
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

52

PFAC Implementation Issues and their Solutions on

GPGPU’s using OpenCL

Chirag Agarwal
Department of CSE

MANIT, Bhopal, India

Akhtar Rasool
Department of CSE

MANIT, Bhopal, India

Nilay Khare
Department of CSE

MANIT, Bhopal, India

ABSTRACT

Aho-Corasick is a standard string matching algorithm. It can

match multiple patterns simultaneously and affirmed

deterministic performance under all circumstances. Aho-

Corasick feed solutions to various real world applications like

intrusion detection systems, text mining, search engine,

multimedia and computational biology. In order to improve

performance of these applications parallelization of Aho-

Corasick is crucial. PFAC (Parallel Failure Less Aho-

Corasick) algorithm provides high degree of parallelization in

Aho-Corasick algorithm. PFAC implementation on GPGPU’s

architecture may consist various implementation issues. In

this paper discrete implementation issues of PFAC on

GPGPU’s using OpenCL, their solutions and comparative

analysis are discussed.

Keywords

GPGPU, AC Techniques, PFAC Techniques, Parallel AC

1. INTRODUCTION
Aho-Corasick is a popular string matching algorithm which is

efficacious in espy finite number of patterns in a given text

stream with a single pass[1,2,3,4]. Due to its drastic

performance it is used in various applications like intrusion

detection systems [5], search Engine [6] and computational

biology [7].It constructs a finite state machine in the

preliminary phase and that machine is used to check and

detect the presence of one or more known symbol sequences

inside a data set[8].

In order edify the pattern matching efficiency and to meet

with real-time requirements for various applications,

parallelization of AC algorithm is must [9]. To inlay this goal

a parallel version of AC is developed named as PFAC

(Parallel Failure less Aho-Corasick Algorithm) [10, 11, 12].

In this parallel version of Aho-Corasick, failure function and

output function have been removed [13, 14, 15]. PFAC

allocates each byte of an input stream for a GPU thread to

identify pattern matching at the thread starting location. It

uses a state machine without back-track links. This is more

efficient than straight forward Aho-Corasick , because most of

the threads erode in early stages of text matching.

GPGPU (General-purpose computing on graphics processing

units)[16] is the utilization of a graphics processing unit

(GPU), which typically handles computation only for

computer graphics[17,18]. In real world GPGPU is helpful in

parallelization of various applications [19]. GPGPU has given

a point where a number of real world applications can be

easily implemented and can run significantly faster [20, 21].

In this paper different versions of PFAC Algorithm on

GPGPUs using OpenCL are we developed, analyzed and

testes. Assorted PFAC techniques are Individual thread

pattern count algorithm (ITPC), Individual thread unique

pattern count algorithm (ITUPC), and PFAC Local count

(PFAC-LC). While contrivance different versions PFAC on

GPGPU several significant problems ensued. To evacuate

these problems an optimal solution is provided that is

Segmented PFAC. Various issues of PFAC on GPGPUs and

comparative analysis of all techniques under various

conditions are comprised in this paper.

2. RELATED WORK
Parallel Failure less Aho-Corasick Algorithm is the parallel

version of Aho-Corasick algorithm [11]. This algorithm

doesn’t use failure function. PFAC is implemented on

GPGPU to enlighten multiple patterns in a given data set. It

exterminates when there is no valid state. Each thread access

DFA from global memory and an input character of data set is

assigned to each thread. It doesn’t require backtrack whenever

transaction failed. This is efficient and faster version. Most of

the threads annihilate in early stage of text matching [18].

In PFAC Algorithm machine is created without any failure

transactions. Total number of threads will be equal to the

number of text length of given data set. Each thread has

variable scanning length. If a valid state occurs in previous

thread then next state will be checked by next thread. So one

thread may scan more than one alphabet in a time [16].

The idea behind allocation machine to each thread is

important factor to enhance the efficiency of AC-algorithm. In

this algorithm GPU basically concern only to find the match

location so it doesn’t need any backtrack. There for all the

failure transaction can be removed. There are three most

important reason which tells that PFAC is more superior then

straight forward implementation first there is no boundary

detection problem as in straight forward implementation[22].

Second worst case and avg. case time are much shorter then

straight forward implementation third some threads terminate

at early stage because of none valid state [15].

Machine for searching the multiple patterns into given text

stream is assigned to each thread and that is used to elicit

given patterns into text stream. This also improves efficiency

of algorithm [18].

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

53

The process of PFAC algorithm is explained with figure 1,2

and 3.Figure 1 represents the example of DFA(a deterministic

fnite state automaton) for multiple pattern

{HE,HER,HIS,HIM}.In this example of DFA we have not

enclosed failure function of each state in this DFA. The first

stage is goto function which construct trie of the pattern where

root represents state and edge represents transition. All the

string included with extended the nodes and making a

sequence. To match a string, we start from the root node and

traverse the edges according to the specified input characters.
The second stage involves the insertion of the next transitions.

When a string match is not found, it is possible that the suffix

of the previously matched string is the prefix of another string

in the trie, and hence we use the next transitions to slide to a

different string (branch) in the tri[23].

Fig 1: DFA for Aho-Corasick

 DFA is placed in global memory and each thread access

global memory to take the copy of DFA as given in figure 2.

Global memory contain DFA machine and counter. Counter is

increased each time when there is a pattern is match in text

stream.

Fig 2: Assign thread to each text stream

Algorithm for searching operation is explained in next

section. Total number of threads is equal to text length -

minimum pattern length of data set +1. For example in the

below given figure 3 text length is 5 in that case total number

of threads will be Text length(5) – minimum pattern length(2)

+ 1 that is 5. Now DFA is accessed by each thread from

global memory as given in figure 2. Starting with first thread

input character of text stream assigned to thread is H. So

getting a valid state it will jump on state first. Second thread

will access two characters at a time so with previous thread it

will get failed because of next input text is X. This is the most

important asset of PFAC that most of threads terminate at

earlier stages. Thread 2 starts and reach at state 1 now next

state is scanned by thread 3 and that that an accepted state. It

will increase counter to 1. This series will fail in next stage.

This procedure of Searching is given in Figure 3 and

algorithm 2.1.

Fig 3: Searching phase

Thread termination occurs when there is no valid state for

next input symbol. Here a termination table is represented

which indicate status of each thread and total pattern count.

Table 1: Status of each thread

Index Thread ID Terminate/count

1. T₀ Terminate

2. T₁ Terminate

3. T₂ Count=1 than terminate

4. T₃ Terminate

2.1 PFAC Algorithm

1. Start

2. Construct DFA of the given patterns.

3. n←text string length.

4. m←minimum pattern length.

5. Launch (n-m+1) threads for parallel processing.

6. For each thread do

7. Thread[i] start scanning from i and go to DFA of

patterns.//i is the thread index ranges from 0 to n-m.

8. If Failure occur than stop & exit threads.

9. Else If final state reach in the DFA Than

(a)Record the occurrences.

(b)Continue scanning character and make transition

in the DFA.

(c) Go to step 8.

10. Else

(a) Continue scanning character and make transition

in the DFA.

(b) Go to step 8.

11. End.

3. PROBLEMS RELATED TO PFAC

IMPLEMENTATION ON GPGPU
While developing PFAC on GPGPU abound problems

occurred. In this tier various problems and their optimal

solutions are discussed. While establishing PFAC algorithm

with base technology that is individual thread pattern count

(ITPC) total allocated bytes for pattern count was same as

total number of threads and total number of threads was

almost same as text stream length of data set. As the data set

will large enough this technology will be feeble. While

developing PFAC with synchronized variable (ITUPC) less

memory is used for counter. But as the file size will expand,

number of threads will be same and it will make the algorithm

slower. For larger files this will be ineffectual. In the third

method (PFAC-LC) dfa and counter is placed in local

memory of each thread and finally an vector counter is placed

in global memory for final count. When all the values of local

memory encountered in global memory to make a final count

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

54

a lots of threads approach simultaneously. And system will

efficient to handle billions of threads.

4. DIFFERENT PARALLELIZATION

VERSIONS OF PFAC ON GPGPUs

4.1 Individual Thread Pattern Count

Algorithm (ITPC)
This is the base technology of PFAC algorithm. In terms of

processing time this method is very effective but regarding

data set size it is not so efficient. This is same as malloc

allocation. In this method the number of variables which is

used for pattern count is equal to text length. For each count a

new variable is used. If text stream will be large enough total

variable size will be large and from a point the algorithm will

not accept text file to remove this limitation ITPUC method is

developed.

Fig 4: ITPC

In Figure 4 each thread has a separate count for storing

number of occurrences of patterns for searching and then at

last sum of all counts are done to calculate number of

occurrences of patterns .Since allocating separate count to

each thread is allocated and there are billions of thread

because each letter is allocated a thread, it is impossible to

implement this version of PFAC for a big data set.

4.1.1 Algorithm

1. Start

2. Construct DFA of the given patterns.

3. n←text string length.

4. m←minimum pattern length.

5. Launch (n-m+1) threads for parallel processing.

6. For each thread do

7. Thread[i] start scanning from i and go to DFA of

patterns.//i is the thread index ranges from 0 to n-m.

8. Else If final state reach in the DFA Than

(a)Record the occurrences.

(b)Continue scanning character and make transition

in the DFA.

(c) Go to step 8.

9. Else

(a) Continue scanning character and make transition

in the DFA.

(b) Go to step 8.

10. For j = 0 to n-m.

11. Count←count+counter[j].//count is total pattern

counter

12. End

4.2 Individual Thread Unique Pattern

Count Algorithm (ITUPC)
This method guaranteed that one variable will access the code

at a time. This algorithm use atomic_add function. It provides

synchronized access. It removes the limitations of ITPC but

due to synchronization algorithm’s processing time is

increased.

Fig 5: ITUPC

In Figure 5, count declared in global memory. Here only

single count hence synchronization is needed between the

threads to calculate the number of occurrences of pattern

searching for. Since synchronization is used this version is

less fast then ITPC version. Less memory is used for storing

count here, but as the size of file of increases number of

threads increases hence system is unable to handle large

number of threads simultaneously.

4.2.1 Algorithm

1. Construct DFA of the given patterns.

2. n←text string length.

3. m←minimum pattern length.

4. Launch (n-m+1) threads for parallel processing.

5. For each thread do

6. Thread[i] start scanning from i and go to DFA of

patterns.//i is the thread index ranges from 0 to n-m.

7. If Failure occur than stop & exit threads.

8. Else If final state reach in the DFA Than

(a)Record the occurrences with unique

counter.//atom_inc is used for that.

(b)Continue scanning character and make transition

in the DFA.

(c) Go to step 7.

9. Else

(a) Continue scanning character and make

transition in the DFA.

(b) Go to step 7

10. End

4.3 PFAC Local Count
In PFAC with Local Count, vector is used to store the

value of occurrences of patterns. Vector and DFA is placed in

local memory of each thread. Vector is used to record

occurrences. A final counter is placed in global memory to

make total count. Problem of system to handle large number

threads is retained. This version of PFAC is faster than all

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

55

others because vector is placed in the local memory instead of

global memory and threads can access DFA from local

memory. So access time from memory is reduced.

After the processing phase when all threads approaches to

global memory for total pattern count then it was unable to

handle billions of threads. So this method was unable to

handle larger data sets.

4.3.1 Algorithm

1. Construct DFA of the given patterns.

2. n←text string length.

3. m←minimum pattern length.

4. Launch (n-m+1) threads for parallel processing.

5. For each thread do

Thread[i] start scanning from i and go to DFA(local

memory) of patterns.//i is the thread index ranges

from 0 to n-m.

6. If Failure occur than stop & exit threads.

7. Else If final state reach in the DFA Than

(a)Record the occurrences in local memory with

vector counter.

(b)Continue scanning character and make transition

in the DFA(from local memory).

(c) Go to step 6.

8. Else

(a) Continue scanning character and make

transition in the DFA.

(b) Go to step 6

9. For j = 0 to n-m.

10. Counter←Counter+vector_counter[j].//count is total

pattern counter which is placed in global memory

11. End

Fig. 6: PFAC-LC

5. SOLUTION TO VARIOUS

PROBLEMS OF PFAC
Segmented PFAC provides solution to all issues of PFAC

version. This is slower method but it provides optimal

solution for large data sets. This concept is same as Paging

phenomena of operating system. When the physical memory

will be insufficient page out will occur. To develop this

algorithm a loop is placed inside the algorithm. This method

is adequate for large number of files but total execution time

is increased. This version is represented by figure 7.

This version of PFAC can execute larger files also, by

executing first fixed number of bytes by one kernel call and

then next bytes by other kernel call, similarly we can execute

whole file my multiple kernel calls. This version of PFAC

takes more time in searching the patterns because of multiple

kernel calls. The divided slot is optimal and based on

architecture. Optimal slot is must for parallel processing.

Fig 7: Segmented PFAC

However implementation of segmented PFAC cannot detect

occurring patterns on boundaries. This problem is called

boundary detection problem. We have discussed boundary

detection problem in figure 8. As shown in figure text HE is

occurring at boundary and can’t be recognized by the

machine. This problem can be resolved by processing

overlapped computation on the boundaries. It degrades

performance of the system.[24].

Fig. 8: Boundary detection problem

To resolve boundary detection problem overlapped

computation is preferred as shown in figure 8. In this

algorithm S-PFAC is overlapped to Max. pattern size-1. In

our example maximum pattern length is 3 so algorithm is

overlapped for 2 positions.

Fig. 9: Solution to boundary detection problem

Segmented PFAC method is applied on various versions of

PFAC to remove the limitation of limited data sets. Modified

versions are:

1. Segmented ITPC

2. Segmented ITUPC

3. Segmented PLC

These versions can simultaneously handle larger data sets. But

their performances are degrading due to loop control.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

56

5.1.1 Algorithm

1) Start

2) Text Length←Length of Text String.

3) Segment size←a factor(text length)//depending

upon the GPGPU architecture for optimum

performance segment size is more suitable for their

architecture.

4) For i = 0 to k do//k is a k.segmentsize←textlength

5) Thread[i] start scanning from i and go to DFA(local

memory) of patterns.//i is the thread index ranges

from 0 to n

6) If Failure occur than stop & exit threads.

7) Else If final state reach in the DFA Than

(a)Record the occurrences.

(b)Continue scanning character and make transition

in the DFA.

(c) Go to step 6

8) Else

(a) Continue scanning character and make transition

in the DFA.

(b) Go to step 6.

9) Stotal[i]= count

10) For i = 0 to k

11) Total count += stotal[i]

6. EXPERIMENTAL RESULT AND

COMARITIVE ANALYSIS
Comparisons between PFAC versions is given in table 2. This

table compares the versions of PFAC in terms of speed

memory allocation and size of file.

PFAC versions implemented on different SIMD architecture

and provide massive improvement in pattern matching

efficiency.

6.1 Experimental Environment
Processor: Core i3

RAM: 4 GB

OS: Windows 7

Language: Visual C++ runs on Visual Studios 2008

GPGPU: AMD Radeon HD 6800 series

Language (parallel implementation): OpenCL

6.2 Experimental Data for PFAC
Text File: Text Size of 50 MB, 100 MB and 200 MB having

large number of occurrences of patterns.

Pattern File: One File pattern length of 20 patterns

Here we are taking total number of work items equal to text

stream length of data set without setting any local workgroup

size.

6.3 Experimental Results
Table 3: Experimental Results basic PFAC versions

Datasets(MB) ITPC ITUPC PFAC-LC

50 MB 390 ms 510 ms 331 ms

100 MB 1000 ms 1010 ms 990 ms

200 MB 1850 ms 2010 ms 1760 ms

300 MB 2340 ms 2540 ms 2000 ms

The experimental results given in table 3. The graph for this

table plotted in figure 10. Results have been taken for various

lengths of data sets and corresponding execution time in

seconds is calculated. Comparative analysis is represented in

graph with sort of lines.

Fig. 10: Experimental results of basic PFAC versions

Table 4 : Experimental results of segmented PFAC

versions

Datasets(MB) S-ITPC S-ITUPC S-PLC

50 MB 1793 ms 1944 ms 1737 ms

100 MB 2145 ms 2433 ms 2104 ms

200 MB 2698 ms 2941 ms 2529 ms

300 MB 3007 ms 3437 ms 2949 ms

Table 4 represents results for segmented PFAC versions.

Segmented PFAC is applied on all versions of PFAC.

Graphical representation to this table is shown in figure 11.

Table 2 Comparison between PFAC Versions

PFAC

version

Speed Memory Allocation Synchronizatio

n

Size of data set that can be executed

ITPC Very fast Large memory

allocation

Not used Small Data Sets(about 50mb)

ITUPC Fast Very small memory

allocation

Used Large Data Sets(about 100mb)

PFAC-LC Very fast Moderate memory

allocation

Used Large Sata Sets(about 100mb)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

57

Fig. 11 : Experimental results of segmented PFAC

versions

Table 5 represents data for pattern size 20,40,60,80,100. Data

set size is 100 MB. Experimental results calculated for basic

version of PFAC. Graphical representation for this data is

displayed in figure 12.

Table 5: Execution time for various size patterns in

milliseconds (data set: 100 MB)

Version Pattern Size

20 40 60 80 100

ITPC 1060 1074 1071 1094 1098

ITUPC 1409 1439 1422 1471 1494

LC 997 1008 999 1021 1027

Fig 12 : Experimental Results for various size patterns in

millisecond(data set : 100 MB)

Table 6 represents data for various segmented PFAC versions.

Patterns size is 20,40,60,80,100. Data set size is 100 MB.

Experimental results calculated for segmented versions of

PFAC. Graphical representation for this data is displayed in

figure 13.

Table 6 : Experimental Results

Version Pattern Size

20 40 60 80 100

S-ITPC 2145 2396 2763 2608 3001

S-ITUPC 2433 2671 3051 2909 3241

S-LC 2104 2308 2715 2581 2916

Fig. 13 : Experimental Results for segmented versions of

PFAC for various size patterns in ms(data set : 100 MB)

7. CONCLUSION
Peculiar techniques of PFAC on GPGPU and their issues

implemented and analyzed in this paper. Execution time of

PFAC Local count was fastest but unable to handle larger data

sets. To blot out these issues a new technique is endeavored

that is Segmented PFAC which makes enfeeble to all the

issues of PFAC techniques. Segmented PFAC was capacious

to handle larger data sets. With the help of segmented PFAC

actualized segmented versions of all PFAC versions in this

paper. We have tested all the basic and segmented versions on

different size of patterns and recorded the variations.

Segmented versions are efficient for larger data sets but

execution time is disparaged.

8. REFERENCES
[1] A.V. Aho and M. J. Corasick, “Efficient String

Matching: An aid Bibliographic search”. In

Communication of the ACM Vol. 18, issues 6, pp.-333-

340, 1975.

[2] Tumeo, O. Villa and D.G. Chavarria-Miranda,” Aho-

Corasick String Matching on Shared and Distributed-

Memory Parallel Architectures”, Vol. 23, Issue 3, pp.

436-443, march 2012.

[3] Cheng-Hung Lin and Shih-Chieh-Chang,” Efficient

pattern matching algorithm for memory

architecture”,Vol. 19, issue 1, pp. 33-41, Jaunary 2011.

[4] Chengguo Chang and Hui Wang,” Comparison of Two-

Dimensional String Matching Algorithms”In the proc.

International Conference on Computer Science and

Electronics Engineering (ICCSEE), Vol. 3, pp. 608-

611,march 2012.

[5] S. Antonatos, et al., “Generating realistic workloads for

network intrusion detection systems,” Proc. 4th Int’l

Workshop on Software and Performance, pp. 207-215,

2004.

[6] Ziv Bar-Yossef and Haifa,” Efficient Search Engine

Measurements”, ACM Transactions on the Web

(TWEB), Vol. 5, issue 4, October 2011.

[7] Fang Xiangyan, Xiong Tinggang, Ding Yidong and

Yuan Youguang,” The research and improving for multi-

pattern string matching algorithm”,In the proc. IEEE

International Conference on Intelligent Computing and

Intelligent Systems (ICIS), Vol. 1, pp. 266-270,Oct.

2010.

[8] D. Lee, Yannakakis and Mihalis,” Testing finite-state

machines: state identification and verification”, IEEE

Transactions on, Vol. 43, issue 3, pp. 306-320, Mar

1994.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.7, May 2013

58

[9] Raphaël Clifford, Markus Jalsenius, Ely Porat and

Benjamin Sach,” Pattern matching in multiple stream”,in

the proc. 23rd Annual conference on Combinatorial

Pattern Matching, pp. 97-109,2012.

[10] R. Takahashi, U. Inoue, “Parallel Text Matching Using

GPGPU”, in the proc. 13th ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel & Distributed

Computing (SNPD), pp. 242-246, Aug. 2012.

[11] C. Lin, et al., “Accelerating String Matching Using

Multi-Threaded Algorithm on GPU,” Proc. IEEE Global

Telecommunications Conf.,pp. 1-5, 2010.

[12] J. D. Owens, et al., “A Survey of General-Purpose

Computation on Graphics Hardware,” Computer

Graphics forum, Vol. 26, No. 1, pp. 80-113, 2007.

[13] C. Lin, C. Liu, L. Chien, and S. Chang,” Accelerating

Pattern Matching Using a Novel Parallel Algorithm on

GPUs”, IEEE Transactions on computers, vol. pp, issue

1.

[14] Zha Xinyan and S. Sahni,” Multipattern string matching

on a GPU”, In the proc. IEEE conference on Computers

and Communications (ISCC), pp. 277-282, July 2011.

[15] Tran Nhat-Phuong, Lee Myungho, Hong Sugwon and

Minho Shin,” Memory Efficient Parallelization for Aho-

Corasick Algorithm on a GPU”, IEEE 14th International

Conference on High Performance Computing and

Communication, pp. 432-438, June 2012.

[16] Jungwon Kim, Honggyu Kim, Joo Hwan Lee and Jaejin

Lee,” Achieving a single compute device image in

OpenCL for multiple GPUs”, Proceedings of the 16th

ACM symposium on Principles and practice of parallel

programming, pp. 277-288,2011.

[17] Hyeran Jeon, Xia Yinglong and V.K. Prasanna,” Parallel

Exact Inference on a CPU-GPGPU Heterogenous

System”, In the proc. 39th International Conference on

parallel Processing (ICPP), pp. 61-70,Sept. 2010.

[18] Liang Hu, Che Xilong and Xie Zhenzhen,” GPGPU

cloud: A paradigm for general purpose computing”,

Tsinghua Science and Technology, Vol. 18, issue 1, pp.

22-23, Feb. 2013.

[19] web resource-www.gpgpu.org

[20] Xinyan Zha and Sartaj Sahni,” GPU-to-GPU and Host-

to-Host Multipattern String Matching on a GPU”, IEEE

Transactions on Computers,Volume 62, Issue 6, pp.

1156-1169,2013.

[21] M. Potel,” A decade of applications Computer

graphics]”, Computer Graphics and Applications IEEE,

Vol 24, Issue 6, pp. 14-19,Dec. 2004.

[22] http://www.ece.ncsu.edu/asic/ p183-dharmapurikar.pdf

[23] http://www.ieee-icnp.org/2006/papers/s5a4.pdf.

[24] Cheng-Hung Lin, Sheng-Yu Tsai, Chen-Hsiung Liu,

Shih-Chieh Chang and Shyu, J.-M.,” Accelerating String

Matching Using Multi-Threaded Algorithm on GPU”,In

the proc. Of IEEE conference on Global

Telecommunications Conference (GLOBECOM 2010),

pp. 1-5, Dec. 2010.

IJCATM : www.ijcaonline.org

