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ABSTRACT 

Users have become more acquainted to broadband access. 

IEEE 802.16, a standard for broadband wireless 

communication in Metropolitan Area Networks (MAN) 

promises to be one of the best wireless access technologies 

capable of supporting very high bandwidth applications. The 

main objective of WiMAX is to deliver wireless 

communications with high Quality of Service (QoS) 

guarantees, security and mobility. Many scheduling 

algorithms compatible with the IEEE 802.16 standards are 

proposed in the literature with the tenacity of throughput 

optimization, fairness enhancement and QoS provisioning. 

However, few scheduling schemes minimize the delay 

involved. This paper proposes enhancements to the existing 

scheduling algorithms - Weighted Fair Queuing (WFQ) and 

Deficit Weighted Round Robin (DWRR). The performance of 

the existing and proposed algorithms is established by 

simulating the system under different scenarios. The Novel 

Weighted Fair Queuing (NWFQ) and Novel Deficit Weighted 

Round Robin (NDWRR) algorithms yield better Throughput 

and Packet Delivery Ratio (PDR) and involve less Delay, 

Jitter and Loss Rate. They are appropriate for scheduling 

particular types of services. 

General Terms 

Wireless Networks, WiMAX, Scheduling. 

Keywords 

WiMAX, DeficitCounter, MAC, QoS, DWRR, NDWRR, 
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1. INTRODUCTION 
WiMAX (Worldwide Interoperability for Microwave Access) 

based on the Wireless MAN (IEEE 802.16) standard is a 

telecommunication technology providing wireless data over 

long distances in a variety of ways, from point-to-point links 

to full mobile cellular type access. The WiMAX wireless 

broadband access standard provides the missing link for the 

"last mile" connection in MAN where DSL, Cable and other 

broadband access methods are not available or too expensive. 

WiMAX devices with directional antennas offer speeds of 10 

Mbits/s covering 10 kms, while WiMAX devices with omni-

directional antennas offer only 10 Mbits/s over a range of 2 

kms. WiMAX is capable of handling upto 70 Mbits/s [1 - 4].  

There is no uniform global licensed spectrum for WiMAX, 

although three licensed spectrum profiles are being used 

generally - 2.3 GHz, 2.5 GHz and 3.5 GHz. 

The fixed WiMAX standard, IEEE 802.16-2004, 802.16d 

provides fixed, point-to-multi point Broadband Wireless 

Access (BWA) service, while mobile WiMAX supports 

mobility.  

The two main areas of research are Call Admission Control 

and Scheduling. Various scheduling algorithms are proposed 

in the literature, out of which Weighted fair Queuing (WFQ) 

and Deficit Weighted Round Robin (DWRR) are discussed in 

this paper. These algorithms are enhanced and they offer 

better results when compared to the existing ones.  

2. MEDIUM ACCESS CONTROL (MAC) 
The MAC layer of the 802.16 protocol forms the foundation 

of the protocol and all associated implementations. It supports 

predominantly a Point-to-Multipoint (PMP) architecture with 

an optional mesh topology. The transmission overhead can be 

reduced by fragmentation and single burst transmissions. It 

forms the communication bridge between the physical layer 

and the transmitting higher layer applications in the network. 

The MAC information received from the applications is 

termed as MAC Service Data Unit (MSDU). The MAC layer 

is responsible for providing appropriate scheduling services.  

Each transmitting application can be defined as a Connection 

and each individual connection has an associated Connection 

ID (CID).The CID-SFID mapping is done by the scheduler. 

The MAC layer is formed with three sublayers - the Service 

Specific Convergence Sublayer (CS), the MAC Common Part 

Sublayer (CPS) and the Privacy Sublayer (PS). The Service-

Specific Convergence Sub-Layer is responsible for interfacing 

with upper layers while the MAC Common Part Sub Layer 

caters to the key MAC functions [5]. Privacy Sublayer deals 

with security. 

The IEEE 802.16 standard divides the services into five 

different classes [6 - 10] - Unsolicited Grant Service (UGS), 

real-time Polling Service (rtPS), non-real-time Polling Service 

(nrtPS), Best Effort Service (BE), extended real-time Polling 

Service (ertPS).  

3. SCHEDULING IN WiMAX 
There are many algorithms proposed in the literature to 

schedule users in WiMAX. This paper discusses two 

algorithms - WFQ and DWRR. The performance of these 

algorithms for different services is analyzed. Enhancements 

are also proposed. 

3.1 Generalized-Processor-Sharing (GPS) 
Generalized-Processor-Sharing (GPS) is an ideal scheduling 

discipline [11, 12] and is a natural generalization of uniform 

processor sharing [13]. The packet-based version is proposed 

in [14] under the name Weighted Fair Queuing.  
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You- Chiun Wang and Yu-Chee Tseng in [13] proposed many 

Packet Fair Queuing (PFQ) algorithms to approximate GPS. 

Weighted Fair Queuing (WFQ) [13, 21] is a representative 

scheme to approximate GPS.  

3.2 Weighted Fair Queuing (WFQ) 
WFQ can be referred to as a priority based queuing scheme, 

where packets are treated based on the priorities assigned to 

them. It is a generalization of Fair Queuing (FQ) and 

preferential weighting. This queuing discipline was designed 

to ensure that each flow has fair access to network resources 

and bursty flows do not consume more than the shared output 

bandwidth. As in FQ, each data flow is assigned a 

separate FIFO queue [16]. In FQ, if the data rate of a link is 

‘D’, and there are ‘n’ active data flows (the ones with non-

empty queues) at a time, all the flows are serviced 

concurrently at an average data rate of D/n.  

The fairness aspect of WFQ functions resembles Round Robin 

(RR) queuing since queues are serviced recurrently from the 

first to the last, in order, until all the queues are empty. This 

method automatically stabilizes network congestion between 

individual packet transmission flows. WFQ supports variable-

length packets, so that flows with larger packets are not 

allocated more bandwidth than flows with smaller packets. 

Each flow is allocated an equal amount of network bandwidth 

and hence termed fair. If high-priority queues are not in use, 

lower-priority traffic uses the bandwidth. This prevents high-

bandwidth traffic from seizing an unfair share of resources. 

All queues are serviced so that none starve, but some queues 

are serviced more frequently than others. This fair allocation 

adds significantly to the computational complexity of the 

queue scheduling algorithm. As it prioritizes flows within a 

network, multiple flows are able to share the network 

bandwidth and transmit at the same time. This eliminates 

starvation of flows due to one ill-behaved flow.  

A weight is assigned to each queue to give high priority to 

some queues. Based on the weights, different percentages of 

output port bandwidth are allocated. For example, one queue 

may get half the available bandwidth and the remaining 

bandwidth may be allocated to other queues. The weight is 

used to ensure that more significant queues get serviced 

frequently than other less important ones. Each incoming 

packet is placed into its corresponding queue based on its type 

and is timestamped with a finish time. Finish time is the sum 

of the current time and the time taken to transmit the packet. 

Current time is zero if there are no packets in the queue.  

Queues are first sorted in the order of increasing weights. 

Each queue is serviced in the order of its weighted proportion 

to the available resources. Since each data flow has its own 

queue, an envious flow with larger packets or one that 

necessitates transmission of more packets per second when 

compared to others will penalize itself and not other sessions. 

As mentioned earlier, it schedules interactive traffic to the 

front of the queue to reduce response time and fairly shares 

the remaining bandwidth among high bandwidth flows. Low 

volume traffic streams will benefit as they quickly complete 

their transmissions without much impact on high volume 

ones. 

3.3 Scheduling by WFQ 
WFQ is a packet approximation of GPS, which, as the name 

suggests, is a Generalization of Processor Sharing (PS). It is a 

packet scheduling technique allowing guaranteed bandwidth 

services. The purpose of WFQ is to let several sessions share 

the same link [15, 17].  

WFQ algorithm needs a buffer to queue the incoming packets. 

The buffer space is divided into many queues, each of which 

is used to hold the packets of a flow. WFQ permits each flow 

with different weights to have different percentages of 

bandwidth. As already stated, this prevents the 

monopolization of bandwidth by some flows, thus providing 

fair scheduling for different flows.  

It supports variable length packets by approximating the 

theoretical approach of the GPS system and assigns a finish 

time to each packet. The packet with the lowest finish time 

will be scheduled next. The finish number is calculated based 

on the subscriber’s weight, the finish number of the previous 

packet scheduled in that connection and the length of the 

packet. In an OFDMA system, several connections can be 

served at once during a single frame which would require 

multiple rounds of the algorithm and hence higher complexity 

[18, 19]. Given the bit rate of the output port, the number of 

active queues, the relative weight assigned to each of the 

queues and the length of each of the packets in each of the 

queues, the scheduling discipline is established and a finish 

time is assigned to each arriving packet. The scheduler then 

selects and forwards the packet that has the earliest (smallest) 

finish time from among all of the queued packets [15, 17].   

The finish time is not the actual transmission time for each 

packet. Instead, the finish time is the number assigned to each 

packet that represents the order in which packets should be 

transmitted on the output port. As mentioned earlier, the 

virtual finish time for a newly queued packet is given by the 

finish time of the packet queued ahead of it for its flow plus 

its own size. If there are no packets queued for the flow, the 

virtual finish time is given by current virtual time plus the 

packet size, where the current virtual time is the assigned 

virtual finish time for the packet which was recently 

transmitted plus the progress on the current transmission. For 

each packet, the arrival time, the size, an application payload 

and a reference to the connection it belongs to are known. All 

the incoming packets, ordered by arrival time, are analyzed 

and sorted [20, 21]. 

The packet selected for output is the packet with the smallest 

virtual finish time. In [11, 12] Parekh describes a Packet GPS 

(PGPS) algorithm which is identical to the WFQ algorithm 

mentioned here.  

Round Number represents the progression of virtual time, 

increased in each scheduling cycle, and is defined as: 

RoundNumber (t) = RoundNumber (t-1) + RoundRate (t)   (1) 

RoundRate(t) = 1/(Sum of active queues' weights at time t) (2)    

A queue is active, if it is not empty and its weight is the 

normalized Minimum Reserved Traffic Rate (MRTR) 

expressed as: 

W(i) = MRTR(i) / Sum (MRTR for all queues)                  (3) 

If the queue is unweighted, then the finishing time for a queue 

with flow ‘f’ is given by,        

F(f,k) = max{F(f,k-1), R(t(f,k) )} + P(f,k)                            (4) 

where F (f, k-1) is the finish time of the previous packet. 

If the queue is weighted, then the finishing time for a queue 

with flow ‘f’ is given by,  

F(f,k) = max{F(f, k-1),R(t(f,k)}+P(f,k)/Wf                           (5) 

 
 

http://en.wikipedia.org/wiki/Fair_queuing
http://en.wikipedia.org/wiki/FIFO
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All active queues are maintained in the ActiveList. Whenever 

a new packet arrives, it is enqueued to the corresponding 

active queue. Each queue has its own weight [22]. Finish 

times are calculated according to the equations mentioned 

above. The link rate is k units/sec. The Rreq[k,i] is the rate 

expected by packet k. It is initialized to Finish[i].  The 

function Enqueue places newly arriving packets into its 

correct queue and manages the ActiveList. The ActiveList is 

maintained to avoid examining empty queues. It contains a list 

of queue indices that contain at least one packet.  

To dequeue, Ractive[i] is first calculated. It varies with the 

number of active queues, q. Rlink remains constant. 

Roundcurrent[i] is incremented with Ractive[i]. After a round is 

completed, the Rreq[k,i] gets decremented by Ractive[i], since 

Ractive [i] units were served in the previous round. The queue 

remains active until Finish[i] is greater than Roundcurrent[i]. If 

the queue is empty, it is deactivated. Else it is added to the 

ActiveList.   

3.4 Novel Weighted Fair Queuing (NWFQ) 
A modified version of WFQ algorithm is given in Fig. 1. In 

WFQ algorithm, Rlink remains constant. Further, in some 

cases, Rreq[k,i] may be very much less when compared to 

Ractive[i]. i.e more units are allocated than required. This 

decreases the number of packets serviced in a single round. 

Instead, the unused units may be given to the next queue, so 

that multiple queues get serviced in a round, thus increasing 

the throughput. i.e The unused bandwidth of a request 

(packet) is given to another packet in the next queue, 

guaranteeing the same QoS services without introducing 

additional delay. This permits other queues to utilize the 

unused bandwidth left by the current transmitting queue. Once 

a queue is serviced, as Rreq[k,i] becomes zero, the queue is 

deactivated. The units left after servicing a (multiple) queues, 

Rleft is added to the Rlink, thus increasing the rate of other 

queues. NWFQ provides these enhancements [7, 23].  

4. DEFICIT WEIGHTED ROUND ROBIN 

(DWRR)   
Deficit Weighted Round Robin is the basis of a class of queue 

scheduling disciplines that is designed to address the 

limitations of the Weighted Round Robin (WRR) and WFQ 

models. DWRR a variation of RR visits each non-empty 

queue and handles packets of variable sizes without knowing 

their mean size. The packet size is subtracted from the packet 

length and the packets with sizes that exceed the length are 

held back until the next visit of the scheduler.  

With WRR for each scheduling turn, the number of packets 

that are granted service is based on a weight that reflects the 

bandwidth allocation for the queue. Bandwidth allocation can 

be unfair when the average packet sizes differ for the queues 

and their flows. This behavior can result in service 

degradation for queues with smaller average packet sizes. 

DWRR is a modified WRR scheduling discipline. For certain 

traffic types, fairness is not the desired behavior. What is 

needed is a priority scheduling similar to PQ but that 

preserves the benefits of DWRR. To achieve the predictable 

service for sensitive, real-time traffic, a priority level for 

scheduling needs to be introduced. By enabling strict priority 

or by offering several priority levels and using DWRR to 

schedule queues with the same priority levels, service 

assurance with regard to delay and loss protection can be 

achieved for demanding traffic types, such as voice and real-

time broadcasting. DWRR queuing allows grouping traffic 

into classes. In other words, when WFQ classifies traffic per 

Algorithm NWFQ 

      initialize (i) 

1. for i = 1 to q        /*queue index */ 

2.  Finish [i] = 0      

3.  Rlink = k 

4.  Roundcurrent [i] = 0 

5.  Ractive [i] = 0 

6. end /*for*/ 

      end    /* initialize() */ 

       enqueue(k, i) 

1. Select the queue that matches the type of the flow to 

      which the new packet belongs 

2. if (!InActiveList(i) at time t) then   

3.  activate(i)  

4.         initialize(i) 

5.         q + = 1 // Number of active queues 

6. end /* if*/ 

7. if (isempty(i) at time t)        // Queue I is empty 

8.  Finish[i] = Rk(t) + Pk / Wi 

9. else 

10.           Finish[i] = Finishk-1[i] + Pk / Wi 

11. end /* if*/ 

12. Insert the packet at end of Queue i 

13. Rreq [k,i] = Finish [i] 

       end    /* enqueue()*/ 

      dequeue( ) 

1. while (!isemptyActiveList at time t) then 

2. n = q ,  c = 0 

3. do 

4.  Ractive [i] = Rlink / q 

5.  if (Rreq [k, i] ≤ Ractive[i]) 

6.             Service queue i 

7.                     Rallocated[i] = Ractive[i] 

8.            Rleft =  Ractive[i] - Rreq[k,i] 

9.                     Roundcurrent [i] += Rreq[k,i] 

10.            Rreq[k,i] = 0   

11.            deactivate(i) 

12.            q - =1 ; c +=1 

13.            for (i = 2; i ≤ n && Rleft !=0; n+=1)

              if (Rreq [k,i] ≤ Rleft ) 

14.                  Sevice queue i 

15.                  Rleft - = Rreq [k,i] 

16.                          Roundcurrent [i] += Rreq[k,i] 

17.                  Rreq[k,i] = 0 

18.                  deactivate(i) 

19.                  q - =1 ;  c +=1 

20.                       end /*if*/ 

21.                    end /*for*/ 

22.           Rlink = Rlink - Rallocated [i] + Rleft 

23.     else 

24. Sevice queue i 

25.                   Roundcurrent [i] += Rreq[k, i] 

26.                   Rreq [k, i] -= Ractive [i] 

27.                   c +=1 

28.     end /*if*/ 

29. while (c ≤ n) 

30. for each queue 

31.     if (isemptyQueue(i)) then   /* Queue I is empty*/ 

32.  deactivate(i) 

33.     else 

34.  activate (i)  

35.  end /* if */ 

36.  end /*for*/ 

37. end /*while*/ 

      end /* dequeue()*/   

 

Fig. 1: NWFQ Algorithm   

http://www.hill2dot0.com/wiki/index.php?title=Weighted_round_robin
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session, DWRR uses user-defined traffic classes which are 

less granular but more application-specific. Each class is 

given its own queue.  

When the queue is visited by the scheduler, packets are 

transmitted from the queue as long as there are sufficient 

tokens in the bucket. When the next packet in the queue 

exceeds the remaining tokens in the bucket, the scheduler 

moves to the next queue [24, 25]. There are 3 quantities – 

weight, DeficitCounter, Quantum. Weight determines the 

percentage of the output port bandwidth allocated to the 

queue. DeficitCounter specifies the total number of bytes that 

the queue is permitted to transmit in a service round. Quantum 

is based on the weight of the queue and is mentioned in terms 

of bytes. 

Quantum = wi * Bandwidthport                                (7) 

Introducing DeficitCounter permits the DWRR algorithm to 

be aware of bandwidth and improves the fairness. WRR 

serves every non-empty queue whereas DWRR serves packets 

at the head of every non-empty queue whose DeficitCounter is 

greater than the packet's size at the Head of the Queue (HoQ). 
Initially the DeficitCounter value is set to zero. When the 

scheduler visits the queue for the first time, the DeficitCounter 

for that queue is incremented by the quantum. When one of 

the queues becomes empty, it is removed from the ActiveList 

and the token rates for the other buckets are adjusted 

proportionately, ensuring that all of the bandwidth is fully 

utilized. If only one queue has traffic, it gets the total 

bandwidth.  

4.1 Scheduling in DWRR 
In the classic DWRR algorithm, the scheduler visits each non-

empty queue and determines the number of bytes in the packet 

at the HoQ. The variable DeficitCounter is incremented by the 

value quantum. If the size of the packet at the HoQ is greater 

that the DeficitCounter, then the scheduler moves to service 

the next queue. DWRR avoids packet fragmentation by 

scheduling only full packets.  If the packet is large, it cannot 

be sent in a single round. If the DeficitCounter value is too 

small to send even a portion of a packet, then the packet is 

held for transmission in the next round [26]. Therefore the 

maximum permitted packet size is subtracted from the 

available DeficitCounter and the packet is sent during the next 

visit of the scheduler. In other words, the queue is skipped and 

its credit is increased by some given value called quantum.  

DeficitCounter = Remaining Deficit Counter value of the 

previous round + Quantum                   (8) 

This increased value is used to calculate the DeficitCounter 

for the next round, when the scheduler examines the queue for 

serving its head-of-line packet. If the queue is served, then the 

Credit is decremented by the size of packet being served. If 

the size of the packet at the HoQ is less than or equal to the 

variable DeficitCounter, then the variable DeficitCounter is 

reduced by the number of bytes in the packet and the packet is 

sent to the output port. The scheduler continues to dequeue 

packets and decrement the variable DeficitCounter by the size 

of the transmitted packet until either the size of the packet at 

the HoQ is greater than the variable DeficitCounter or the 

queue is empty. 

DeficitCounter-= size (packet (HoQ))                     (9) 

If the queue is empty, the value of DeficitCounter is set to 

zero and the queue is deactivated. When this occurs, the 

scheduler moves to service the next non-empty queue.  

4.2 Novel Deficit Weighted Round Robin 

(NDWRR) 
In DWRR, if the size of the first packet in a queue cannot be 

serviced as the DeficitCounter is less than the size of the first 

packet. The packet should wait for the next round. No packets 

from the queue will be serviced in this round. The queue may 

contain a smaller packet that is denied service. This increases 

the delay of packets. 

Instead, at any instant, the queues may be sorted separately 

based on the packet sizes. Now there are high chances for the 

size of the first packet in a queue to be less than its 

DeficitCounter. The DWRR algorithm is modified to support 

this enhancement (Fig. 2). 

The other modification is the movement of the 

DeficitCounter, in case the queue becomes empty. In DWRR, 

once a queue becomes empty, the DeficitCounter of that 

particular queue is made zero. Instead, in NDWRR, it is 

moved to the next active queue. The DeficitCounter of the 

queue that is currently serviced is increased, which in turn 

aids in servicing more packets in a single round. 

 

 

Fig. 2: NDWRR Algorithm 

Algorithm NDWRR 

       initialize (i) 

1. for i = 1 to n        /*queue index */ 

2.      DeficitCounter[i] = 0    

1.      Quantum = wi * Bandwidthport  

3. end /*for*/   

       end    /* initialize() */ 

       enqueue(k, i) 

1. Select the queue that matches the type of the flow to 

which the new packet belongs 

2. if (!InActiveList(i)) then  /*i is not in ActiveList*/ 

3.    activate(i)  

4.  initialize(i) 

5. end /* if*/ 

6. Insert the packet k to the end of Queue i  

7. Sort the packets in the ascending order of  Quantum 

       end    /* enqueue()*/ 

      dequeue(i) 

1.   while (!isemptyActiveList) then 

2.      select the queue i from the head of the ActiveList 

3.      DeficitCounter[i] += Quantum[i] 

4.      while(DeficitCounter[i] > 0 && (!isemptyQueue[i]))     

5.          PacketSize = Size(packet at the HoQ i ) 

6.          if (PacketSize ≤ DeficitCounter[i]) then 

7.     Transmit the packet at the HoQ of queue i 

8.      DeficitCounter[i] - = PacketSize 

9. else 

10.  break /*exits this while loop*/ 

11.    end   /*if*/ 

12. end  /*while*/ 

13. if (isEmptyQueue(i)) then    

14.  Move the residual DeficitCounter[i] to the next  

           Queue  in the ActiveList 

15.   deactivate(i)   

16. else 

17.   activate(i)  

18. end   /*if*/ 

19. end    /* while*/ 

       end   /*dequeue*/   

http://www.hill2dot0.com/wiki/index.php?title=Packet
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5. IMPLEMENTATION 
As stated earlier, all the four algorithms are implemented. 

PDR, Throughput, Loss rate, Delay and Jitter are analyzed by 

scheduling the requests using all the four algorithms. From the 

results, it is obvious that NDWRR and NWFQ outperform the 

existing algorithms. In Fig. 3, NDWRR and NWFQ are only 

shown as they are sufficient to schedule the different services 

offered by WiMAX.  

Initially, in Tier -1, intra-class scheduling is done. In case of 

WFQ and NWFQ, intra class   scheduling is performed based 

on finish times. In case of DWRR, requests are queued in the 

order of arrival. In NDWRR all the requests are first sorted 

based on the packet sizes.  

In Tier-2, inter-class scheduling is performed and the requests 

from different queues are serviced by using all the four 

algorithms taken into consideration and the results are 

analyzed.  

 
 

Fig. 3: Architecture of the proposed system 

6. PERFORMANCE ANALYSIS 
The system was simulated using ns2. 25 nodes were deployed. 

For each type of traffic, standard packet sizes were taken into 

consideration. The algorithms were analyzed for different 

services and QoS parameters like PDR, Loss rate, 

Throughput, Delay & Jitter. The following graphs show that 

NWFQ outperforms all the other algorithms for UGS and rtPS 

services. Similarly NDWRR produced better results for BE 

and nrtPS services.  Table. 1 summarizes the simulation 

parameters.  

Table 1: Simulation parameters 

   

The following section shows how each service (BE, UGS, 

rtPS and nrtPS) adapts to different scheduling schemes 

(DWRR, NDWRR, WFQ, NWFQ). 

6.1 Performance for BE services 
For BE, NDWRR yields better PDR and Throughput when 

compared to NWFQ. NDWRR involves the least Delay, Jitter 

and Loss rate. WFQ shows poor performance when compared 

to DWRR (Fig. 4 to Fig. 8). 

 

 

 

 

 

 

Fig. 4: PDR for BE traffic 

 

 

 

 

 

 

Fig. 5: Throughput for BE traffic 

 

 

 

 

 

 

Fig. 6: Delay for BE traffic 

 

 

 

 

 

 

 

Fig. 7: Jitter for BE traffic 

PARAMETERS UGS BE rtPS nrtPS 

Packet size 1024 512 512 1024 

MAC protocol                      802.16 

Bandwidth 2 Mbps 

Routing Protocol DSDV 

Queue Type  Queue/DropTail 

Queue Length 50 

Start time 20 ms 

Stop time 100 ms 

Modulation Scheme OFDM_QPSK 

Frame Duration 0.020 ms 
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Fig. 8: PLR for BE traffic 

6.2 Performance for UGS services 
For UGS, NWFQ outperforms the rest, while DWRR shows 

the least performance. WFQ is better when compared to 

DWRR. NDWRR does not outdo NWFQ when compared to 

its performance for BE service (Fig. 9 to Fig. 13). 

 

 

 

 

 

 

Fig.9: PDR for UGS traffic 

 

 

 

 

 

 

Fig. 10: Throughput for UGS traffic 

 

 

 

 

 

 

 

Fig. 11: Delay for UGS traffic 

 

 

 

 

 

 

 

Fig. 12: Jitter for UGS traffic 

 

 

 

 

 

 

Fig. 13: PLR for UGS traffic 

6.3 Performance for rtPS services 
For delay sensitive rtPS, NWFQ performs well. NDWRR is 

better when compared to DWRR and WFQ. DWRR shows the 

least performance involving larger delay and jitter (Fig. 14 to 

Fig. 18). 

 

 

 

 

 

 

Fig. 14: PDR for rtPS traffic 

 

 

 

 

 

 

 

 

Fig. 15: Throughput for rtPS traffic 
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Fig. 16: Delay for rtPS traffic 

 

 

 

 

 

 

Fig. 17: Jitter for rtPS traffic 

 

 

 

 

 

Fig. 18: PLR for rtPS traffic 

6.4 Performance for nrtPS services  
For nrtPS, NDWRR is applicable as it involves less Delay and 

Jitter, yielding high PDR and Throughput, whereas WFQ 

offers the least values. Performance of DWRR is better when 

compared to WFQ (Fig. 19 to Fig. 23). 

 

 

 

 

 

 

Fig. 19: PDR for nrtPS traffic  

 

 

 

 

 

 

Fig. 20: Throughput for nrtPS traffic 

 

 

 

 

 

 

Fig. 21: Delay for nrtPS traffic 

 

 

 

 

 

 

 

Fig. 22: Jitter for nrtPS traffic 

 

 

 

 

 

 

Fig. 23: PLR for nrtPS traffic 

For BE and nrtPS, NDWRR is best suitable. On the other 

hand, for UGS and rtPS, NWFQ yields a better performance.  
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7. CONCLUSION 
This work apparently shows that NDWRR and NWFQ are 

better when compared to DWRR and WFQ. BE services 

require the least level of service guarantees, while nrtPS have 

loose delay requirements. For these two types of services, 

NDWRR scheduling algorithm can be used, in which the 

residual DeficitCounter is shifted to the next queue, thus 

increasing the number of queues serviced in a round. On the 

other hand, since unexploited bandwidth is efficiently utilized 

in NWFQ, it can be involved in scheduling delay sensitive 

rtPS services and UGS type of requests that support real time 

traffic. 
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