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ABSTRACT  
MapReduce is an enabling technology in support of Cloud 

Computing. Hadoop which is a mapReduce implementation 

has been widely used in developing MapReduce applications. 

This paper presents Hadoop simulator- HaSim,  MapReduce 

simulator which builds on top of Hadoop. HaSim models  large 

number of parameters that can affect the behaviors of 

MapReduce nodes, and thus it can be used to tune the 

performance of a MapReduce cluster. HaSim is validated with 

both benchmark results and user customized MapReduce 

applications.  

Keywords: MapReduce  Hadoop framework, Cloud 

Computing, HaSim.Simulator Programming models  

1. INTRODUCTION  
MapReduce [1] is a distributed programming model for data 

intensive tasks which has become an enabling technology in 

support of Cloud Computing. Programmatically inspired from 

functional programming, at its core there are two primary 

features, namely a map and a reduce operation. From a logical 

perspective, all data is treated as a Key (K), Value (V ) pair. 

Multiple mappers and reducers can be employed. At an atomic 

level however a map operation takes a {K1, V 1} pair and 

emits an intermediate list {K 2, V 2} pairs. A reduce operation 

takes all values represented by the same key in the intermediate 

list and processes them accordingly, emitting a final new list 

{V 2}. Whilst the execution of reduce operations cannot start 

before the respective map counterparts are finished, all map 

and reduce operations run independently in parallel. Each map 

function executes in parallel emitting respective values from 

associated input. Similarly, each reducer processes keys 

independently and on currently. 

 Fig. 1 shows the structure of the MapReduce model. Popular 

implementations of the MapReduce model include Mars [3], 

Phoenix [2], Hadoop [1,9] and Google’s implementation [6]. 

Among them, Hadoop has become the most popular one due to 

its open source feature. However, the large number of 

configuration parameters of Hadoop brings forth a number of 

challenges to users.Hadoop application, it is hard to decide on 

a set of parameters that would help to achieve a good 

performance, e.g. the number of mappers, the number and the 

CPU speeds of nodes, and the size of buffers. It would be 

extremely difficult if not impossible to set up a physical 

Hadoop environment to evaluate the scalability of a Hadoop 

application up to a few hundred or even thousand nodes.  

These challenges make it a necessity to have a Hadoop 

simulator in place where it can be used to tune the performance 

of a Hadoop cluster and to study the behaviors of Hadoop 

applications. It should be pointed out that few existing 

MapReduce simulators are available and MRPerf [7,8] is a 

representative one. However, the accuracy of MRPerf in 

simulating Hadoop environments is limited to simple 

behaviors. This paper presents the design and implementation 

of HaSim, a MapReduce simulator for Hadoop applications.  

The key contributions of HaSim lie in its high accuracy in 

simulating the dynamic behaviors of Hadoop environments and 

the large number of Hadoop parameters that can be modeled in 

the simulator.  

• Node parameters, which are related to processors, memory, 

hard disk, network interface, Map and Reduce instances.  

• Cluster parameters, which include the number of nodes, node 

configurations, network routers, job queues and schedulers.  

• Hadoop system parameters, which include the size of data 

chunks, JVM reuse, sort factor, virtual memory, the number of 

copying threads, data spilled threshold.  

• HaSim simulator parameters including simulation speed, 

system clock, accuracy levels, and system reporter. 

 The accuracy of HaSim is extensively validated following a 

two step process. In the first step, HaSim is validated against 

an authoritative benchmark work. 

In the second step, the behaviors of HaSim are evaluated in 

comparison with that of a physical hadoop cluster using two 

Hadoop applications. The comparative results show high 

accuracy and stability of HaSim in simulating the behaviors of 

Hadoop environments. Using HaSim, the impacts of a number 

of parameters on Hadoop behaviors are further evaluated.  

The rest of this paper is organized as follows. Section 2 

reviews some related work in Hadoop simulation. section 3 

presents the modeling work on Hadoop parameters 

 
                     Fig. 1. The MapReduce model.  

Section 4 describes in detail the design of HaSim. Section 5 

validates HaSim and subsequently evaluates the impacts of a 

number of parameters n Hadoop behaviors. Section 6 

concludes the paper and points out some future work.  

2. RELATED WORK .  
As mentioned in Section 1, MRPerf is one of the few existing 

MapReduce simulators that are available. MRPerf can serve as 

a design tool for MapReduce infrastructure, and as a planning 

tool for making MapReduce deployment far easier via 

reduction in the number of parameters that currently have to be 

manually tuned. From the published testing results, RPerf 
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shows its high accuracy in simulating the impacts of network 

topologies due to its adoption of NS2 [8] for network 

simulation. However it should be pointed out that although 

MRPerf achieves high accuracy in simulating behaviors related 

to the underlying networks, it can simulate limited behaviors of 

the Hadoop framework. The behaviors of Hadoop are affected 

by a large number of parameters. The major limitations of 

MRPerf are listed below:  

• The processing resources for each user are fixed in MRPerf. 

However, resources in a Hadoop environment are 

dynamically changing and are usually shared by a number 

of users dynamically.  

• MRPerf cannot simulate the exact behaviors of Map and 

Reduce phases. In a Map instance, the spilled data will be 

kept writing into buffer while Map task is running. When 

the occupied size of the buffer is less than a certain 

threshold, the in-memory data is also kept spilling into 

hard disk simultaneously. Due to the highly uncertain real 

time states of the system, this mechanism significantly 

affects the number of spilled files which will further affect 

the IO behaviors. MRPerf simply ignores these procedures 

and uses a pre-defined data value.  

• If the occupied size of the buffer is larger than a certain 

threshold, the CPU processing will be blocked until the 

whole content in buffer is flushed. This event can also 

affect system behaviors but MRPerf does not consider 

this.  

•In the Reduce phase, MRPerf still performs a simple 

simulation to start reduce tasks simultaneously due to lack 

of accurate simulations in Map phase.  

The limitations of MRPerf motivated the work on HaSim. Our 

focus in HaSim is to accurately simulate the behaviors of 

Hadoop framework. Using HaSim, the performances of 

Hadoop applications can be studied from a number of 

angles including the impacts of the parameters on the 

performance of a Hadoop cluster, the scalability of a 

Hadoop application in terms of the number of nodes used, 

and the impact of using heterogeneous environments.  

3 MODELLING HADOOP PARAMETERS  
The performance of a Hadoop application can be affected by a 

large number of parameters.In this section, we present the 

modeling work on these parameters.  

3.1. Node parameters  

• Processor: HaSim supports one processor per computer by 

default design, but the number of processors could be 

changed. One processor can have one or more cores. The 

processing speed of a processor core is defined as the 

volume of data units processed per seconds which can be 

measured from real experimental tests.  

• Hard disk: In hard disk entity, the speeds of IO operations 

vary from time to time. Several parameters are introduced 

to build the degressive reading/writing model. Let xmax 

represent the maximum reading/writing speed of hard 

disk. From the experimental results of testing Seagate 

Barracuda 1 TB hard disk xmax is about 120 MB/s in 

reading, and 60 MB/s in writing. Let xmin represent the 

minimum reading/writing speed of hard disk, xmin is 

around 55 MB/s in reading and 25 MB/s in writing. 

Another parameter which is degressive factor r is used to 

represent in each second the value of lost speed. The value 

of the factor is around 0.0056 based on experimental tests. 

Using these parameters we can calculate the real time 

speed x of hard disk using formula (1). 

X =         XminXmax                  ----------------(1) 

         (Xmin-Xmax)eˉrt +Xmax 

 

• Memory: In each memory entity two parameters are modeled, 

reading and writing. In the experimental tests, the reading 

speed of standard DDR2-800 memory with dual channel 

could reach up to 6000 MB/s and the writing speed is up 

to 5000 MB/s. It is quite obvious that both the reading 

and writing speeds would not be the bottlenecks of the 

system due to their fast speeds.  

• Ethernet adapter: In each Ethernet adapter entity, two 

parameters are modelled, upstream bandwidth and 

downstream bandwidth. The bandwidth can be in the 

range of 100 and 1000 Mbps. 

 3.2. Cluster parameters .The cluster parameters represent the 

details of a simulated Hadoop cluster. It involves several 

aspects which include the number of nodes, topology and 

network facilities.  

• Number of nodes: The number of nodes can vary from 1 to a 

few hundreds.  

• Topology: The number of nodes can be organized with a 

certain network topology.  

Currently HaSim only supports simple racks.  

• Network facilities: The speed of a router can be in the range 

of 100 and 1000 Mbps. When the bandwidth of a router is 

defined, a number of standalone computers must be 

configured to connect to the router to decide on their 

network capacities.  

• Job queue and job schedulers: A job queue holds the waiting 

job entities. According to different job schedulers, jobs 

are waiting for processing resources. HaSim supports two 

job schedulers of Hadoop framework—first come first 

serve and fair scheduler. These two types of schedulers 

generate different job processing orders.  

3.3. Hadoop system parameters. Before a Hadoop application 

starts processing data, the data should be saved into 

Hadoop Distributed File System (HDFS) in advance. The 

number of files affects the number of Map instances   

involved.  

Normally the number of Map instances equals to the number of 

file chunks. If the number of chunks is larger than the 

maximum number of Map instances in the cluster, Map 

instances will be assigned with data chunks via waves. If a 

whole dataset is only saved in one file, the single file 

could be separated into a number of chunks logically via 

supplied APIs of the Hadoop framework. When data is 

being processed, it would go through a number of 

processing steps such as sorting, merging, combining, 

copying, reducing. These steps highly affect the 

performances of the system so that several parameters are 

modelled to control the behaviours of these steps. As 

these parameters are configurable and most of them are 

involved in the actual Hadoop framework so we named 

these parameters hadoop system parameters.  

• Job specifications: In a job specification, a number of 

parameters are involved to describe the properties of a 

job. Job ID refers to the unique ID assigned to each job 

for tracking. The JobSize is the total size of the input data.  

No matter no many chunks of the data are submitted, this value 

should be the total size of the hole data. when the 

simulation starts, the data will be fetched from the HDFS. 

The NumberOfRecords parameter is used to represent the 

number of records in the data so that the size of each 

record can be calculated by this value and the size of the 

job. In the simulator this parameter is experimentally used 

to measure the number of records combined by 

Combiners, which may affect the erformances of 
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thesystem when certain types of Hadoop applications are 

executed. The MapOutputRatio parameter represents the 

volume of intermediate data to be generated by Map 

instances which has an impact on IO performance. The 

ReduceOutputRatio parameter is quite similar to 

apOutputRatio. In ome Hadoop applications  the Reduce 

instances do not only copy data from Map instances but 

also generate their own intermediate data which affects IO 

performance. This parameter specifies the size of 

intermediate data to be generated in the Reduce phase. 

The ReducingRatio parameter represents the size of final 

results which will be reduced in HDFS. This parameter 

can affect the performance of the underlying network and 

also the performance of a local hard disk. The Number of 

Chunks parameter is used to specify the number of files to 

be used to carry data. This parameter determines the 

number of Map instances assigned to the job. If the 

number of chunks is only one, a number of logically 

separated files should be specified. The Number of 

Reducers parameter represents the number of required 

Reduce instances for the job. Simulated Hadoop 

parameters: This group of parameters is highly related to 

Hadoop framework. The io.sort.mb parameter represents 

the size of memory buffer to use while sorting map output. 

The io.sort.record.percent parameter represents the 

proportion of io.sort.mb reserved for storing record 

boundaries of the map output results. The remaining space 

is used for the map output records themselves. The 

io.sort.spill.percent parameter is a threshold that 

determines when the Map instance should start spilling 

processes writing data into memory.  

If the threshold is reached, the CPU processing will be 

suspended and the buffer will be flushed, which means all the 

data saved in virtual memory will be spilled into hard disk. The 

io.sort.factor one  parameter specifies the maximum number of 

streams to merge when sorting files in the Map phase. It 

significantly affects the IO performance of the 

system.Therefore the sorting and merging involve less 

overhead generated by hard disk. The JVM Reuse parameter is 

partially simulated in HaSim. Using JVM reuse, the overhead 

generated by some short-lived tasks will be significantly 

reduced.  

3.4 HaSim Parameters  

HaSim itself needs several parameters to control its own 

behaviors. Five important parameters are introduced in HaSim:  

System Clock: The System Clock parameter is an absolutely 

and continuously timing component. In each change of the 

system clock, its current value will be added by one second. It 

is used to record the current system time, and to measure the 

performances of Hadoop applications in different cluster 

configurations.  

Executing Speed: This parameter controls the execution speeds 

of all the components in HaSim.  

Accuracy Level: For normal Hadoop applications, it is enough 

to set this parameter to the level of seconds. To maintain high 

accuracy in simulation, milliseconds can be set for the 

applications as well.  

Shared Parameters: These parameters can control the rates of 

the shared resources include hard disk and bandwidth. The 

ratio is defined by R 

R= Assigned Resource /Total Resource.  

 Reporter: This parameter records several important system 

states for analysis.   

 

 

 

S.No Category Specification  

1 Node 

Parameters  

processor, hard disk, memory, 

Ethernet card, Map instance, Reduce 

instance  

2 Cluster 

Parameters 

number of nodes, topology, network 

facilities, job queue, job scheduler  

3 Hadoop 

System 

Parameters 

job specifications, Hadoop 

parameters 

 

4 HaSim 

Parameters  

 

system clock, execution speed, 

accuracy level,  

shared parameters, reporter  

Table 3.1: Summarizes the parameters modelled in HaSim.  

4 THE DESIGN OF HASIM  
This section presents the design of HaSim in detail. The 

prototype is based on Hadoop framework.  

4.1 HaSim Architecture  

Figure 2 shows the data flow of HaSim. To perform a 

simulation, the Cluster Reader component reads the cluster 

parameters from the Cluster Spec to create a simulated Hadoop 

cluster environment. The Job Spec will be processed by the Job 

Reader component and jobs will be submitted to HaSim for 

simulation. HaSim follows a master-slave mode. The simulated 

Map instances (MapperSim), Reduce instances (ReducerSim), 

JobTracker and Task Trackers are located on these nodes. The 

Master node is the Name node of Hadoop framework which 

contains JobTracker to correspond and schedule the tasks. The 

Slave nodes are the Data nodes of Hadoop framework which 

contains TaskTrackers. On Slave nodes Map instances and 

Reduce instances perform data processing tasks . 

From Figure 2 it can be observed that when a job is submitted 

to a simulated Hadoop cluster, the Job Tracker splits the job 

into several tasks. Then TaskTracker and Job Tracker will 

communicate with each other via messaging based on 

heartbeats. One thing should be pointed out that in Hadoop 

framework, the communications among JobTracker and 

TaskTrackers are based on HTTP. However in the simulator 

simplicity has been done. The HTTP communications are not 

simulated but using the times consumed by the 

communications to measure the overhead generated by HTTP 

communications. If the JobTracker finds that all the Map tasks 

have been finished, and then the Reduce instances will be 

notified to be ready for merging phase. Moreover if the 

JobTracker finds all Reduce tasks have been finished, then the 

job will be considered as finished.[4,5]  

If the Map tasks have not been finished yet, the TaskTrackers 

will be notified to choose a Map task or a Reduce Task based 

on their availabilities. 

4.2.4 JobTracker and TaskTracker . 

JobTracker is mainly used to track a simulated job and 

TaskTracker is used to run individual tasks. When a job is 

submitted, the job ID will be sent to JobTracker for tracking. 

The JobTracker starts computing the input splits for the job. 

Then it creates one map task for each split. TaskTrackers 

periodically send messages to the JobTracker via heartbeats 

which tell the JobTracker that a TaskTracker is working. As 

part of the heartbeat, a TaskTracker will tell that if the current 

task is finished and ready to run a new task. Figure 4.6 shows 

the work flows of the components in HaSim. 
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                      Figure 2: HaSim components.  

  

4.2.2 MapperSim  

When a Hadoop application is submitted to HaSim, the input 

data will be split into a number of data chunks and each chunk 

is associated with a Map instance. During the processing, each 

task will be assigned to a Map instance for execution. The 

operations of a Map instance are simulated by the MapperSim 

component. MapperSim simulates the operations of a Map 

instance (mapper) on each node. It copies data which is saved 

in HDFS to its own local hard disk. Commonly each 

MapperSim processes one file chunk but if only one file chunk 

is saved in HDFS, then a logically separated number of chunks 

can control the number of MapperSim instances involved in 

the job. When the data is copied and saved in the local hard 

disk, MapperSim starts processing the data based on the job 

spec of the simulated Hadoop application. During the 

processing steps, intermediate data will be generated. To 

improve the IO performance, the intermediate data will be 

written into a memory buffer. In the buffer, the data can be pre-

sorted to gain high efficiency. As long as data is writing into 

the buffer, if a threshold is reached, a background thread will 

start spilling the data to hard disk. The intermediate data will 

be kept writing into the buffer while the spilling takes place. If 

the buffer is full during this time, the CPU processing will be 

blocked until the spill procedure is complete.  

Figure 3: Data flows in the MapperSim component.  

And if a Combine function is needed, combiner will be 

involved in this step after sorting.  

 
    Figure 4: MapperSim sequence diagram  

Figure 4 shows a sequential diagram shows the interactions of 

MapperSim with other components.HaSim.   

4.2.3 ReducerSim  

The ReducerSim component simulates the Reduce instances in 

Hadoop framework. It is used to collect the outputs from 

MapperSim and reduce the final outputs into HDFS. Figure 5 

shows the data flows in ReducerSim.  

 
                             Figure 5: Data flows in the ReducerSim 

component.  

 The output files of the MapperSim component are saved in the 

local hard disk. The ReducerSim component needs the output 

from several MapperSim components for its particular 

partition. The ReducerSim starts copying data when an output 

is ready. Each ReducerSim has a number of copying threads so 

that it can copy the output results from a number of 

MapperSim components in parallel. If the size of the output is 

small, it will be copied into a memory buffer otherwise it will 

be copied into the hard disk directly. If the output results are 

copied into memory, when a certain threshold is reached, e.g. a 

percentage of buffer used or a number of file copied, these 

outputs will be merged and spilled into hard disk. As the 

number of files increases, a background thread merges them 

into larger and sorted files. When all the output results from the 

MapperSim components have been copied, the sorting step will 

start. This step merges the map outputs and maintains sorting 

orders of outputs. After the files have been sorted, they will be 

reduced into HDFS as one final output. For some Hadoop 

applications, the Reduce instances may need to process data 

involving processors but without IO operations. The 

ReducerSim in HaSim supports this feature. Figure 6 shows its 

sequence diagram. 

  Figure 6: Hardware interactions in ReducerSim.  
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5.  VALIDATIONS OF HASIM  
To validate HaSim, a number of tests have been conducted. 

The performances of HaSim against published benchmark 

results have been compared. And also an experimental 

environment of a Hadoop cluster has been set up and the 

simulator HaSim is evaluated with our Hadoop applications. 

              Figure 7: The workflow of HaSim.  

5.1 Validating HaSim with Benchmarks  

HaSim is validated firstly with 3 benchmark results presented 

in [6] [5] - Grep Task, Selection Task and UDF Aggregation 

Task.  

                          

 
Figure 8: Grep Task evaluation (535MB/node).  

5.1.1 Grep Task  

This task simulated exactly what [6] [10,11] did in their 

benchmarking work. HaSim simulated the cluster using 1 node, 

10 nodes, 25 nodes, 50 nodes and 100 nodes respectively. Two 

different scenarios have been tested, one is that each node is 

assigned 535MB data to process, and the other is that 1TB data 

is submitted to the cluster. Each scenario was evaluated 5 

times. The simulation results are plotted in Figure 8 and Figure 

9  respectively which are close to the benchmark results. Both 

the simulation results and benchmark results are in the same 

scale. Regarding the complex physical environments, the 

simulation results can supply acceptable accuracy.  

The gaps between simulation results and benchmark results can 

be ignored. The confidence intervals of the results are small in 

both scenarios (in the range of 0 and 2.6 seconds in the first 

scenario and in the range of 4.1 and 7.6seconds in the second 

scenario) showing a stable performance of HaSim.  

                       

 
    Figure 9 : Grep Task evaluation (1TB/cluster).  

5.1.2 Selection Task  

The Selection Task was designed to observe the performances 

of Hadoop framework dealing with complex tasks. Each node 

processes 1GB ranking table to retrieve the target pageURLs 

with a user defined threshold. This task is simulated and the 

results are shown in Figure 10.                                                    

 
      Figure 10: Selection task evaluation.  

 The simulation results show that considering the complex 

working mechanisms and parameters of Hadoop framework, 

the simulator HaSim can supply sufficiently close results 

compared to the benchmark results. From Figure 10 it can be 

clearly observed that the simulated results are close to the 

benchmark results, and the confidence intervals are small, in 

the range of 2.6 and 6.6 seconds.  

5.1.3 UDF Aggregation Task  

The UDF Aggregation Task reads the generated document files 

and searches for all the URLs appeared in the contents. And 

then for each unique URL, HaSim counts the number of unique 

pages that refers to that particular URL across the entire set of 

files.  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.5, May 2013 

49 

 

               

 
          Figure 11: Aggregation task evaluation.  

The simulation results are shown in Figure 11 which again are 

close to the benchmark results considering the complexities of 

the simulations. The simulation results show a high stability of 

HaSim for the task  

5.2 Evaluating HaSim with Customized Hadoop Applications  

Two customized Hadoop applications are involved for 

validation secondly - one is for information retrieval and the 

other one is for content based image annotation. The two 

applications were evaluated in both a Hadoop experimental 

cluster and HaSim. This section presents the evaluation results.  

5.2.1 The Experimental and Simulated Environments  

The Hadoop experimental cluster consists of 4 nodes. Three 

nodes were used as Datanodes with CPU Q6600@2.4G, RAM 

3GB, 120GB Seagate Hard Disk, and running OS Fedora 12. 

One node is used Namenode with CPU C2D7750@2.26G, 

2GB RAM and running OS Fedora 12. Each Datanode 

employed 4 mappers and 1 reducer with default cluster 

configurations. The network bandwidth is 1Gbps. We used 

HaSim to simulate a Hadoop cluster with the same 

configurations as those of the experimental cluster.  

5.2.2 MR-LSI  

MR-LSI [5] is a MapReduce based distributed LSI algorithm 

for information retrieval. The details will be described in the 

next chapter. MR-LSI is designed and implemented using the 

Hadoop framework. It involves both Map and Reduce 

functions, and contains a number of IO operations. MR-LSI 

was evaluated in both an experimental environment and 

HaSim, and plotted the results in Figure 12. It can be observed 

that the overall performance of HaSim is substantially close to 

that of the real Hadoop cluster, especially for scenarios dealing 

with MapReduce jobs withlarger sizes of datasets and 

involving an increased number of mappers. 

 

                

 
  Figure 12: Evaluating HaSim with MR-LSI. 

6  CONCLUSION  
This chapter presents HaSim, a Hadoop simulator for 

simulating data intensive MapReduce applications. HaSim was 

validated with established benchmark results and also with 

experimental environments which have shown that HaSim can 

accurately simulator MapReduce behaviors. HaSim can be 

used to investigate the impacts of the large number of Hadoop 

parameters by tuning their values. It can also be used to study 

the scalability of MapReduce applications which might involve 

hundreds of nodes.  
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