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ABSTRACT 
New Optimal Fuzzy Logic Guidance (NOFLG) law for the 

class of surface to air homing missile is proposed. The 

introduced approach is a modification of Optimal Fuzzy Logic 

Guidance (OFLG) law. Time Variant Particle Swarm 

Optimization (TVPSO) is used to optimize both Membership 

Functions (MFs) and rules’ weights of the proposed design. 

The performance of the new guidance law is compared with 

that of OFLG one. Different case-studies show that the current 

approach provides better performance in regard to; miss 

distance, flight time and control effort. 
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1. INTRODUCTION 
Most guidance laws used in current missiles are mainly based 

on classical control techniques [1, 2]. These techniques, 

although they are efficient in many cases, might not be 

effective for tracking and interception of maneuvering targets. 

In addition, there are a perfect knowledge of system 

requirement and a large computational one. Fuzzy Logic 

Controllers (FLCs) have number of suitable properties that 

diminish such difficulties, therefore, they have been used in 

many fields where plants exhibit uncertainties or we lack a 

rigorous model to describe their behavior. On the other hand, 

most fuzzy guidance laws are fuzzy-logic implementation of 

existing well-known classical guidance laws; such as, 

Proportional Navigation Guidance (PNG) that is because of its 

simplicity, effectiveness and ease of implementation [3].  

In fact, tuning the parameters of FLCs is time consuming and 

frustrating exercise. Particle Swarm Optimization (PSO) is 

considered suitable technique to overcome these difficulties 

because of its simplicity. PSO which is first developed by 

Kennedy and Eberhart [4] is a population based stochastic 

optimization technique was inspired by social behavior 

patterns of organisms that live and interact within large 

groups as flocks of birds, schools of fish, or swarms of bees. It 

is one of the modern heuristic algorithms that was developed 

through simulation of a simplified social system, and has been 

found to be robust in solving complex optimization system. 

In the current study, a new version of PSO that so-called Time 

Variant Particle Swarm Optimization TVPSP [5] will be used 

to investigate the NOFLG law. The investigated design will 

be compared with OFLG that had been introduced in our 

previous study [6].  

The paper is organized as follows: an overview on the pre-

introduced OFLG law is briefed in Section 2. The basic PSO 

and TVPSO are explained in Section 3. The optimization 

process is discussed in Section 4. In Section 5 results and 

analysis are provided. Conclusions are then provided in 

Section 6. 

 

2.   BRIEF OVERVIEW ON OFLG LAW 
The pre-introduced OFLG has been built upon the conception 

of PNG law. The PNG law gives commanded acceleration 𝐴𝑐 , 

on its output, proportional to its two inputs; 𝜆  (angle rate of 

the instantaneous line-of-sight) and  𝑉𝑐  (target-missile closing 

velocity). Mathematically it can be expressed as: 

 
𝐴𝑐 = 𝑁𝑉𝑐𝜆                                                                               

(1) 

 
Where; 𝑁 is navigation constant defined by the designer. 

In our previous study, the OFLG has 49 rules with optimized 

triangular MFs and non-optimized weights. Each rule has 

weight equals 1.  The rules were tabulated as plotted in Figure 

1: 

 

 
 

Fig. 1: Entire Rules of OFLG 

In the current work, the same rules will be used. The 

parameters of the MFs and the weights of the rules will be 

optimized using TVPSO. 

3. TVPSO 

In the PSO every individual 𝑖 of the swarm contains 

parameters for position 𝑥𝑖  and velocity 𝑣𝑖 . The new position 
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of each particle is calculated by adding a velocity to the 

current position. 

In particular, the velocity associated with each particle is 

calculated as [7]: 

𝑣𝑖 𝑘 + 1 = 𝑤𝑣𝑖 𝑘 + 𝑐1 . 𝑟1 𝑘  𝑥𝑖
𝑔
− 𝑥𝑖 𝑘  + 

                                            𝑐2. 𝑟2 𝑘  𝑥𝑖
𝑝
− 𝑥𝑖 𝑘                       

(2) 
 

Where; 

 𝑤- Inertia weight factor. 

𝑣𝑖 𝑘 - Velocity of the particle 𝑖 at time step 𝑘. 

𝑥𝑖
𝑔

- Global best performing particle up to time step 𝑘. 

𝑥𝑖
𝑝

- Personal best performing particle up to time step 𝑘. 

𝑥𝑖 𝑘 - Current location of particle 𝑖. 

𝑐2, 𝑐2- Constants usually equal each to other. 

𝑟1, 𝑟2- Random numbers within [0, 1] those represent random 

fiction. 

To limit the searching space 𝑣𝑖 𝑘 + 1  is limited to be within 

a certain range of 𝑣𝑖𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖𝑚𝑎𝑥 . The new location of 

the particle 𝑖 can be calculated as: 

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 + 𝑣𝑖 𝑘 + 1                                               

(3) 

The following Figure illustrates how updating of the particle 

position is achieved according to the PSO’s Equations.  

 𝑤𝑣𝑖  

 𝑣𝑖  
 𝑐2. 𝑟2 𝑥𝑖

𝑝 − 𝑥𝑖  

 𝑥𝑖
𝑝

 

 𝑥𝑔  

 𝑥𝑖  (updated)

 𝑥𝑖
𝑝 − 𝑥𝑖  

 𝑥𝑔 − 𝑥𝑖  

 𝑥𝑖  

 𝑐1. 𝑟1 𝑥𝑖
𝑔
− 𝑥𝑖  

 

Fig. 2: Visualizing PSO. 

In the TVPSO, the vital parameters; inertia weight 𝑤 and 

acceleration coefficients 𝑐1, 𝑐2, are allowed to be changed with 

iterations 𝑖𝑡, making it capable of effectively handling 

optimization problems of different characteristics. Here, the 

parameters; 𝑤, 𝑐1 and 𝑐2 are renamed as; 𝑤𝑖𝑡 , 𝑐1𝑖𝑡  and 𝑐2𝑖𝑡  

respectively. 

The inertia weight 𝑤𝑖𝑡  controls the influence of the current 

velocity on the new velocity. A large inertia weight compels 

large exploration through the search space; a smaller inertia 

weight causes reduced exploration. The value of 𝑤𝑖𝑡  is 

allowed to decrease linearly with iteration from 𝑤𝑚𝑎𝑥  to 𝑤𝑚𝑖𝑛  

as: 
 

𝑤𝑖𝑡 =  𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛  
𝐼−𝑖𝑡

𝑖𝑡
+ 𝑤𝑚𝑖𝑛                                           

(4) 

Where; 𝐼- Maximum number of iterations. 

The parameters 𝑐1𝑖𝑡  and 𝑐2𝑖𝑡 , are called cognitive acceleration 

coefficient and social acceleration coefficient respectively.  

The acceleration limits the trajectory of the particle 

oscillation. The smaller the acceleration, the smoother the 

trajectory of the particle is. However, too small acceleration 

may lead to slow convergence, whereas too large acceleration 

drives the particles towards infinity. 

To incorporate better compromise between the exploration 

and exploitation of the search space in the swarm, 𝑐1𝑖𝑡  has 

been allowed to decrease from its initial value of 𝑐1𝑚𝑎𝑥  to 

𝑐1𝑚𝑖𝑛  while 𝑐2𝑖𝑡  has been increased from 𝑐2𝑚𝑎𝑥  to 𝑐2𝑚𝑖𝑛  as 

follows: 

𝑐1𝑖𝑡 =  𝑐1𝑚𝑎𝑥 − 𝑐1𝑚𝑖𝑛  
𝑖𝑡

𝐼
+ 𝑐1𝑚𝑎𝑥                                            

(5) 

𝑐2𝑖𝑡 =  𝑐2𝑚𝑎𝑥 − 𝑐2𝑚𝑖𝑛  
𝑖𝑡

𝐼
+ 𝑐2𝑚𝑎𝑥                                            

(6) 

The flowchart of the TVPSO is shown in as the following:  
 

Initialize the swarm

Calculate the object function

Calculate the best solutions

(global and personal)

Get the optimal fuzzy set values

No

Yes

Update; velocities then positions

Calculate the new object function

Compare the old value of the object 

function with the new one and save the 

parameters that cause the smaller values 

Terminal criterion ?

Extract optimized parameters

Update: wit , c1it and c2it

  
 

Fig. 3: Flowchart of TVPSO. 
 

The swarm is initialized randomly and the object function is 

calculated. The algorithm updates the particle’s velocity and 

adds the new velocity to the old position to calculate the new 

position. The updating of the velocity is influenced by 

both 𝑥𝑖
𝑔

, the best global solution associated with the lowest 

cost (objective function) ever found by a particle, and 𝑥𝑖
𝑝
, the 

best local solution associated with the lowest cost in the 

present population. The solution 𝑥𝑖
𝑝
 is replaced with 𝑥𝑖

𝑔
 when 

it causes less cost than the 𝑥𝑖
𝑔

 does. The algorithm continues 

updating the velocities and adds them to the corresponding 

positions to evaluate the objective function until a termination 

criterion, such as a limit on the number of iterations or 

satisfactory results, is reached, thereupon the process is 

stopped. 

4. OPTIMIZATION PROCESS 
The population is set to be 𝑃 = 100 particles and the total 

searching iteration is set to be 𝐼 = 500. As suggested in [5] 

the following values are used throughout the optimization 

process: 

𝑤𝑚𝑎𝑥 = 0.7, 𝑤𝑚𝑖𝑛 = 0.4, 𝑐1𝑚𝑎𝑥 = 𝑐2𝑚𝑎𝑥 = 2.5, 𝑐1𝑚𝑖𝑛 =

𝑐2𝑚𝑖𝑛 = 0.5. The object function 𝐹 𝐴𝑝𝑎𝑟   is defined as 

follows: 
 

𝐹 𝐴𝑝𝑎𝑟  = 𝑘1 .  𝐴𝐶
2𝑑𝑡

𝑡𝑓
0

+ 𝑘2 . 𝑅𝑇𝑀 𝐹𝑡 + 𝑘3𝐹𝑡                      

(7) 
 

The first term denotes the control effort 𝐶𝐸𝑓𝑓  while the last 

two ones denote the miss distance 𝑀𝐷  and flight time 𝐹𝑡 . 

Where: 𝐴𝑝𝑎𝑟  is an array that includes the parameters needed 
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to be optimized, 𝑅𝑇𝑀  is the target-missile relative distance, 

whilst 𝑘1 , 𝑘2  and 𝑘3  are constants those referring to the 

terms’ preference. In the current study, it supposed that all the 

terms have same importance, so that 𝑘1 = 1 𝐶𝐸𝑓𝑓𝑚𝑎𝑥
 , 𝑘2 =

1 𝑅𝑇𝑀(𝐹𝑡)𝑚𝑎𝑥
 , and 𝑘3 = 1 𝐹𝑡𝑚𝑎𝑥

 , where 𝐶𝐸𝑓𝑓𝑚𝑎𝑥
, 𝑅𝑇𝑀(𝐹𝑡)𝑚𝑎𝑥

 

and 𝐹𝑡𝑚𝑎𝑥
 are the maximum allowable values of the terms 

defined by the designer regard to the missile’s ability. 

The flowing figure illustrates the overall process which is 

built using MatLab environment: 
 

Target 

Maneuver

Missile-Target 

Kinematics

Update the 

Membership functions’ 

parameters and the 

Rules’ weights

then save
Stop when interception and 

Calculate the Object Function

 
S

av
e 

to
 F

IS
 

Compare the new Object 

Function with the old one 

If the new  better than the old save 

the corresponding parameters, else 

remained the old parameters

Update Velocities and 

Positions of the parameters 

(new parameters)

 Main MatLab File 

Current Iteration

 >= 

Total Iteration

Increase 

Iteration

Stop 

all 

 Yes 

 No 

 𝐴𝑇   𝐴𝐶  

Fuzzy Inference System (FIS) Simulink Model

Update the

controller Guidance

 Vc , λ   

 

Fig. 4: The flow chart of overall process. 
 
 

During the optimization process, the value’s decrement of the 

object function can be noted as shown in Figure 5. Also it can 

be seen that, the searching can be terminated after about 400 

iterations when there is no reduction was observed. 
 

 
 

Fig. 5: The value of the object function. 

As soon as the process is completed, the optimized parameters 

of the inputs 𝜆 , 𝑉𝐶  and the output 𝐴𝐶 can be extracted. The 

optimized parameters of the MFs and the rules’ weights are 

plotted as following: 

 

 
 

 
 

 
 

 

 
Fig. 6: The Optimized parameters of the NOFLG. 

5. RESULTS AND ANALYSIS 
During the simulation we suppose the missile and the target 

are located at  (0, 0)𝑘𝑚 and  (10, 3)𝑘𝑚 and moves with 

velocities  1000𝑚/𝑠𝑒𝑐 and  300𝑚/𝑠𝑒𝑐 respectively. Also we 

considered the maximum target ability to maneuver 

within [−3 𝑢𝑝 𝑡𝑜 6]𝑔, where 𝑔 = 9.81 is the gravity constant. 

Finally the missile has a dynamic saturation 

within [−15 𝑢𝑝 𝑡𝑜 15]𝑔. 

The simulation is achieved for 20 scenarios with respect to 

different target’s maneuvers. The examined scenarios are 
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suggested when the values of 𝐴𝑇 = [−3,−2.5,… 5.5, 6]𝑔. 

Root Mean Square value (RMS) of:  𝑀𝐷 , 𝐹𝑡  and 𝐶𝐸𝑓𝑓  are 

calculated and listed in Table 1. 

Table 1: calculated RMS of the values. 

RMS 𝑴𝑫 [m] 𝑭𝒕 [sec] 𝑪𝑬𝒇𝒇[m2/sec3] × 𝟏𝟎−𝟒 

OFGL 5.71 8.21 4.52 

NOFLG 5.24 8.11 4.06 

It is clear that the NOFLG law overweighs OFLG law in all of 

the terms and insures 8%, 1% and 10% improvement to 𝑀𝐷, 

𝐹𝑡  and 𝐶𝐸𝑓𝑓  respectively. In other words one can say that; 

TVPSO gives better improvement than PSO. 

The following two figures show the trajectories and the 

accelerations for a difficult scenario that is when the target is 

considered to have its maximum ability with a square 

acceleration within [−3, 6]𝑔. 

 

 
 

Fig. 7: Trajectories. 

 

 
 

Fig. 8: Accelerations. 

 

 

 

 

 

 

 

 

 

Figure 7 shows the trajectories achieved by the missile when 

using OFLG law and NOFLG law in addition to the target 

trajectory. While Figure 8 plots the changing of the 

corresponding acceleration commands. 

 

 

6. CONCLUSION 
In this work, a NOFLG law is investigated. Parameters of the 

MFs and rules’ weights of the proposed design are optimized 

using TVPSO algorithm. The optimization is achieved under 

the consideration of minimizing the object function. Many 

cases where the target makes different maneuvering have been 

studied. The resulted NOFLG law is compared with an OFLG 

law. The results show that NOFLG behaves better in other 

words. The study verifies that the TVPSO performs better 

than the PSO. 
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