
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

44

A MR Simulator in Facilitating Cloud Computing
Prof R. Palson Kennedy T.V.Gopal,Ph.D

Department of Computer Science & Engineering , Department of Computer Science & Engineering,
Anna University Anna University, CEG

 Chennai, Tamil Nadu, 600025 , India Chennai , Tamil Nadu,600025 , India

ABSTRACT
MapReduce is an enabling technology in support of Cloud

Computing. Hadoop which is a mapReduce implementation

has been widely used in developing MapReduce applications.

This paper presents Hadoop simulator- HaSim, MapReduce

simulator which builds on top of Hadoop. HaSim models large

number of parameters that can affect the behaviors of

MapReduce nodes, and thus it can be used to tune the

performance of a MapReduce cluster. HaSim is validated with

both benchmark results and user customized MapReduce

applications.

Keywords: MapReduce Hadoop framework, Cloud

Computing, HaSim.Simulator Programming models

1. INTRODUCTION
MapReduce [1] is a distributed programming model for data

intensive tasks which has become an enabling technology in

support of Cloud Computing. Programmatically inspired from

functional programming, at its core there are two primary

features, namely a map and a reduce operation. From a logical

perspective, all data is treated as a Key (K), Value (V) pair.

Multiple mappers and reducers can be employed. At an atomic

level however a map operation takes a {K1, V 1} pair and

emits an intermediate list {K 2, V 2} pairs. A reduce operation

takes all values represented by the same key in the intermediate

list and processes them accordingly, emitting a final new list

{V 2}. Whilst the execution of reduce operations cannot start

before the respective map counterparts are finished, all map

and reduce operations run independently in parallel. Each map

function executes in parallel emitting respective values from

associated input. Similarly, each reducer processes keys

independently and on currently.

 Fig. 1 shows the structure of the MapReduce model. Popular

implementations of the MapReduce model include Mars [3],

Phoenix [2], Hadoop [1,9] and Google’s implementation [6].

Among them, Hadoop has become the most popular one due to

its open source feature. However, the large number of

configuration parameters of Hadoop brings forth a number of

challenges to users.Hadoop application, it is hard to decide on

a set of parameters that would help to achieve a good

performance, e.g. the number of mappers, the number and the

CPU speeds of nodes, and the size of buffers. It would be

extremely difficult if not impossible to set up a physical

Hadoop environment to evaluate the scalability of a Hadoop

application up to a few hundred or even thousand nodes.

These challenges make it a necessity to have a Hadoop

simulator in place where it can be used to tune the performance

of a Hadoop cluster and to study the behaviors of Hadoop

applications. It should be pointed out that few existing

MapReduce simulators are available and MRPerf [7,8] is a

representative one. However, the accuracy of MRPerf in

simulating Hadoop environments is limited to simple

behaviors. This paper presents the design and implementation

of HaSim, a MapReduce simulator for Hadoop applications.

The key contributions of HaSim lie in its high accuracy in

simulating the dynamic behaviors of Hadoop environments and

the large number of Hadoop parameters that can be modeled in

the simulator.

• Node parameters, which are related to processors, memory,

hard disk, network interface, Map and Reduce instances.

• Cluster parameters, which include the number of nodes, node

configurations, network routers, job queues and schedulers.

• Hadoop system parameters, which include the size of data

chunks, JVM reuse, sort factor, virtual memory, the number of

copying threads, data spilled threshold.

• HaSim simulator parameters including simulation speed,

system clock, accuracy levels, and system reporter.

 The accuracy of HaSim is extensively validated following a

two step process. In the first step, HaSim is validated against

an authoritative benchmark work.

In the second step, the behaviors of HaSim are evaluated in

comparison with that of a physical hadoop cluster using two

Hadoop applications. The comparative results show high

accuracy and stability of HaSim in simulating the behaviors of

Hadoop environments. Using HaSim, the impacts of a number

of parameters on Hadoop behaviors are further evaluated.

The rest of this paper is organized as follows. Section 2

reviews some related work in Hadoop simulation. section 3

presents the modeling work on Hadoop parameters

 Fig. 1. The MapReduce model.

Section 4 describes in detail the design of HaSim. Section 5

validates HaSim and subsequently evaluates the impacts of a

number of parameters n Hadoop behaviors. Section 6

concludes the paper and points out some future work.

2. RELATED WORK .
As mentioned in Section 1, MRPerf is one of the few existing

MapReduce simulators that are available. MRPerf can serve as

a design tool for MapReduce infrastructure, and as a planning

tool for making MapReduce deployment far easier via

reduction in the number of parameters that currently have to be

manually tuned. From the published testing results, RPerf

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

45

shows its high accuracy in simulating the impacts of network

topologies due to its adoption of NS2 [8] for network

simulation. However it should be pointed out that although

MRPerf achieves high accuracy in simulating behaviors related

to the underlying networks, it can simulate limited behaviors of

the Hadoop framework. The behaviors of Hadoop are affected

by a large number of parameters. The major limitations of

MRPerf are listed below:

• The processing resources for each user are fixed in MRPerf.

However, resources in a Hadoop environment are

dynamically changing and are usually shared by a number

of users dynamically.

• MRPerf cannot simulate the exact behaviors of Map and

Reduce phases. In a Map instance, the spilled data will be

kept writing into buffer while Map task is running. When

the occupied size of the buffer is less than a certain

threshold, the in-memory data is also kept spilling into

hard disk simultaneously. Due to the highly uncertain real

time states of the system, this mechanism significantly

affects the number of spilled files which will further affect

the IO behaviors. MRPerf simply ignores these procedures

and uses a pre-defined data value.

• If the occupied size of the buffer is larger than a certain

threshold, the CPU processing will be blocked until the

whole content in buffer is flushed. This event can also

affect system behaviors but MRPerf does not consider

this.

•In the Reduce phase, MRPerf still performs a simple

simulation to start reduce tasks simultaneously due to lack

of accurate simulations in Map phase.

The limitations of MRPerf motivated the work on HaSim. Our

focus in HaSim is to accurately simulate the behaviors of

Hadoop framework. Using HaSim, the performances of

Hadoop applications can be studied from a number of

angles including the impacts of the parameters on the

performance of a Hadoop cluster, the scalability of a

Hadoop application in terms of the number of nodes used,

and the impact of using heterogeneous environments.

3 MODELLING HADOOP PARAMETERS
The performance of a Hadoop application can be affected by a

large number of parameters.In this section, we present the

modeling work on these parameters.

3.1. Node parameters

• Processor: HaSim supports one processor per computer by

default design, but the number of processors could be

changed. One processor can have one or more cores. The

processing speed of a processor core is defined as the

volume of data units processed per seconds which can be

measured from real experimental tests.

• Hard disk: In hard disk entity, the speeds of IO operations

vary from time to time. Several parameters are introduced

to build the degressive reading/writing model. Let xmax

represent the maximum reading/writing speed of hard

disk. From the experimental results of testing Seagate

Barracuda 1 TB hard disk xmax is about 120 MB/s in

reading, and 60 MB/s in writing. Let xmin represent the

minimum reading/writing speed of hard disk, xmin is

around 55 MB/s in reading and 25 MB/s in writing.

Another parameter which is degressive factor r is used to

represent in each second the value of lost speed. The value

of the factor is around 0.0056 based on experimental tests.

Using these parameters we can calculate the real time

speed x of hard disk using formula (1).

X = XminXmax ----------------(1)

 (Xmin-Xmax)eˉrt +Xmax

• Memory: In each memory entity two parameters are modeled,

reading and writing. In the experimental tests, the reading

speed of standard DDR2-800 memory with dual channel

could reach up to 6000 MB/s and the writing speed is up

to 5000 MB/s. It is quite obvious that both the reading

and writing speeds would not be the bottlenecks of the

system due to their fast speeds.

• Ethernet adapter: In each Ethernet adapter entity, two

parameters are modelled, upstream bandwidth and

downstream bandwidth. The bandwidth can be in the

range of 100 and 1000 Mbps.

 3.2. Cluster parameters .The cluster parameters represent the

details of a simulated Hadoop cluster. It involves several

aspects which include the number of nodes, topology and

network facilities.

• Number of nodes: The number of nodes can vary from 1 to a

few hundreds.

• Topology: The number of nodes can be organized with a

certain network topology.

Currently HaSim only supports simple racks.

• Network facilities: The speed of a router can be in the range

of 100 and 1000 Mbps. When the bandwidth of a router is

defined, a number of standalone computers must be

configured to connect to the router to decide on their

network capacities.

• Job queue and job schedulers: A job queue holds the waiting

job entities. According to different job schedulers, jobs

are waiting for processing resources. HaSim supports two

job schedulers of Hadoop framework—first come first

serve and fair scheduler. These two types of schedulers

generate different job processing orders.

3.3. Hadoop system parameters. Before a Hadoop application

starts processing data, the data should be saved into

Hadoop Distributed File System (HDFS) in advance. The

number of files affects the number of Map instances

involved.

Normally the number of Map instances equals to the number of

file chunks. If the number of chunks is larger than the

maximum number of Map instances in the cluster, Map

instances will be assigned with data chunks via waves. If a

whole dataset is only saved in one file, the single file

could be separated into a number of chunks logically via

supplied APIs of the Hadoop framework. When data is

being processed, it would go through a number of

processing steps such as sorting, merging, combining,

copying, reducing. These steps highly affect the

performances of the system so that several parameters are

modelled to control the behaviours of these steps. As

these parameters are configurable and most of them are

involved in the actual Hadoop framework so we named

these parameters hadoop system parameters.

• Job specifications: In a job specification, a number of

parameters are involved to describe the properties of a

job. Job ID refers to the unique ID assigned to each job

for tracking. The JobSize is the total size of the input data.

No matter no many chunks of the data are submitted, this value

should be the total size of the hole data. when the

simulation starts, the data will be fetched from the HDFS.

The NumberOfRecords parameter is used to represent the

number of records in the data so that the size of each

record can be calculated by this value and the size of the

job. In the simulator this parameter is experimentally used

to measure the number of records combined by

Combiners, which may affect the erformances of

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

46

thesystem when certain types of Hadoop applications are

executed. The MapOutputRatio parameter represents the

volume of intermediate data to be generated by Map

instances which has an impact on IO performance. The

ReduceOutputRatio parameter is quite similar to

apOutputRatio. In ome Hadoop applications the Reduce

instances do not only copy data from Map instances but

also generate their own intermediate data which affects IO

performance. This parameter specifies the size of

intermediate data to be generated in the Reduce phase.

The ReducingRatio parameter represents the size of final

results which will be reduced in HDFS. This parameter

can affect the performance of the underlying network and

also the performance of a local hard disk. The Number of

Chunks parameter is used to specify the number of files to

be used to carry data. This parameter determines the

number of Map instances assigned to the job. If the

number of chunks is only one, a number of logically

separated files should be specified. The Number of

Reducers parameter represents the number of required

Reduce instances for the job. Simulated Hadoop

parameters: This group of parameters is highly related to

Hadoop framework. The io.sort.mb parameter represents

the size of memory buffer to use while sorting map output.

The io.sort.record.percent parameter represents the

proportion of io.sort.mb reserved for storing record

boundaries of the map output results. The remaining space

is used for the map output records themselves. The

io.sort.spill.percent parameter is a threshold that

determines when the Map instance should start spilling

processes writing data into memory.

If the threshold is reached, the CPU processing will be

suspended and the buffer will be flushed, which means all the

data saved in virtual memory will be spilled into hard disk. The

io.sort.factor one parameter specifies the maximum number of

streams to merge when sorting files in the Map phase. It

significantly affects the IO performance of the

system.Therefore the sorting and merging involve less

overhead generated by hard disk. The JVM Reuse parameter is

partially simulated in HaSim. Using JVM reuse, the overhead

generated by some short-lived tasks will be significantly

reduced.

3.4 HaSim Parameters

HaSim itself needs several parameters to control its own

behaviors. Five important parameters are introduced in HaSim:

System Clock: The System Clock parameter is an absolutely

and continuously timing component. In each change of the

system clock, its current value will be added by one second. It

is used to record the current system time, and to measure the

performances of Hadoop applications in different cluster

configurations.

Executing Speed: This parameter controls the execution speeds

of all the components in HaSim.

Accuracy Level: For normal Hadoop applications, it is enough

to set this parameter to the level of seconds. To maintain high

accuracy in simulation, milliseconds can be set for the

applications as well.

Shared Parameters: These parameters can control the rates of

the shared resources include hard disk and bandwidth. The

ratio is defined by R

R= Assigned Resource /Total Resource.

 Reporter: This parameter records several important system

states for analysis.

S.No Category Specification

1 Node

Parameters

processor, hard disk, memory,

Ethernet card, Map instance, Reduce

instance

2 Cluster

Parameters

number of nodes, topology, network

facilities, job queue, job scheduler

3 Hadoop

System

Parameters

job specifications, Hadoop

parameters

4 HaSim

Parameters

system clock, execution speed,

accuracy level,

shared parameters, reporter

Table 3.1: Summarizes the parameters modelled in HaSim.

4 THE DESIGN OF HASIM
This section presents the design of HaSim in detail. The

prototype is based on Hadoop framework.

4.1 HaSim Architecture

Figure 2 shows the data flow of HaSim. To perform a

simulation, the Cluster Reader component reads the cluster

parameters from the Cluster Spec to create a simulated Hadoop

cluster environment. The Job Spec will be processed by the Job

Reader component and jobs will be submitted to HaSim for

simulation. HaSim follows a master-slave mode. The simulated

Map instances (MapperSim), Reduce instances (ReducerSim),

JobTracker and Task Trackers are located on these nodes. The

Master node is the Name node of Hadoop framework which

contains JobTracker to correspond and schedule the tasks. The

Slave nodes are the Data nodes of Hadoop framework which

contains TaskTrackers. On Slave nodes Map instances and

Reduce instances perform data processing tasks .

From Figure 2 it can be observed that when a job is submitted

to a simulated Hadoop cluster, the Job Tracker splits the job

into several tasks. Then TaskTracker and Job Tracker will

communicate with each other via messaging based on

heartbeats. One thing should be pointed out that in Hadoop

framework, the communications among JobTracker and

TaskTrackers are based on HTTP. However in the simulator

simplicity has been done. The HTTP communications are not

simulated but using the times consumed by the

communications to measure the overhead generated by HTTP

communications. If the JobTracker finds that all the Map tasks

have been finished, and then the Reduce instances will be

notified to be ready for merging phase. Moreover if the

JobTracker finds all Reduce tasks have been finished, then the

job will be considered as finished.[4,5]

If the Map tasks have not been finished yet, the TaskTrackers

will be notified to choose a Map task or a Reduce Task based

on their availabilities.

4.2.4 JobTracker and TaskTracker .

JobTracker is mainly used to track a simulated job and

TaskTracker is used to run individual tasks. When a job is

submitted, the job ID will be sent to JobTracker for tracking.

The JobTracker starts computing the input splits for the job.

Then it creates one map task for each split. TaskTrackers

periodically send messages to the JobTracker via heartbeats

which tell the JobTracker that a TaskTracker is working. As

part of the heartbeat, a TaskTracker will tell that if the current

task is finished and ready to run a new task. Figure 4.6 shows

the work flows of the components in HaSim.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

47

 Figure 2: HaSim components.

4.2.2 MapperSim

When a Hadoop application is submitted to HaSim, the input

data will be split into a number of data chunks and each chunk

is associated with a Map instance. During the processing, each

task will be assigned to a Map instance for execution. The

operations of a Map instance are simulated by the MapperSim

component. MapperSim simulates the operations of a Map

instance (mapper) on each node. It copies data which is saved

in HDFS to its own local hard disk. Commonly each

MapperSim processes one file chunk but if only one file chunk

is saved in HDFS, then a logically separated number of chunks

can control the number of MapperSim instances involved in

the job. When the data is copied and saved in the local hard

disk, MapperSim starts processing the data based on the job

spec of the simulated Hadoop application. During the

processing steps, intermediate data will be generated. To

improve the IO performance, the intermediate data will be

written into a memory buffer. In the buffer, the data can be pre-

sorted to gain high efficiency. As long as data is writing into

the buffer, if a threshold is reached, a background thread will

start spilling the data to hard disk. The intermediate data will

be kept writing into the buffer while the spilling takes place. If

the buffer is full during this time, the CPU processing will be

blocked until the spill procedure is complete.

Figure 3: Data flows in the MapperSim component.

And if a Combine function is needed, combiner will be

involved in this step after sorting.

 Figure 4: MapperSim sequence diagram

Figure 4 shows a sequential diagram shows the interactions of

MapperSim with other components.HaSim.

4.2.3 ReducerSim

The ReducerSim component simulates the Reduce instances in

Hadoop framework. It is used to collect the outputs from

MapperSim and reduce the final outputs into HDFS. Figure 5

shows the data flows in ReducerSim.

 Figure 5: Data flows in the ReducerSim

component.

 The output files of the MapperSim component are saved in the

local hard disk. The ReducerSim component needs the output

from several MapperSim components for its particular

partition. The ReducerSim starts copying data when an output

is ready. Each ReducerSim has a number of copying threads so

that it can copy the output results from a number of

MapperSim components in parallel. If the size of the output is

small, it will be copied into a memory buffer otherwise it will

be copied into the hard disk directly. If the output results are

copied into memory, when a certain threshold is reached, e.g. a

percentage of buffer used or a number of file copied, these

outputs will be merged and spilled into hard disk. As the

number of files increases, a background thread merges them

into larger and sorted files. When all the output results from the

MapperSim components have been copied, the sorting step will

start. This step merges the map outputs and maintains sorting

orders of outputs. After the files have been sorted, they will be

reduced into HDFS as one final output. For some Hadoop

applications, the Reduce instances may need to process data

involving processors but without IO operations. The

ReducerSim in HaSim supports this feature. Figure 6 shows its

sequence diagram.

 Figure 6: Hardware interactions in ReducerSim.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

48

5. VALIDATIONS OF HASIM
To validate HaSim, a number of tests have been conducted.

The performances of HaSim against published benchmark

results have been compared. And also an experimental

environment of a Hadoop cluster has been set up and the

simulator HaSim is evaluated with our Hadoop applications.

 Figure 7: The workflow of HaSim.

5.1 Validating HaSim with Benchmarks

HaSim is validated firstly with 3 benchmark results presented

in [6] [5] - Grep Task, Selection Task and UDF Aggregation

Task.

Figure 8: Grep Task evaluation (535MB/node).

5.1.1 Grep Task

This task simulated exactly what [6] [10,11] did in their

benchmarking work. HaSim simulated the cluster using 1 node,

10 nodes, 25 nodes, 50 nodes and 100 nodes respectively. Two

different scenarios have been tested, one is that each node is

assigned 535MB data to process, and the other is that 1TB data

is submitted to the cluster. Each scenario was evaluated 5

times. The simulation results are plotted in Figure 8 and Figure

9 respectively which are close to the benchmark results. Both

the simulation results and benchmark results are in the same

scale. Regarding the complex physical environments, the

simulation results can supply acceptable accuracy.

The gaps between simulation results and benchmark results can

be ignored. The confidence intervals of the results are small in

both scenarios (in the range of 0 and 2.6 seconds in the first

scenario and in the range of 4.1 and 7.6seconds in the second

scenario) showing a stable performance of HaSim.

 Figure 9 : Grep Task evaluation (1TB/cluster).

5.1.2 Selection Task

The Selection Task was designed to observe the performances

of Hadoop framework dealing with complex tasks. Each node

processes 1GB ranking table to retrieve the target pageURLs

with a user defined threshold. This task is simulated and the

results are shown in Figure 10.

 Figure 10: Selection task evaluation.

 The simulation results show that considering the complex

working mechanisms and parameters of Hadoop framework,

the simulator HaSim can supply sufficiently close results

compared to the benchmark results. From Figure 10 it can be

clearly observed that the simulated results are close to the

benchmark results, and the confidence intervals are small, in

the range of 2.6 and 6.6 seconds.

5.1.3 UDF Aggregation Task

The UDF Aggregation Task reads the generated document files

and searches for all the URLs appeared in the contents. And

then for each unique URL, HaSim counts the number of unique

pages that refers to that particular URL across the entire set of

files.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

49

 Figure 11: Aggregation task evaluation.

The simulation results are shown in Figure 11 which again are

close to the benchmark results considering the complexities of

the simulations. The simulation results show a high stability of

HaSim for the task

5.2 Evaluating HaSim with Customized Hadoop Applications

Two customized Hadoop applications are involved for

validation secondly - one is for information retrieval and the

other one is for content based image annotation. The two

applications were evaluated in both a Hadoop experimental

cluster and HaSim. This section presents the evaluation results.

5.2.1 The Experimental and Simulated Environments

The Hadoop experimental cluster consists of 4 nodes. Three

nodes were used as Datanodes with CPU Q6600@2.4G, RAM

3GB, 120GB Seagate Hard Disk, and running OS Fedora 12.

One node is used Namenode with CPU C2D7750@2.26G,

2GB RAM and running OS Fedora 12. Each Datanode

employed 4 mappers and 1 reducer with default cluster

configurations. The network bandwidth is 1Gbps. We used

HaSim to simulate a Hadoop cluster with the same

configurations as those of the experimental cluster.

5.2.2 MR-LSI

MR-LSI [5] is a MapReduce based distributed LSI algorithm

for information retrieval. The details will be described in the

next chapter. MR-LSI is designed and implemented using the

Hadoop framework. It involves both Map and Reduce

functions, and contains a number of IO operations. MR-LSI

was evaluated in both an experimental environment and

HaSim, and plotted the results in Figure 12. It can be observed

that the overall performance of HaSim is substantially close to

that of the real Hadoop cluster, especially for scenarios dealing

with MapReduce jobs withlarger sizes of datasets and

involving an increased number of mappers.

 Figure 12: Evaluating HaSim with MR-LSI.

6 CONCLUSION
This chapter presents HaSim, a Hadoop simulator for

simulating data intensive MapReduce applications. HaSim was

validated with established benchmark results and also with

experimental environments which have shown that HaSim can

accurately simulator MapReduce behaviors. HaSim can be

used to investigate the impacts of the large number of Hadoop

parameters by tuning their values. It can also be used to study

the scalability of MapReduce applications which might involve

hundreds of nodes.

7 REFERENCES
[1] Apache Hadoop! Available at: http://hadoop.apache.org/

[Accessed Feb 2, 2013].

[2] Aarnio, T. (2010). Parallel Data Processing with

Mapreduce. TKK T-110.5190, Seminar on

Internetworking, Available:

http://www.cse.tkk.fi/en/publications/B/5/papers/Aarnio_f

inal.pdf.

[3] Alham, N. K., Li, M., Hammoud, S., Liu, Y., and Ponraj,

M. (2010). A distributed SVM for image annotation. In:

Proceedings of the 7th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD), YanTai,

China

[4] He, B., Fang, W., Luo, Q., Govindaraju, N. K., and Wang,

T. (2008). Mars: a MapReduce framework on graphics

processors. In PACT '08: Proceedings of the 17th

international conference on Parallel architectures and

compilation techniques, 260–2698

[5] Pavlo, A., Paulson, Madden, and S., Stonebraker, M.

(2009). A comparison of approaches to large-scale data

analysis.

[6] Taura, K., Kaneda, K., Endo, T., and Yonezawa, A. (2003).

Phoenix: a parallel programming model for

accommodating dynamically joining/leaving resources.

SIGPLAN Not., 38, 216–229. 7[51]

[7]The Network Simulator - ns-2 Available at:

http://www.isi.edu/nsnam/ns (Last accessed: 19-May-

2013).

[8] Venner, J. (2012). Pro Hadoop (1st ed). New York:

Springer.

[9] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. (2009).

Using realistic simulation for performance analysis of

mapreduce setups.

 [10] Wang, G., Butt, A. R., Pandey, P., and Gupta, K. (2011).

A Simulation Approach to Evaluating Design Decisions in

MapReduce Setups. In: Proceedings of the 17th Annual

Meeting of the IEEE/ACM International Symposium on

Modelling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS '11), London,

UK.

IJCATM : www.ijcaonline.org

