
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

34

Efficient QoS-based Scheduling Mechanisms for IEEE

802.16e Networks

M. Deva Priya

Assistant Professor

Department of CSE,

SKCT, Coimbatore,

Tamil Nadu, India.

 M.L Valarmathi,Ph.D
Associate Professor

 Department of CSE,

GCT, Coimbatore,

Tamil Nadu, India.

V. Sundarameena
Assistant Professor

Department of CSE,

MIT, Pondicherry,

India.

ABSTRACT

Users have become more acquainted to broadband access.

IEEE 802.16, a standard for broadband wireless

communication in Metropolitan Area Networks (MAN)

promises to be one of the best wireless access technologies

capable of supporting very high bandwidth applications. The

main objective of WiMAX is to deliver wireless

communications with high Quality of Service (QoS)

guarantees, security and mobility. Many scheduling

algorithms compatible with the IEEE 802.16 standards are

proposed in the literature with the tenacity of throughput

optimization, fairness enhancement and QoS provisioning.

However, few scheduling schemes minimize the delay

involved. This paper proposes enhancements to the existing

scheduling algorithms - Weighted Fair Queuing (WFQ) and

Deficit Weighted Round Robin (DWRR). The performance of

the existing and proposed algorithms is established by

simulating the system under different scenarios. The Novel

Weighted Fair Queuing (NWFQ) and Novel Deficit Weighted

Round Robin (NDWRR) algorithms yield better Throughput

and Packet Delivery Ratio (PDR) and involve less Delay,

Jitter and Loss Rate. They are appropriate for scheduling

particular types of services.

General Terms

Wireless Networks, WiMAX, Scheduling.

Keywords

WiMAX, DeficitCounter, MAC, QoS, DWRR, NDWRR,

WFQ, NWFQ.

1. INTRODUCTION
WiMAX (Worldwide Interoperability for Microwave Access)

based on the Wireless MAN (IEEE 802.16) standard is a

telecommunication technology providing wireless data over

long distances in a variety of ways, from point-to-point links

to full mobile cellular type access. The WiMAX wireless

broadband access standard provides the missing link for the

"last mile" connection in MAN where DSL, Cable and other

broadband access methods are not available or too expensive.

WiMAX devices with directional antennas offer speeds of 10

Mbits/s covering 10 kms, while WiMAX devices with omni-

directional antennas offer only 10 Mbits/s over a range of 2

kms. WiMAX is capable of handling upto 70 Mbits/s [1 - 4].

There is no uniform global licensed spectrum for WiMAX,

although three licensed spectrum profiles are being used

generally - 2.3 GHz, 2.5 GHz and 3.5 GHz.

The fixed WiMAX standard, IEEE 802.16-2004, 802.16d

provides fixed, point-to-multi point Broadband Wireless

Access (BWA) service, while mobile WiMAX supports

mobility.

The two main areas of research are Call Admission Control

and Scheduling. Various scheduling algorithms are proposed

in the literature, out of which Weighted fair Queuing (WFQ)

and Deficit Weighted Round Robin (DWRR) are discussed in

this paper. These algorithms are enhanced and they offer

better results when compared to the existing ones.

2. MEDIUM ACCESS CONTROL (MAC)
The MAC layer of the 802.16 protocol forms the foundation

of the protocol and all associated implementations. It supports

predominantly a Point-to-Multipoint (PMP) architecture with

an optional mesh topology. The transmission overhead can be

reduced by fragmentation and single burst transmissions. It

forms the communication bridge between the physical layer

and the transmitting higher layer applications in the network.

The MAC information received from the applications is

termed as MAC Service Data Unit (MSDU). The MAC layer

is responsible for providing appropriate scheduling services.

Each transmitting application can be defined as a Connection

and each individual connection has an associated Connection

ID (CID).The CID-SFID mapping is done by the scheduler.

The MAC layer is formed with three sublayers - the Service

Specific Convergence Sublayer (CS), the MAC Common Part

Sublayer (CPS) and the Privacy Sublayer (PS). The Service-

Specific Convergence Sub-Layer is responsible for interfacing

with upper layers while the MAC Common Part Sub Layer

caters to the key MAC functions [5]. Privacy Sublayer deals

with security.

The IEEE 802.16 standard divides the services into five

different classes [6 - 10] - Unsolicited Grant Service (UGS),

real-time Polling Service (rtPS), non-real-time Polling Service

(nrtPS), Best Effort Service (BE), extended real-time Polling

Service (ertPS).

3. SCHEDULING IN WiMAX
There are many algorithms proposed in the literature to

schedule users in WiMAX. This paper discusses two

algorithms - WFQ and DWRR. The performance of these

algorithms for different services is analyzed. Enhancements

are also proposed.

3.1 Generalized-Processor-Sharing (GPS)
Generalized-Processor-Sharing (GPS) is an ideal scheduling

discipline [11, 12] and is a natural generalization of uniform

processor sharing [13]. The packet-based version is proposed

in [14] under the name Weighted Fair Queuing.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

35

You- Chiun Wang and Yu-Chee Tseng in [13] proposed many

Packet Fair Queuing (PFQ) algorithms to approximate GPS.

Weighted Fair Queuing (WFQ) [13, 21] is a representative

scheme to approximate GPS.

3.2 Weighted Fair Queuing (WFQ)
WFQ can be referred to as a priority based queuing scheme,

where packets are treated based on the priorities assigned to

them. It is a generalization of Fair Queuing (FQ) and

preferential weighting. This queuing discipline was designed

to ensure that each flow has fair access to network resources

and bursty flows do not consume more than the shared output

bandwidth. As in FQ, each data flow is assigned a

separate FIFO queue [16]. In FQ, if the data rate of a link is

‘D’, and there are ‘n’ active data flows (the ones with non-

empty queues) at a time, all the flows are serviced

concurrently at an average data rate of D/n.

The fairness aspect of WFQ functions resembles Round Robin

(RR) queuing since queues are serviced recurrently from the

first to the last, in order, until all the queues are empty. This

method automatically stabilizes network congestion between

individual packet transmission flows. WFQ supports variable-

length packets, so that flows with larger packets are not

allocated more bandwidth than flows with smaller packets.

Each flow is allocated an equal amount of network bandwidth

and hence termed fair. If high-priority queues are not in use,

lower-priority traffic uses the bandwidth. This prevents high-

bandwidth traffic from seizing an unfair share of resources.

All queues are serviced so that none starve, but some queues

are serviced more frequently than others. This fair allocation

adds significantly to the computational complexity of the

queue scheduling algorithm. As it prioritizes flows within a

network, multiple flows are able to share the network

bandwidth and transmit at the same time. This eliminates

starvation of flows due to one ill-behaved flow.

A weight is assigned to each queue to give high priority to

some queues. Based on the weights, different percentages of

output port bandwidth are allocated. For example, one queue

may get half the available bandwidth and the remaining

bandwidth may be allocated to other queues. The weight is

used to ensure that more significant queues get serviced

frequently than other less important ones. Each incoming

packet is placed into its corresponding queue based on its type

and is timestamped with a finish time. Finish time is the sum

of the current time and the time taken to transmit the packet.

Current time is zero if there are no packets in the queue.

Queues are first sorted in the order of increasing weights.

Each queue is serviced in the order of its weighted proportion

to the available resources. Since each data flow has its own

queue, an envious flow with larger packets or one that

necessitates transmission of more packets per second when

compared to others will penalize itself and not other sessions.

As mentioned earlier, it schedules interactive traffic to the

front of the queue to reduce response time and fairly shares

the remaining bandwidth among high bandwidth flows. Low

volume traffic streams will benefit as they quickly complete

their transmissions without much impact on high volume

ones.

3.3 Scheduling by WFQ
WFQ is a packet approximation of GPS, which, as the name

suggests, is a Generalization of Processor Sharing (PS). It is a

packet scheduling technique allowing guaranteed bandwidth

services. The purpose of WFQ is to let several sessions share

the same link [15, 17].

WFQ algorithm needs a buffer to queue the incoming packets.

The buffer space is divided into many queues, each of which

is used to hold the packets of a flow. WFQ permits each flow

with different weights to have different percentages of

bandwidth. As already stated, this prevents the

monopolization of bandwidth by some flows, thus providing

fair scheduling for different flows.

It supports variable length packets by approximating the

theoretical approach of the GPS system and assigns a finish

time to each packet. The packet with the lowest finish time

will be scheduled next. The finish number is calculated based

on the subscriber’s weight, the finish number of the previous

packet scheduled in that connection and the length of the

packet. In an OFDMA system, several connections can be

served at once during a single frame which would require

multiple rounds of the algorithm and hence higher complexity

[18, 19]. Given the bit rate of the output port, the number of

active queues, the relative weight assigned to each of the

queues and the length of each of the packets in each of the

queues, the scheduling discipline is established and a finish

time is assigned to each arriving packet. The scheduler then

selects and forwards the packet that has the earliest (smallest)

finish time from among all of the queued packets [15, 17].

The finish time is not the actual transmission time for each

packet. Instead, the finish time is the number assigned to each

packet that represents the order in which packets should be

transmitted on the output port. As mentioned earlier, the

virtual finish time for a newly queued packet is given by the

finish time of the packet queued ahead of it for its flow plus

its own size. If there are no packets queued for the flow, the

virtual finish time is given by current virtual time plus the

packet size, where the current virtual time is the assigned

virtual finish time for the packet which was recently

transmitted plus the progress on the current transmission. For

each packet, the arrival time, the size, an application payload

and a reference to the connection it belongs to are known. All

the incoming packets, ordered by arrival time, are analyzed

and sorted [20, 21].

The packet selected for output is the packet with the smallest

virtual finish time. In [11, 12] Parekh describes a Packet GPS

(PGPS) algorithm which is identical to the WFQ algorithm

mentioned here.

Round Number represents the progression of virtual time,

increased in each scheduling cycle, and is defined as:

RoundNumber (t) = RoundNumber (t-1) + RoundRate (t) (1)

RoundRate(t) = 1/(Sum of active queues' weights at time t) (2)

A queue is active, if it is not empty and its weight is the

normalized Minimum Reserved Traffic Rate (MRTR)

expressed as:

W(i) = MRTR(i) / Sum (MRTR for all queues) (3)

If the queue is unweighted, then the finishing time for a queue

with flow ‘f’ is given by,

F(f,k) = max{F(f,k-1), R(t(f,k))} + P(f,k) (4)

where F (f, k-1) is the finish time of the previous packet.

If the queue is weighted, then the finishing time for a queue

with flow ‘f’ is given by,

F(f,k) = max{F(f, k-1),R(t(f,k)}+P(f,k)/Wf (5)

http://en.wikipedia.org/wiki/Fair_queuing
http://en.wikipedia.org/wiki/FIFO

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

36

All active queues are maintained in the ActiveList. Whenever

a new packet arrives, it is enqueued to the corresponding

active queue. Each queue has its own weight [22]. Finish

times are calculated according to the equations mentioned

above. The link rate is k units/sec. The Rreq[k,i] is the rate

expected by packet k. It is initialized to Finish[i]. The

function Enqueue places newly arriving packets into its

correct queue and manages the ActiveList. The ActiveList is

maintained to avoid examining empty queues. It contains a list

of queue indices that contain at least one packet.

To dequeue, Ractive[i] is first calculated. It varies with the

number of active queues, q. Rlink remains constant.

Roundcurrent[i] is incremented with Ractive[i]. After a round is

completed, the Rreq[k,i] gets decremented by Ractive[i], since

Ractive [i] units were served in the previous round. The queue

remains active until Finish[i] is greater than Roundcurrent[i]. If

the queue is empty, it is deactivated. Else it is added to the

ActiveList.

3.4 Novel Weighted Fair Queuing (NWFQ)
A modified version of WFQ algorithm is given in Fig. 1. In

WFQ algorithm, Rlink remains constant. Further, in some

cases, Rreq[k,i] may be very much less when compared to

Ractive[i]. i.e more units are allocated than required. This

decreases the number of packets serviced in a single round.

Instead, the unused units may be given to the next queue, so

that multiple queues get serviced in a round, thus increasing

the throughput. i.e The unused bandwidth of a request

(packet) is given to another packet in the next queue,

guaranteeing the same QoS services without introducing

additional delay. This permits other queues to utilize the

unused bandwidth left by the current transmitting queue. Once

a queue is serviced, as Rreq[k,i] becomes zero, the queue is

deactivated. The units left after servicing a (multiple) queues,

Rleft is added to the Rlink, thus increasing the rate of other

queues. NWFQ provides these enhancements [7, 23].

4. DEFICIT WEIGHTED ROUND ROBIN

(DWRR)
Deficit Weighted Round Robin is the basis of a class of queue

scheduling disciplines that is designed to address the

limitations of the Weighted Round Robin (WRR) and WFQ

models. DWRR a variation of RR visits each non-empty

queue and handles packets of variable sizes without knowing

their mean size. The packet size is subtracted from the packet

length and the packets with sizes that exceed the length are

held back until the next visit of the scheduler.

With WRR for each scheduling turn, the number of packets

that are granted service is based on a weight that reflects the

bandwidth allocation for the queue. Bandwidth allocation can

be unfair when the average packet sizes differ for the queues

and their flows. This behavior can result in service

degradation for queues with smaller average packet sizes.

DWRR is a modified WRR scheduling discipline. For certain

traffic types, fairness is not the desired behavior. What is

needed is a priority scheduling similar to PQ but that

preserves the benefits of DWRR. To achieve the predictable

service for sensitive, real-time traffic, a priority level for

scheduling needs to be introduced. By enabling strict priority

or by offering several priority levels and using DWRR to

schedule queues with the same priority levels, service

assurance with regard to delay and loss protection can be

achieved for demanding traffic types, such as voice and real-

time broadcasting. DWRR queuing allows grouping traffic

into classes. In other words, when WFQ classifies traffic per

Algorithm NWFQ

 initialize (i)

1. for i = 1 to q /*queue index */

2. Finish [i] = 0

3. Rlink = k

4. Roundcurrent [i] = 0

5. Ractive [i] = 0

6. end /*for*/

 end /* initialize() */

 enqueue(k, i)

1. Select the queue that matches the type of the flow to

 which the new packet belongs

2. if (!InActiveList(i) at time t) then

3. activate(i)

4. initialize(i)

5. q + = 1 // Number of active queues

6. end /* if*/

7. if (isempty(i) at time t) // Queue I is empty

8. Finish[i] = Rk(t) + Pk / Wi

9. else

10. Finish[i] = Finishk-1[i] + Pk / Wi

11. end /* if*/

12. Insert the packet at end of Queue i

13. Rreq [k,i] = Finish [i]

 end /* enqueue()*/

 dequeue()

1. while (!isemptyActiveList at time t) then

2. n = q , c = 0

3. do

4. Ractive [i] = Rlink / q

5. if (Rreq [k, i] ≤ Ractive[i])

6. Service queue i

7. Rallocated[i] = Ractive[i]

8. Rleft = Ractive[i] - Rreq[k,i]

9. Roundcurrent [i] += Rreq[k,i]

10. Rreq[k,i] = 0

11. deactivate(i)

12. q - =1 ; c +=1

13. for (i = 2; i ≤ n && Rleft !=0; n+=1)

 if (Rreq [k,i] ≤ Rleft)

14. Sevice queue i

15. Rleft - = Rreq [k,i]

16. Roundcurrent [i] += Rreq[k,i]

17. Rreq[k,i] = 0

18. deactivate(i)

19. q - =1 ; c +=1

20. end /*if*/

21. end /*for*/

22. Rlink = Rlink - Rallocated [i] + Rleft

23. else

24. Sevice queue i

25. Roundcurrent [i] += Rreq[k, i]

26. Rreq [k, i] -= Ractive [i]

27. c +=1

28. end /*if*/

29. while (c ≤ n)

30. for each queue

31. if (isemptyQueue(i)) then /* Queue I is empty*/

32. deactivate(i)

33. else

34. activate (i)

35. end /* if */

36. end /*for*/

37. end /*while*/

 end /* dequeue()*/

Fig. 1: NWFQ Algorithm

http://www.hill2dot0.com/wiki/index.php?title=Weighted_round_robin

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

37

session, DWRR uses user-defined traffic classes which are

less granular but more application-specific. Each class is

given its own queue.

When the queue is visited by the scheduler, packets are

transmitted from the queue as long as there are sufficient

tokens in the bucket. When the next packet in the queue

exceeds the remaining tokens in the bucket, the scheduler

moves to the next queue [24, 25]. There are 3 quantities –

weight, DeficitCounter, Quantum. Weight determines the

percentage of the output port bandwidth allocated to the

queue. DeficitCounter specifies the total number of bytes that

the queue is permitted to transmit in a service round. Quantum

is based on the weight of the queue and is mentioned in terms

of bytes.

Quantum = wi * Bandwidthport (7)

Introducing DeficitCounter permits the DWRR algorithm to

be aware of bandwidth and improves the fairness. WRR

serves every non-empty queue whereas DWRR serves packets

at the head of every non-empty queue whose DeficitCounter is

greater than the packet's size at the Head of the Queue (HoQ).
Initially the DeficitCounter value is set to zero. When the

scheduler visits the queue for the first time, the DeficitCounter

for that queue is incremented by the quantum. When one of

the queues becomes empty, it is removed from the ActiveList

and the token rates for the other buckets are adjusted

proportionately, ensuring that all of the bandwidth is fully

utilized. If only one queue has traffic, it gets the total

bandwidth.

4.1 Scheduling in DWRR
In the classic DWRR algorithm, the scheduler visits each non-

empty queue and determines the number of bytes in the packet

at the HoQ. The variable DeficitCounter is incremented by the

value quantum. If the size of the packet at the HoQ is greater

that the DeficitCounter, then the scheduler moves to service

the next queue. DWRR avoids packet fragmentation by

scheduling only full packets. If the packet is large, it cannot

be sent in a single round. If the DeficitCounter value is too

small to send even a portion of a packet, then the packet is

held for transmission in the next round [26]. Therefore the

maximum permitted packet size is subtracted from the

available DeficitCounter and the packet is sent during the next

visit of the scheduler. In other words, the queue is skipped and

its credit is increased by some given value called quantum.

DeficitCounter = Remaining Deficit Counter value of the

previous round + Quantum (8)

This increased value is used to calculate the DeficitCounter

for the next round, when the scheduler examines the queue for

serving its head-of-line packet. If the queue is served, then the

Credit is decremented by the size of packet being served. If

the size of the packet at the HoQ is less than or equal to the

variable DeficitCounter, then the variable DeficitCounter is

reduced by the number of bytes in the packet and the packet is

sent to the output port. The scheduler continues to dequeue

packets and decrement the variable DeficitCounter by the size

of the transmitted packet until either the size of the packet at

the HoQ is greater than the variable DeficitCounter or the

queue is empty.

DeficitCounter-= size (packet (HoQ)) (9)

If the queue is empty, the value of DeficitCounter is set to

zero and the queue is deactivated. When this occurs, the

scheduler moves to service the next non-empty queue.

4.2 Novel Deficit Weighted Round Robin

(NDWRR)
In DWRR, if the size of the first packet in a queue cannot be

serviced as the DeficitCounter is less than the size of the first

packet. The packet should wait for the next round. No packets

from the queue will be serviced in this round. The queue may

contain a smaller packet that is denied service. This increases

the delay of packets.

Instead, at any instant, the queues may be sorted separately

based on the packet sizes. Now there are high chances for the

size of the first packet in a queue to be less than its

DeficitCounter. The DWRR algorithm is modified to support

this enhancement (Fig. 2).

The other modification is the movement of the

DeficitCounter, in case the queue becomes empty. In DWRR,

once a queue becomes empty, the DeficitCounter of that

particular queue is made zero. Instead, in NDWRR, it is

moved to the next active queue. The DeficitCounter of the

queue that is currently serviced is increased, which in turn

aids in servicing more packets in a single round.

Fig. 2: NDWRR Algorithm

Algorithm NDWRR

 initialize (i)

1. for i = 1 to n /*queue index */

2. DeficitCounter[i] = 0

1. Quantum = wi * Bandwidthport

3. end /*for*/

 end /* initialize() */

 enqueue(k, i)

1. Select the queue that matches the type of the flow to

which the new packet belongs

2. if (!InActiveList(i)) then /*i is not in ActiveList*/

3. activate(i)

4. initialize(i)

5. end /* if*/

6. Insert the packet k to the end of Queue i

7. Sort the packets in the ascending order of Quantum

 end /* enqueue()*/

 dequeue(i)

1. while (!isemptyActiveList) then

2. select the queue i from the head of the ActiveList

3. DeficitCounter[i] += Quantum[i]

4. while(DeficitCounter[i] > 0 && (!isemptyQueue[i]))

5. PacketSize = Size(packet at the HoQ i)

6. if (PacketSize ≤ DeficitCounter[i]) then

7. Transmit the packet at the HoQ of queue i

8. DeficitCounter[i] - = PacketSize

9. else

10. break /*exits this while loop*/

11. end /*if*/

12. end /*while*/

13. if (isEmptyQueue(i)) then

14. Move the residual DeficitCounter[i] to the next

 Queue in the ActiveList

15. deactivate(i)

16. else

17. activate(i)

18. end /*if*/

19. end /* while*/

 end /*dequeue*/

http://www.hill2dot0.com/wiki/index.php?title=Packet

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

38

5. IMPLEMENTATION
As stated earlier, all the four algorithms are implemented.

PDR, Throughput, Loss rate, Delay and Jitter are analyzed by

scheduling the requests using all the four algorithms. From the

results, it is obvious that NDWRR and NWFQ outperform the

existing algorithms. In Fig. 3, NDWRR and NWFQ are only

shown as they are sufficient to schedule the different services

offered by WiMAX.

Initially, in Tier -1, intra-class scheduling is done. In case of

WFQ and NWFQ, intra class scheduling is performed based

on finish times. In case of DWRR, requests are queued in the

order of arrival. In NDWRR all the requests are first sorted

based on the packet sizes.

In Tier-2, inter-class scheduling is performed and the requests

from different queues are serviced by using all the four

algorithms taken into consideration and the results are

analyzed.

Fig. 3: Architecture of the proposed system

6. PERFORMANCE ANALYSIS
The system was simulated using ns2. 25 nodes were deployed.

For each type of traffic, standard packet sizes were taken into

consideration. The algorithms were analyzed for different

services and QoS parameters like PDR, Loss rate,

Throughput, Delay & Jitter. The following graphs show that

NWFQ outperforms all the other algorithms for UGS and rtPS

services. Similarly NDWRR produced better results for BE

and nrtPS services. Table. 1 summarizes the simulation

parameters.

Table 1: Simulation parameters

The following section shows how each service (BE, UGS,

rtPS and nrtPS) adapts to different scheduling schemes

(DWRR, NDWRR, WFQ, NWFQ).

6.1 Performance for BE services
For BE, NDWRR yields better PDR and Throughput when

compared to NWFQ. NDWRR involves the least Delay, Jitter

and Loss rate. WFQ shows poor performance when compared

to DWRR (Fig. 4 to Fig. 8).

Fig. 4: PDR for BE traffic

Fig. 5: Throughput for BE traffic

Fig. 6: Delay for BE traffic

Fig. 7: Jitter for BE traffic

PARAMETERS UGS BE rtPS nrtPS

Packet size 1024 512 512 1024

MAC protocol 802.16

Bandwidth 2 Mbps

Routing Protocol DSDV

Queue Type Queue/DropTail

Queue Length 50

Start time 20 ms

Stop time 100 ms

Modulation Scheme OFDM_QPSK

Frame Duration 0.020 ms

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

39

Fig. 8: PLR for BE traffic

6.2 Performance for UGS services
For UGS, NWFQ outperforms the rest, while DWRR shows

the least performance. WFQ is better when compared to

DWRR. NDWRR does not outdo NWFQ when compared to

its performance for BE service (Fig. 9 to Fig. 13).

Fig.9: PDR for UGS traffic

Fig. 10: Throughput for UGS traffic

Fig. 11: Delay for UGS traffic

Fig. 12: Jitter for UGS traffic

Fig. 13: PLR for UGS traffic

6.3 Performance for rtPS services
For delay sensitive rtPS, NWFQ performs well. NDWRR is

better when compared to DWRR and WFQ. DWRR shows the

least performance involving larger delay and jitter (Fig. 14 to

Fig. 18).

Fig. 14: PDR for rtPS traffic

Fig. 15: Throughput for rtPS traffic

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

40

Fig. 16: Delay for rtPS traffic

Fig. 17: Jitter for rtPS traffic

Fig. 18: PLR for rtPS traffic

6.4 Performance for nrtPS services
For nrtPS, NDWRR is applicable as it involves less Delay and

Jitter, yielding high PDR and Throughput, whereas WFQ

offers the least values. Performance of DWRR is better when

compared to WFQ (Fig. 19 to Fig. 23).

Fig. 19: PDR for nrtPS traffic

Fig. 20: Throughput for nrtPS traffic

Fig. 21: Delay for nrtPS traffic

Fig. 22: Jitter for nrtPS traffic

Fig. 23: PLR for nrtPS traffic

For BE and nrtPS, NDWRR is best suitable. On the other

hand, for UGS and rtPS, NWFQ yields a better performance.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.20, June 2013

41

7. CONCLUSION
This work apparently shows that NDWRR and NWFQ are

better when compared to DWRR and WFQ. BE services

require the least level of service guarantees, while nrtPS have

loose delay requirements. For these two types of services,

NDWRR scheduling algorithm can be used, in which the

residual DeficitCounter is shifted to the next queue, thus

increasing the number of queues serviced in a round. On the

other hand, since unexploited bandwidth is efficiently utilized

in NWFQ, it can be involved in scheduling delay sensitive

rtPS services and UGS type of requests that support real time

traffic.

8. REFERENCES
[1] Shankar A.R, Hegde R, WiMAX on the road to future,

Proceedings of IET International Conference on

Wireless, Mobile and Multimedia Network, 2008, pp.

275-278.

[2] IEEE P802.16Rev2/D2, DRAFT Standard for Local and

metropolitan area networks, Part 16: Air Interface for

Broadband Wireless Access Systems, 2007, pp. 2094.

[3] IEEE Std 802.16 - 2004, Air Interface for Fixed

Broadband Wireless Access Systems, 2004, pp. 895.

[4] Zhang X, Wang Y and Wang W, Capacity analysis of

adaptive multiuser frequency-time domain radio resource

allocation in OFDMA systems, Proceedings of IEEE

International Symposium on Circuits and Systems, 2006,

pp. 4-7.

[5] Eklund C, Marks R, Stanwood K and Wang S, IEEE

standard 802.16: a technical overview of the

WirelessMAN/sup TM/ air interface for broadband

wireless access, IEEE Communications Magazine,

Vol. 40 , No.6, 2002, pp.98-107.

[6] Jani Lakkakorpi, Alexander Sayenko and Jani Moilanen,

Comparison of Different Scheduling Algorithms for

WiMAX Base Station Deficit Round-Robin vs.

Proportional Fair vs. Weighted Deficit Round-Robin,

Proceedings of the Wireless Communications

Networking Conference WCNC, 2008, pp. 1991-1996.

[7] Chakchai So-In, Raj Jain, and Abdel-Karim Tamimi,

Scheduling in IEEE 802.16e Mobile WiMAX Networks:

Key Issues and a Survey, IEEE Journal on selected areas

in Communications, Vol. 27, No. 2, 2009, pp. 156-171.

[8] Mikael Gidlund and Gang Wang, Uplink Scheduling

Algorithms for QoS Support in Broadband Wireless

Access Networks, Journal of Communications, Vol. 4,

No. 2, 2009, pp. 133-142.

[9] Ahmed H. Rashwan, Hesham M. ElBadawy and Hazem

H. Ali, Comparative Assessments for Different WiMAX

Scheduling Algorithms, Proceedings of the World

Congress on Engineering and Computer Science, Vol. I,

2009, pp. 362-366.

[10] Najah Abu Ali, Pratik Dhrona and Hossam Hassanein, A

performance study of uplink scheduling algorithms in

point to- multipoint WiMAX networks, Computer

Communications, Vol. 32, No. 3, 2009, pp. 511-521.

[11] Abhay K. Parekh, Robert G. Gallager, A generalized

processor sharing approach to flow control in integrated

services networks: the single-node case, IEEE/ACM

Transactions on Networking, Vol.1, No.3, 1993, pp.344-

357.

[12] Abhay K. Parekh, Robert G. Gallager, A generalized

processor sharing approach to flow control in integrated

services networks : the multiple node case, IEEE/ACM

Transactions on Networking, Vol.2, No.2, 1994, pp.137-

150.

[13] You-Chiun Wang and Yu-Chee Tseng, Packet Fair

Queuing Algorithms for Wireless Networks, Design and

Analysis of Wireless Networks, Nova Science

Publishers, 2005.

[14] Demers, Keshav S and Shenkar S, Analysis and

simulation of a fair queuing algorithm, Internetworking

Research and Experience, 1990.

[15] Richard Kautz, Raymond Keh, Kee Chaing Chua and

Alberto Leon-Garcia, A Distributed Fair Queuing (DFQ)

Architecture for Wireless ATM Local Access Networks,

International Journal of Wireless Information Networks,

Vol. 7, No. 4, 2000, pp. 221-229.

[16] Taniguchi S, Kawate R, Sato K, Horiuchi E, Yokotani

T, Performance evaluation of the simplified WFQ to

multiplex a huge number of queues, IEEE International

Workshop Technical Committee on Communications

Quality and Reliability (CQR), 2012, pp. 1-6.

[17] Jean-Philippe Georges, Thierry Divoux and Eric

Rondeau, Strict Priority versus Weighted Fair Queuing in

Switched Ethernet networks for time critical applications.

Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, 2005, pp. 141-148.

[18] Iera A, Molinaro A, Pizzi S and Calabria R, Channel-

Aware Scheduling for QoS and Fairness Provisioning in

IEEE 802.16/WiMAX Broadband Wireless Access

Systems, IEEE Network, Vol. 21, No. 5, 2007, pp. 34-41.

[19] Dianati M, Shen X, Naik S, A new fairness index for

radio resource allocation in wireless networks,

Proceedings of IEEE Wireless Communications and

Networking Conference, 2005, Vol. 2, pp. 712-717.

[20] Jin-Cherng Lin, Chun-Lun Chou, Cheng-Hsiung Liu,

Performance Evaluation for Scheduling Algorithms in

WiMAX Network, Proceedings of 22nd International

Conference on Advanced Information Networking and

Applications-Workshops, 2008, pp. 68-74.

[21] Zhang H, Service disciplines for guaranteed performance

service in packet-switching networks, Proceedings of the

IEEE, Vol. 83, No. 10, 1995, pp. 1374-1396.

[22] www.sics.se/~ianm/WFQ/wfq_descrip/node23.html.

[23] David Chuck and Morris Chang J, Bandwidth Recycling

in IEEE 802.16 Networks, IEEE Transactions on Mobile

Computing, Vol. 9, No. 10, 2010, 1451-1464.

[24] Shreedhar M, Varghese G, Efficient Fair Queuing using

Deficit Round Robin, IEEE/ACM Transactions on

Networking, Vol.1, No.3, 1996, pp.375-385.

[25] Cicconetti C, Erta A, Lenzini L and Mingozzi E,

Performance Evaluation of the IEEE 802.16 MAC for

QoS Support, IEEE Transactions on Mobile Computing,

Vol.6, No.1, 2007, pp.26-38.

[26] Ravichandiran C, Pethuru Raj C, Vaidhyanathan V,

Analysis, Modification, and Implementation (AMI) of

Scheduling Algorithm for the IEEE 802.116e (Mobile

WiMAX), International Journal of Computer Science and

Information Security, Vol. 7, No. 2, 2010.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=21727
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Taniguchi,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Taniguchi,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sato,%20K..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Horiuchi,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yokotani,%20T..QT.&newsearch=partialPref
http://www.sics.se/~ianm/WFQ/wfq_descrip/node23.html

