
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

32

An Overview of Methods of Reliability and Availability
Analysis based on Software Architecture

Neeraj Kumar Sharma ArunPrakashAgrawal
Amity University, Noida Amity University, Noida

ABSTRACT
When we talk about the User acceptance testing of the

software then two quality matrices come into our mind. They

are Reliability & Availability. These two parameters are the

most important measures for evaluating the quality of the

software system and represents user-oriented view of software

quality. Reliability and availability must be engineered into

software from the onset of its development, andpotential

problems must be detected in the early stages,when it is easier

and less expensive to implement modifications. For this

reason, a method is needed for analyzing software architecture

with respect to reliability and availability. In this paper, we

survey and examine different methods of reliability &

availability analysis based on software architecture.

Keywords:
 Reliability and availability analysis, Software

architecture,Software components

1. INTRODUCTION
Software systems are increasingly entering consumers’

everyday life. These systems are often highly complicated and

distributed to different platforms over wired or wireless

networks. A small error in the software sub system can cause

a failure in the complete system that leads to disastrous

failures which differ in their impact depending on the

operations of an organization. Hence these systems must

demonstrate high reliability and availability.

Reliability is defined here as the probability of the failure-free

operation of a software system for a specified period of time

in a specified environment [1]. Availability is used to indicate

the probability of a system or equipment being in operating

condition at any time t, given that it was in operating

condition at t = 0. Reliability and availability are often defined

as attributes of dependability, which is the ability to deliver

service that can justifiably be trusted [2]. From an architecture

point of view, reliability and availabilityare execution

qualities of a software system. Several measures are

traditionally used for reliability and availability, such as mean

time to failure (MTTF), mean time to repair (MTTR) and

failure rate. The traditional views and measures, however,

might not scale up to the needs placed on today’s complex

systems by their multiple stakeholders. Different stakeholders,

such as end user maintainers, and developers might have

different requirements for the value of reliability and

availability indicators. Therefore, reliability and availability

must be approached from a more global perspective.

Reliability and availability predictions are the challenging

tasks due following reasons.

 It is difficult to analyze software reliability and

availability due to uncertain parameters like failure rates

& repair rates.

 The models generally assume that once a fault is

discovered it is removed immediately i.e. software’s

have instantaneous repair time. The reality is that

applications executing in the field can take significant

amount of time may be days or weeks to get a fault

removed.

 The problem, which is generally faced, is the quality of

the failure data. For example repeat failures generally

occur due to the fact that faults are not removed

instantaneously.

 Another problem is that operational profile testing is

generally ignored i.e. it is assumed that the software is

going to be tested in the same manner that it is used in

the field, which is not true in practice.

 Several analysis or prediction methods have been

developed during recent decades for different types of

purposes and by different communities. Consequently,

they have different definitions and measures for

reliability, architecture, inputs, outputs, notations,

assumptions, users, etc. Here,the paper is comparing the

architecture-based reliability and availability analysis

methods and techniques. The purpose is to find a method

or a set of methods that can be applied to today’s

complex software systems, at the architecture level, as

well as to discover the shortcomings of methods. Section

2describes the comparison framework for analysis

methods. This framework is used to compare the selected

characteristics of the reliability and availability analysis

methods collected from the literature. Section 3gives a

brief overview of reliability and availability prediction

approaches. Section 4represents the comparison of

methods and techniques for reliability & availability

prediction and Section 5presents the results of

comparison. Finally,in section 6, the conclusions are

summarized.

2. A COMPARATIVE FRAMEWORK

FOR RELIABILITY AND

AVAILABILITY ANALYSIS METHODS
The framework has four categories for methods comparison.

These categories have various elements and the questions

related to the each element. The framework is shown in table

1. The framework describes the characteristics required for the

analysis methods. The categories of the framework are based

on the NIMSAD (Normative Information Model-based

Systems Analysis and Design) framework [4]. NIMSAD

classifies the method elements into four categories: context,

user, method content, and evaluation. In the context category,

the method is examined from the angle of the problem

situation, whereas in the user category, the method is

examined from the viewpoint of the intended method users. In

the third category, the focus of the examination is the content

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

33

of the method itself. The last category, which is validation,

focus on the evaluation of the method context, user, and

content. It validates the maturity of the method and the results

of the method.

Table 1.A Comparative Framework for Reliability and Availability Analysis Method [4]

Category Elements Questions

Context

Goal

What is the goal of the analysis method?

Scope of applicability Is the method/technique applicable to the

different layers of software:Application,

middleware, and infrastructure?

Application domain independency Is the method limited to any application

domain?

Component-specificity Can the method be used to predict the reliability

and availability of theindividual components?

How does the method/technique treat black box

components?

Architecture-specificity Can the method/technique be applied to

software systems that are distributed to several

(hardware) platforms? Are the different

interactions between components considered?

Platform/implementation technology

independency

Can the method/technique be used before

making any implementation-related decisions?

Is the method dependent on a certain platform

or implementation technology?

User

Target group

Who is the intended user of the method?

Needed skills What skills are required for using the method?

Expected benefits What are the benefits of using the method?

Required resources How much extra work does the method require?

How much time doesthe use of the method

require?

Contents

Language What notation is used in architecture

descriptions?

Architectural viewpoints What views does the method use for predicting

reliability and availability?How is the behavior

modeled?

Analysis model Does the method provide a special model with

which the analysis isperformed?

System usage Have the different ways and frequencies that

were used for executingtasks been taken into

account?

Variability Is the variation of architecture considered in the

analysis? Can theanalysis be performed for

different product variants by reusing existing

knowledge?

Tool support Are there any tools that support the method?

Analysis process How the analysis is performed (the inputs,

outputs and techniques)?

Limitations What are the assumptions and limitations of the

method?

Validation

Maturity of the method

When was the material of the method first

published? Has the method been applied in the

lab only or also in the development of large-

scale products? How many times and to what

size of applications has the method been

applied? Is there evidence for the method’s

benefits and costs?

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

34

Table1. Continued

Traceability of R&A(Reliability &

Availability) requirements

When was the material of the method first

published? Has the method been applied in the

lab only or also in the development of large-

scale products? How many times and to what

size of applications has the method been

applied? Is there evidence for the method’s

benefits and costs?

Precision of prediction How close are the predicted values to the actual

values when the method has been used?

3. OVERVIEW OF RELIABILITY AND

AVAILABILITY PREDICTION

APPROACHES
At a high level of abstraction, the reliability and availability

analysis methods can be classified into quantitative and

qualitative methods. Methods employing quantitative

techniques have been used since the 1970s [5]. There is a lot

of variation in the quantitative methods; some of the methods

are applicable before, and some after, system implementation.

System measurement based methods, which focus on failures

and down times, are used for analyzing systems already in use

and for making predictions on implemented systems that are

usually run and tested in a lab. The effort in software

reliability growth based models [20] is concentrated on

statistical testing, and therefore the models are applicable in

the late development phase. These types of methods are called

black-box approaches, since they ignore the internal structure

of software systems. Since today’s software systems are based

on components and their interactions, these methods do not

encompass the reliability and availability prediction of

component based software architectures. The so-called white-

box approaches consider the system’s internal structure in

reliability prediction, computing the system level reliability

based on the reliabilities of its components. Goseva-

Popstojanova and Trivedi[6] provide a useful survey of

architecture based approaches, categorizing them into state-

based, path-based and additive models. The state-based

models use the probabilities of the transfer of control between

components to estimate the system reliability, whereas the

path-based models compute the reliability of composite

software based on the possible execution paths of the system.

The additive models address the failure intensity of composite

software, assuming that the system failure intensity can be

calculated from component failure intensities. The additive

models, however, model failure intensities with mathematical

algorithms, and therefore do not explicitly examine software

architectures. The earliest methods of state-based and path

based models [5] were proposed in the 1970s and new

methods have evolved since then.

Qualitative analysis methods manipulate knowledge rather

than numbers. This knowledge is usually specific for the

system under study and can be explicit, i.e. documented; or

tacit, undocumented. The tacit knowledge is only in the

designers’ mind, which makes the analysis process highly

human dependent and therefore prone to errors. Knowledge

can also be abstract/general, or domain/application specific.

Recently, there has been a tendency to document general

knowledge, for example, by identifying and using

architectural styles and patterns. There still exists a

considerable lack of architectural styles and patterns that

concentrate on solving the problems of reliability and

availability.

4. COMPARISON OF RELIABILITY

AND AVAILABILITY PREDICTION

METHODS
Since numerous analysis methods are available for reliability.

Hence we are defining the scope for the methods. Selections

are made on the following basis.

• Concentrating on software reliability and/or

availability

• Based on architectural view

• User centric approaches for analysis

• Provide clear and applicable analysis

Tables 2 and 3 represent the detailed comparison results of the

selected six methods.

Table 2.Comparison summary of reliability analysis methods (part1/2)

Elements

Cortellessa et al. [7] Rodrigues et al. [8] Yacoub et al. [9]

Goal

To predict system reliability

based on component and

connector failure rates

To predict software system

reliability taking into account

the component structure that

is exhibited in the scenarios

and concurrent nature of

systems

To analyze the reliability of

component-based applications as a

function of their components and

interfaces

Scope of applicability

Focused on the application

layer but can also be applied

toother layers of software

Not designed for any specific

software layer

Designed to the application layer; can

be applied to otherlayers as well

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

35

Table 2. Continued

Applicationdomain

independency

Domain undefined, may be

applied to any domain

Domain undefined, may be

applied to any domain

Targeted to all

componentbasedapplications

Component-specificity

Assumes that reliability

estimates of the components

are available

Assumes that reliability

estimates of the components

are available

Assumes that reliability estimates of

the components are available

Architecture-specificity

Distribution is considered

(deployment diagram),

different types of interaction

notconsidered separately

Different interaction types not

considered but all of them can

easily be described in

scenariodescriptions.

Distribution not discussed

Distribution is considered as link

reliabilities. Component interactions

are described as dependencies

(adapted from control flow graph)

Platform/implementation

technology independency

Implementation independent

Implementation independent Implementation independent

Target group

System architects

Method user not defined,

likely targeted to software

architects

Software architects

Needed skills

No special skills needed Familiarity with Markov

chains

No special skills needed

Expected benefits

Reliability analysis before

implementation. Allows

selection of elements with

suitable reliability

characteristics

Reliability analysis before

implementation. Detection of

mismatch between behavior

and architecture

Detection of the influence of usage

scenarios on reliability of

components. Application level

reliability

Required resources

Fully integrated with UML

(Unified Modeling Language)

the annotation of diagrams

requires only slight additional

work. Due to the tool support

promised some extra time

required

First, the scenario annotations

must be performed, the rest of

the analysis is partly

automated. Tool support for

synthesis of LTS (Labeled

Transition System) models.

Several tools for analysis

based on Markov chains

Time to estimate the analysis model

parameters and construct the CDG

(Component Dependency Graph)

depends on the size and complexity of

the system. The calculations are

automated

Language

UML

MSC as scenario notations,

architecture description is not

set to any particular notation

UML

Architectural

viewpoints

Architecture is modeled with

use case, sequence, and

deployment diagrams

Behavior is modeled with

scenarios

Sequence diagrams are adopted as a

means of documenting scenarios

Analysis model Annotations Annotations, Cheung’s model

(i.e. Markov chains)

CDG

System usage

Different user profiles with

related occurrence

probabilities are detected

from annotated use case

diagram

Composing multiple

scenarios from different

stakeholders is possible (i.e.

scenario specification).

Scenario transition

probabilities are derived from

an operational profile of the

system

Based on scenarios. Component

execution probabilities assigned to

scenarios are similar to the

operational profile

Variability Not supported Not supported Not supported

Tool support

Working currently on a set of

automation tools

Tool support exists for the

automation of a synthesis of

LTS models.

The calculation algorithm is

automated

Analysis process

Input: annotations,

Technique: calculation

formulas,

Output: component and

system failure probabilities

Input: Annotated MSCs,

LTSs synthesized for each

component,

Technique: Markov model,

Output: System reliability

estimate, detected implied

scenarios

Input: Parameter (attribute) estimates,

Technique: CDG, SBRA algorithm,

Output: reliability of application as

the function of reliability of

components and transitions

Table 2. Continued

 Failure probabilities for Transfer of control between Execution profiles of scenarios and

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

36

Limitations components must be

available. Independence of

failures among different

components

components has the Markov

property. Failures are

independent across

transitions. There is only one

initial and one final scenario

for a system. Component

reliability must be available

component reliability must be

available. Does not consider failure

dependencies between components or

take into account the overall

application reliability growth as a

function of time

Maturity of method Validation is based on

experimental evaluation

performed by the authors

Validation is based on

empirical evaluation

performed by the authors

An experimental case study is used to

illustrate the applicability of the

approach

Traceability of R&A

requirements

Not supported

Not supported Not supported

Precision of prediction Not compared with actual

values

Not compared with actual

values

Not compared with actual values

Table 3.Comparison summary of reliability analysis methods (part 2/2)

Elements

Reussner et al. [1] Grassi [10] Wang et al. [11]

Goal

To predict system reliability

through compositional

analysis of usage profiles

and the reliability of

environment components

To predict the dependability

(inc. reliability) of an

assembly of pre-existing

independently developed

services

To predict the reliability of

heterogeneous systems according to

reliability of each component,

operational profile and the

architecture of software

Scope of applicability

Proposed for service

architecture but may also be

used for other layers

Intended for service-oriented

computing (SOC) systems

Designed mainly for the application

layer but is applicable to the other

layers

Application domain

independency

Domain undefined, may be

applied to any domain

Domain undefined, may be

applied to any domain

Domain undefined, may be applied

to any domain.

Component-specificity

Reliability of a component is

computed as a function of

the usage profile and the

reliability of external

services. Can also be used

for black-box components

Assumes that reliability of

basic resources (i.e. services

that do not require other

services) is known. Predicts

reliability of complex

resources (i.e. services that

require other services to

carry out their own services)

Assumes that reliability estimates of

the components are available

Architecture-specificity

Use and control interactions

are supported. Applicable to

open, distributed systems

(hierarchical kens define

distribution boundaries)

Interactions are described as

flows of requests between

services. Distribution is

supported as flows

associated with connectors

Interactions are described as

transitions between components.

Distribution is not considered

Platform/implementation

technology independency

Implementation independent

Implementation independent.

However, based on

preexisting services.

Resources are not limited to

software resources

Implementation independent

Target group Software integrators Service assemblers Software architects

Needed skills

Familiarity with Markov

chains

Familiarity with Markov

chains

Familiarity with Markov chains

Expected benefits

Reliability analysis of

components, architecture,

and environment

Enables to select reliable

services when assembling

services.

Enables to analyze the reliability of a

system that combines heterogeneous

architectural styles

Table 3. Continued

Required resources

Development of Markov

chains for kens/composite

kens. Not easily applicable

(time-consuming) if the

calculations are not

Development of three

different models. Not easily

applicable (time-consuming)

if the calculations are not

automated

Transformation of the architectural

views into state views, computation

of reliability and transition

probability of each state, integration

of the views. Time-consuming

method if the state views do not

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

37

automated already exist, or tool support is not

provided

Language

Uses RADL (Rich

Architecture Definition

language), can be applied to

UML as well

Does not require any specific

architecture notation

Does not require any specific

architecture notation

Architectural

viewpoints

Describes architecture as a

composition of kens

Describes architecture as an

assembly of services

Architecture described as

components and connectors

Analysis model

Markov chains

Flows of request are

modeled by a discrete time

Markov

chain

Markov chains

System usage

Usage profiles are modeled

as probabilities of calls to a

provided service in a certain

state

Services of complex

resources are characterized

by a flow modeling the

usage profile of other

services

Operational profile is taken into

account as transition probabilities

between components

Variability Not supported

Not supported Not supported

Tool support Not provided

Not provided Not provided

Analysis process

Input: the reliability of basic

kens, service FSMs, and

usage profiles of provided

services,

Technique: Markov chains,

Output: Service reliability

and overall reliability

Input: failure information of

the service flows,

 Technique: Markov chains,

flow model,

Output: reliability of a

service as the reliability of

the services it requires

Input: integrated global state view of

the system, Technique: transition

Matrix, Output: reliability of the

system

Limitations

Requires certain data for the

architectural kens. Failures

of services are independent

The failure rate of basic

resources is known. Each

request in a state must be

fulfilled according to some

completion models before a

transition to the next state

can take place

Assumes that the reliabilities of

components and connectors are

independent of the transition

probabilities

Maturity of method Validation is based on

empirical evaluation

performed by the authors

Validation is based on a

laboratory example used for

illustrating the approach

Validation is based on experiments

performed by the authors

Traceability of

R&Arequirements

Not supported Not supported Not supported

Precision of prediction

In the example system, the

deviation of the prediction

from the measured value is

below 1%

Not compared with actual

values

Not compared with actual values

5. RESULTS OF THE COMPARISON
Reliability and availability, as well as other quality attributes,

have just recently begun to be addressed at the architecture

level methods, techniques and notations. Design approaches

already exist that use quality attributes as primary

requirements when designing software architecture [1], [12].

It has also been recognized that analysis from the architecture

is only possible if the architecture is represented in a way that

enables the analysis [13]. A standard notation extension is

required in order to unify the different analysis methods and

to avoid the development of an enormous amount of separate

annotation and extension techniques. All of the surveyed

methods require some additional work, mostly regarding the

development of an analysis model or application of

mathematical algorithms. It is obvious that approaches closer

to UML require less additional work as UML being a widely

used standard, and therefore, are more familiar to architects

working in industry than the approaches that require a

separate analysis model. It is also obvious that more tool

support is needed in order to make reliability prediction a

fluent part of software development. The study could not find

any method that would also consider variability in the

analysis. None of the existing methods provides traceability of

R&A requirements to predicted R&A, against which the

measured R&A should be compared. The analysis approaches

studied above do not analyze component reliability or do not

consider the effect of a component’s internal behavior on its

reliability. The availability analysis methods are very scarce;

except two methods [14], [15]. The availability analysis has

not been studied, or at least, we could not find any evidence.

One reason is the confusing definitions of the ISO/IEC 9126-1

quality model [16] that defines reliability as the capability of a

software system to maintain a specified level of performance

when used under the specified conditions. According to the

quality model, reliability is mixed with performance, and

availability is a sub-characteristic of reliability. This partly

explains why only a few availability analysis methods exist.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.5, May 2013

38

6. CONCLUSIONS
Based on our literature survey, the paper concludes that the

current analysis methods have several shortcomings limiting

their use in industrial settings. The most common

shortcomings were a lack of support for tools and variability,

weak reliability analysis of software components, and weak

validation of the methods and their results. In addition, there

was no proof of the maturity of the methods as they were not

validated or used in the industry. Furthermore, quantitative

methods alone cannot provide a comprehensive prediction of

the reliability and availability of a system. The comparison

process using the framework was straightforward and simple.

The framework is a valuable tool for anyone searching for an

applicable analysis method. Based on the comparison using

the framework the best suitable analysis method can be

selected. The framework assists to pay attention to important

issues of the analysis methods from the viewpoint of software

architecture. Although the framework was not applied to

availability analysis methods, but still believe that the

framework is suitable for the evaluation methods of any

quality attribute because its elements have been defined

according to the needs of architectural evaluation, not from

the viewpoint of any specific quality attribute. The framework

also takes into account variability, the specific characteristic

of product family architectures that are increasingly applied to

software intensive systems in industry. In summary, future

research activities are needed for developing availability

analysis methods applicable for service oriented architectures,

a standard notation describing reliability, availability and their

variations in architectural descriptions, and for improving

architecture modeling and analysis tools which are needed for

providing architects with an integrated working environment.

The main benefit of an integrated environment is that it

enables the achievement of a better traceability of reliability

and availability requirements, and therefore, a better

applicability of the methods for large software products in the

industry.

7. REFERENCES
[1] Reussner, R.H., Schmidt, H.W., Poernomo, I.H.:

Reliability prediction for component-based software

architectures. J. Systems Softw. 66(3), 241–252 (2003)

[2] Avizienis, A.,Laprie, J.C.,Randell,B.: Fundamental

Concepts of Dependability. LAAS-CNRS. p. 21 (2001)

[3] Lyu, M. R. (2007), Software Reliability Engineering, A

Roadmap, in proceedings of international conference on

Future of Software Engineering, Washington, pp.153-

170.

[4] Jayaratna, N.: Understanding and Evaluating

Methodologies: NIMSAD: a Systematic Framework.

McGraw Hill, London, 259 p (1994)

[5] Shooman, M.: Structural models for software reliability

prediction. In: Proceedings of the 2nd International

Conference on Software Engineering (1976)

[6] Goseva-Popstojanova, K., Trivedi, K.S.: Architecture

based approach to reliability assessment of software

systems. Perform. Evaluat. 45(2–3), 179–204 (2001)

[7] Cortellessa, V., Singh, H., Cukic, B.: Early reliability

assessment of UML based software models. In: Third

International Workshop on Software and Performance.

Rome (2002)

[8] Rodrigues, G.N., Rosenblum, D.S., Uchitel, S.: Using

scenariosto predict the reliability of concurrent

component-basedsoftware systems. In: 8th International

Conference on Fundamental Approaches to Software

Engineering, FASE 2005. Springer Lecture Notes in

Computer Science, Edinburgh,(2005).

[9] Yacoub, S., Cukic, B., Ammar, H.: Scenario-based

reliability analysis of component-based software. In:

Proceedings of 10th International Symposium on

Software Reliability Engineering (ISSRE’99) (1999).

[10] Grassi, V.: Architecture-based dependability prediction

for service-oriented computing. In: Proceedings of the

Twin Workshops on Architecting Dependable Systems,

International Conference on Software Engineering (ICSE

2004). Springer, Edinburgh, (2004)

[11] Wang, W.-L., Wu, Y., Chen, M.-H.: An architecture

based software reliability model. In: Pacific Rim

International Symposium on Dependable Computing.

IEEE, Hong Kong (1999)

[12] Bachmann, F., Bass, L., Klein, M.: Moving from quality

attribute requirements to architectural decisions. In:

Second International Software Requirements to

Architectures, STRAW’03. Portland, USA (2003)

[13] Jazayeri, M., Ran, A., van der Linden, F.: Software

Architecture for Product Families. Addison-Wesley,

Boston, 257 p (2000)

[14] Laprie, J.C., Kanoun, K.: X-ware reliability and

availability modeling. IEEE Trans. Software Eng. 18(2),

130–147 (1992)

[15] Ledoux, J.: Availability modeling of modular software.

IEEE Trans. Reliability 48(2), 159–168 (1999)

[16] ISO/IEC, Software Engineering - Product Quality. Part

1: Quality Model (2001)

[17] Suri, P.K. (2009), Simulator for Risk assessment of

software project based on performance measurement,

International Journal of Computer Science and Network

Security, Vol.9 No.6, pp. 23-30.

[18] Taylor, R. and Vander, Hoek A. (2007), Software Design

and Architecture: The Once and Future Focus of

Software Engineering, International conference on

Future of Software Engineering , IEEE-CS Press, pp.

226-243

[19] Yadav, A. and Khan R.A.(2009), Critical review on

software reliability models, International Journal of

recent trends in Engineering, Vol 2, No. 3, pp. 114-116.

[20] Yamada, S., Ohtera, H. and Narihisa, H. (1986),

Software Reliability Growth Models with Testing-Effort,

IEEE Trans. Reliability, Vol. 35, pp. 19-23.

IJCATM : www.ijcaonline.org

