time spend by the mapreduce framework. It was seen that

performance was better when block size was 128Mb, but a

default size of 64 Mb is also working good

TABLE II

RESULTS OF RUNNING MAPREDUCE JOB WITH DIFFERENT

BLOCK SIZES

In Hive, the time for retrieving data is very less. During

implementation, the results of analysis were loaded to Hive,.

Table 3 shows the result of running different queries. It can be

seen that for retrieving entire data just 10 s was needed. The

queries which included joins and aggregate functions are

carried out as MapReduce jobs

 The second query shown in table counted 131091 number of

data in 93 seconds. Therefore it can be concluded that

managing data, with certain format is very much efficient with

Hive

TABLE III

RESULTS OF RUNNING HIVEQL WITH DIFFERENT QUERIES

Query Time

Select * from table_name 10s

Select count(*) from table_name 93s

Select count(*) from table_name for certain

conditions
53s

For those ip addresses that send large number of packets than

normal ones, snort rules were generated. The rules where

generated by adding options for event filtering in such a way

that the alerts will be generated only if number of packets from

the particular source exceeds a particular number. This is to

avoid the number of false alarms. For initial purpose snort rules

snapshot 2931 was used. But none of them generated any alerts

when attacks were simulated by Hping3. Then after sufficient

Input File size Number of map tasks CPU time spent (s)

419.9 Mb 7 50

843.5 Mb 14 100

1.7 Gb 22 140

2.5 Gb 38 275

Block

Size
Number of Map Tasks

CPU time

spent(s)

32

Mb
16 64

64

Mb
7 50

128

Mb
4 39

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.10, July 2013

10

analysis new snort rules were generated with the corresponding

ip addresses and port numbers along with necessary options.

Fig. 6 shows the result of finding different kind of attacks that

is launched by sending a huge number of packets. Most of the

rule files were blank in order for the user to customize their

own rules. New rules were generated with the output of the

analysis done by Hadoop. Figure shows that the new snort rules

generated were efficient in finding ICMP attack, Smurf attack,

SYN flood attack, UDP attack and Port scanning. A user can

customize their own rules even without analyzing. But it will

generate a lot of falsealarms i.e. a node which is not an attacker

may be treated as an attack. So generation of rules, after

analysis is the good method.

 Fig 6:Comparison between snort rules and new ones

8. CONCLUSION

Security is the most crucial issue that is taking place. Large

amount of data has to be analyzed , for finding anomaly. In this

work, the results show that analysis does not take much time ,

and it can be concluded that if number of nodes increased,

performance can be made better. BigData can be more

manageable with the data-ware house system Hive. Results also

show that, Snort rules generated after analysis is very much

efficient in detecting many attacks. In future the work can be

extended to find more attacks.

9. REFERENCES

[1] W.Chen, W.Kuo and Y.Wang, Building IDS Log Analysis

System on Novel Grid Computing Architecture, National

Center for High-Performance Computing, Taiwan,2009

[2] Y.Lee, W.Kang, Y.Lee, A Hadoop-based Packet Trace

Processing Tool, Proceedings of Third International

Workshop on Traffic Monitoring and Analysis,2011,pp:

51-63

[3] Y.Lee, W.Kanf, H.Son, An Internet Traffic Analysis

Method with MapReduce,IEEE/IFIP Network Operations

and Management Symposium Workshops,2010 ,pp:357-

361

[4] X.Fang ,Integrating Artificial Intelligence into Snort IDS,

Proc of 3rd International Workshop on Intelligent Systems

and Applications, May 2011,pp: 1- 4

[5] B. E.Lavender, Implementation of Genetic Algorithm into

a Network Intrusion Detection System (netGA) and

Integrating to nProbe , Thesis Work

[6] J. Gomez, C. Gil , N. Padilla , R. Banos, C. Jimenez,

Design of a Snort-Based Hybrid Intrusion Detection

System, Proceedings of the 10th International Work-

Conference on Artificial Neural Networks, 2009,pp: 515-

522,

[7] M.Roesch ,Snort Lightweight Intrusion Detection for

Networks, Proc of LISA ’99: 13th Systems Administration

Conference, 1999 ,pp:230- 238

[8] T.White and P. W. Daly, Hadoop-The Definitive Guide,

O’Reilly

[9] A.Thushoo et.al. ,Hive A Petabyte Scale Data Warehouse

Using Hadoop, Proceedings of ICDE Conference,2010

,pp:996-1004

IJCATM : www.ijcaonline.org

