
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

41

An Immediate Messaging-based Multi-agent System using
Linda Coordination Model

Sushil Kumar Gangwar
Student, Galgotias University

U.P India

 Ritu Sindhu,Ph.D
AP, Galgotias University

U.P India

ABSTRACT

The quick development of mobile agents, the coordination of

mobile agent becomes an up-and-coming technology in multi-

agent structure for internet and distributed applications. This

time an immediate messaging is getting popular and many

people apply it to coordinate with each other in domestic as

well as commercially. In this review paper I used a new

approach for immediate messaging based Multi-agents using

Linda like Coordination model. By this we have avoid the

limitation of time and space. The Linda like coordination

model having qualities of easy to implement and ubiquitous

access. An ubiquitous meeting room and an immediate

messaging mail service are provided in our structure for

multi-agents to synchronize with each other in any place and

at any moment. Some other qualities of Linda like

coordination model i.e. it creates heterogeneous environment,

platform independent and making useful application in object

oriented programming because of all it, this creates well-

designed interface for coordination of mobile agents.

General Terms

Trying to increase the efficiency of space and time, to be more

specific, spatially uncoupled and temporally uncoupled

conditions, for immediate messaging based on multi-agents

using Linda like coordination model.

Keywords

Multi-agent Coordination, messaging, multi-agent structure,

Linda Coordination model.

1. INTRODUCTION
The concepts of multi-agents [5] have been widely used in

modern years. A mobile agent has the ability of organization,

as well as mobility. The mobility and organization

characteristics enable a mobile agent to cooperate with other

multi-agents [3-11]. Thus, a Coordination model is needed in

a multi-agent system for agents to coordinate with each other

[8,6,1]. One of the most important things for mobile agent

Coordination is to avoid the limitation of space and time, to be

more specific, spatially uncoupled and temporally uncoupled

conditions. The spatially uncoupled condition means the

multi-agents do not need to coordinate in an appointed place.

The temporally uncoupled condition means the multi-agents

do not need to coordinate in an appointed time. A good

Coordination model should achieve both spatially and

temporally uncoupled conditions. Presently, based on the

degree of these two conditions, there are four mobile agent

Coordination models: direct, meeting-oriented, blackboard-

based, and Linda-like Coordination models [2,7].Among these

models, the Linda-like Coordination model can solve both the

spatially coupled and temporally coupled problems.

Furthermore, the approach can coordinate not only with

another agent but also with real people. In these day, The

business market of messaging is very large. There are many

popular messaging systems, such as MSN messenger, Yahoo

messenger and other messenger. In order to support our

concept of using messaging to coordinate, we have

conducted an experiment of the utilization of message tools

for our students. With rapid development of the Internet and

wideband services becoming popular, many students

frequently stay on the Internet. That means most of the

students can be found on the messaging server easily and

multi-agents can finish the coordinating mission through our

system.

2. RELATED WORK
There are many important research issues related to our work,

such as mobile agent Coordination models, mobile agent

systems, and messaging systems, etc. Mobile agent

Coordination models are important components for mobile

agent cooperation. Presently, mobile agent Coordination can

be divided into four models [7]. The first model is the direct

Coordination model. It is simple and some multi-agent

systems use the direct Coordination model, such as Aglets etc.

The second model is meeting-based, where multi-agents

coordinate in a meeting room. The third model is blackboard-

based. It is message board in which a coordinator writes a

coordinating data in a blackboard, then the receiver goes to

this blackboard to take the coordinating data. The last model

is Linda-like. It uses a tuple space to build the Coordination

share space. All tuple space will keep information identically.

The logic name and some operations, such as Take, Write,

Read, ReadAll, and TakeAll are used when agents access the

tuple space. The Linda-like Coordination model is supported

by Pagespace [2], Tucson [2], MARS [8, 10], etc. There are

some other meeting-oriented mobile agent systems, such as

Mole [14] and Ara (Agents for remote action [13]). The Mole

mobile agent system has a build-in meeting room, The multi-

agents can use Mole mobile agent system to coordinate with

each other by sending an agent qualifier and a location name.

The multi-agents do not have to care about the information of

peer location. The Mole system helps the multi-agents finish

coordinate operations. In addition, Ara mobile agent system

also supports the meeting-based Coordination model. The

system provides two communication methods for multi-

agents. One is the service point and the other is the tuple

space. The service point method transforms a mobile agent to

a server to provide a meeting room which is a shared space for

multi-agents to coordinate with each other. Mole and Ara

provide meeting rooms, which are not omnipresent meeting

rooms.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

42

3. LINDA COORDINATION MODEL
Linda [12] is a communication model for an Immediate

Messaging-based Multi-agent Coordination[4] System. It is

suitable for a broad range of programming styles, e.g. the

master-worker technique. It is always fixed inside a host

language which provides the ability to do calculation. The

Linda model provides communication between diverse

processes involved in a computation. The communication is

provided using a shared tuple space, which can be

consideration of as a shared bag into which tuples are inserted

and withdrawn by the user processes. The tuple space acts as a

logical shared memory with an associative lookup method. To

solve this we have to need some sort of kernel which acts as a

controller of the tuple space. User processes then

communicate with the kernel, sending it commands which

represent the Linda primitives and tuples. In Linda a message

between two tasks is never exchanged directly. A task that

wants to output data, puts it into the tuple space, and a task

that wants to read data, searches for it and reads it from the

tuple space. Tasks communicating in this way need not be

known to each other. Linda is a set of high-level operations

that can be added to a base language to give way a parallel

talk of that language.

Linda’s unusual features make the language redolent and

interesting in its own right. Where most distributed languages

are partially distributed in space and non-distributed in time,

Linda is fully distributed in space and distributed in time.

Linda Multiple local tuple spaces are mainly used in

distributed as well as parallel communication.

.

.

Figure 1: Single Local Tuple Space

 Figure 2: Mutiple Local Tuple Spaces

4. LINDA PRIMITIVES
The Linda model uses the exchange of tuples as the means of

process Coordination. A tuple is an ordered sequence of

heterogeneously typed objects. For example, the tuple [1,

false,”Kavi”] contains an integer, a Boolean value and a

string. When a tuple is to be retrieved from a tuple space a

template is provided by the user in order to allow the tuple to

be found. For example, the template [?int,?boolean,”Kavi”] is

one of many templates which matches the example tuple.

Here we use the notation ?type to indicate the type of the field

at that position. Therefore, this template matches any tuple

which has an integer as its first field, a Boolean value as its

second field and the string “Kavi” as its third field.

The exact syntax of tuples, templates and primitives depends

largely on the syntax of the host language. The Linda model

provide some basic operations to manipulate tuples stored in

tuple spaces:

out TSm,tuple): Stores the tuple in the tuple space TSm.

in (TSm,template) This attempts to match the tuple template

with a tuple in the tuple space and return it. If a match does

not exist the operation blocks until a suitable tuple becomes

available (if ever). If the match succeeds, the matched tuple is

removed from the TSm.

rd (TSm,template) Same as in but non-destructive, that is, the

tuple is copied as opposed to removed.

eval (TSm,tuple) This creates so-called active tuples each

element of the tuple is evaluated concurrently and, when

complete, the resulting tuple of values is placed in a tuple

space. This is Linda’s mechanism for spawning new

processes.

handle = tsc(): Creates a new local tuple space and assigns a

unique identifier to handle.

The Linda model is intended to be an abstraction, and as such

is independent of any specific machine architecture. This has

meant that alternatives and extensions to the basic Linda

model have been proposed and investigated. The extensions

that are currently supported in the York kernel are:

4.1 Multiple tuple spaces
The various ways in which multiple tuple spaces may be

added has been discussed for some time. Currently, York has

adopted the idea that each tuple space is independent of any

other tuple space. There are however other ways of

implementing multiple tuple spaces, such as using a

hierarchical structure. The addition of multiple tuple spaces is

achieved by incorporating a tuplespace type and a primitive to

create a new tuple space within the model.

4.2 Collect primitive
A new tuple space primitive[1], collect(), has been proposed

which subsumes the inp and rdp primitives. Given two tuple

space handles (ts1 and ts2) and a tuple template, the primitive

collect (ts1, ts2, template) moves tuples that match the

template in ts1 to ts2, returning a count of the number of

tuples transferred.

4.3 Copy-collect primitive
This is another new tuple-space primitive, which has recently

been proposed in the light of work on the implementation of

many different algorithms in Linda. This primitive is very

Linda runtime system

Tuple space

Linda runtime system

Distribution

Tuple

space

Tuple

space

Tuple

space

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

43

similar to collect but it is non-destructive. Hence it copies all

the tuples that match the tuple template to a separate tuple

space rather than moving them. As with collect it returns a

count of the number of tuples copied.

5. LINDA’S OPERATIONS
In a distributed environment, processes have to work jointly

with each other in order to solve a problem. The

communication mechanisms are hard due to dependencies

between the components. Therefore Coordination deals with

managing dependencies between activities, a Coordination

language is a good candidate to deal with the complexities

that naturally arise in distributed environments[10]. The

practical use of Linda can be seen in recent implementations:

JavaSpaces by Sun Microsystems and TSpaces[9] by IBM,

which were developed under the strong coordination of Linda.

TSpaces was developed with a notion of persistence and it can

perform many duties of a simple database system as it has

indexing and query capabilities similar to a relational

database. JavaSpaces offers transactions to the users to

maintain data integrity[7].

5.1 Representation of Tuples
The general approach to build tuples is to use functions with a

variable number of parameters, where each parameter

represents a field. Having a subprogram with variable number

of parameters is in some languages acceptable, but in linda the

number of formal parameters in a subprogram must be fixed.

In Linda the same effect is achieved by having default values

for the parameters.

Procedure TS_Out (F0, F1, F2 : in Field := Empty Field);

In elinda the fields above must be of the same type, implying

a alternative record or a pointer to a variation record, or there

must be as many versions of TS_Out as there are

combinations of fields. Because of it is possible to solve this

problem more stylishly with tagged types. Tuples can be

represented as a type instead of having procedures

constructing tuples from a number of field parameters. Since

a tuple is an ordered set of values it makes sense to map this

onto a record, where a field in a tuple corresponds to a field in

the record.

type Some_Tuple is abstract tagged record ... end record;

5.2 Representation of Actual and Formal

Fields
The information whether a field is a formal or an actual field

is indicated separate from the template. Unfortunately this

cancels some of the benefits of having a tuple type. The tuple

type ensures that fields can’t mistakenly be transposed or

forgotten, but it is still possible to transpose actual and formal

indicators. Therefore , once the mode informationis given it is

stored in an array of details literals in the template and there is

no further risk for modes being transposed or forgotten.

5.3 Type Safe Tuples
The type profile of a tuple is called its signature. Only tuples

with the same signature can maybe match. This is like

comparing an integer with a float, they can never be equal

since they are of different types. On the other hand two

integers might match if they have the same value. In our

implementation we extend the notion of signature slightly

since we have typed tuples. This means that tuples having the

same type profile can never match if they are of different

types. As a side effect it is possible to use the tag of a tuple

type to represent the signature. This use of the signature

makes it possible to prevent tasks that are not intended to

communicate from accessing each other’s data by mistake.

5.4 New Operations on Tuple Space
Two new operations on TS are added, TS_Inp and TS_Readp.

The operations doesn’t belong to the original Linda model,

but has been implemented in C-Linda. The operations try to

find a matching tuple and return false if they fail, otherwise

they return true and match with the found tuple. The only

difference compared to TS_Inp and TS_Read is that the

predicates will not block if no matching tuple is found. The

new operations are very useful when the calling process can’t

afford to be blocked until a tuple arrives in the tuple space.
Example: - A server is capable of servicing many different

requests. Each type of request is sent using a tuple of a

different type and requests have different priorities. A request

may only be serviced if no higher prioritized request is

waiting. TS_Inp or TS_Readp can then be used to check for

requests from high to low priority without blocking the server.

6. LINDA CHARACTERISTICS
Linda augments is the serial programming language (C or

Fortran). It doesn’t replace it, nor make it out dated. In this

way, Linda builds on investments in existing programs.

Linda parallel programs are portable, and they run on a large

variety of parallel computer systems, as well as, distributed

memory computers, shared-memory computers, clusters, and

networks of computers. With few exceptions, Linda programs

written for one environment run without change on another.

Linda is easy to use. Conceptually, Linda implements

parallelism using a logically global memory i.e. virtual shared

memory, called tuple space, and a small number of simple but

powerful operations on it. Tuple space and the operations that

act on it are easy to understand and rapidly mastered. In

addition, the C-Linda and Fortran-Linda compilers support all

of the usual program development features, including

compile-time error checking and runtime debugging and

visualization.

7. CONCLUSIONS
This work presented an immediate messaging-based

Coordination system for multi-agents by using Linda like

coordination model. Our approach avoided spatially coupled

condition and temporally coupled condition by using the linda

technique for mail service. These two models meeting-

oriented and blackboard-based Coordination model can also

avoid spatially and temporally coupled conditions, but our

approach is easier to implement other Coordination model.

Not only agents but also real persons can coordinate with each

other by using our system. This linda like coordination model

is also used in parallel and distributed computing. This is

easier to implement and it makes a user friendly interface for

communication. In the future, the agent communication

protocol could be extended in our system. Currently, all

messages transferring via our system is text mode. The agent

communication language (such as KQML [12]) could be

combined with our system. Besides, although our system

prototype is implemented with MSN messenger, other

immediate messaging systems should be integrated to support

a heterogeneous immediate messaging environment. This

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

44

model is widely used in newly application because of its

strong characteristics.

8. REFERENCES
[1] A. Gerardo and Y. Yonco, “Communication Language

and Protocols in an Agent-based Collaborative Learning

Environment,” Proceedings of the IEEE Systems, Vol. 3,

pp. 2078-2083, October 1996.

[2] A. Gibaud and P. Thomin, “Communications Directed by

Bound Types in Linda: Presentation and Formal Model,”

IEEE Transactions on Parallel and Distributed Systems,

Vol. 13, NO.8, pp.828-843,August 2002.

[3] A. Nedelec, P. Reignier, and V. Rodin, “Collaborative

Prototyping in Distributed Virtual Reality using an Agent

Communication Language,” Proceedings of the IEEE

Systems,Vol.2,pp.1007-1012, 2000.

[4] D. Gelernter and N. Carriero. Coordination languages

and their significance. Communications of the ACM,

35(2):97–107, 1992.

[5] D. Wang, N. Paciorek, and D. Moore, “Java-based

Mobile Agents,” Communications of the ACM, Vol. 42,

No. 3, pp. 92- 102, March 1999.

[6] E. H. Durfee, “Scaling Up Agent Coordination

Strategies,” IEEE Transactions on Computer, Vol. 34,

No. 7, pp. 39-46, July 2001.

[7] F. Zambonelli, G Cabri, and L. Leonardi, “Mobile-agent

Coordination Models for Internet Applications,” IEEE

Damactions on Computer, Vol. 33, No. 2, pp. 82-89, Feb

2000.

[8] G. Cabri, L. Leonardi, and F. Zambonelli, “Engineering

Mobile Agent Applications via Context-Dependent

Coordination,” IEEE Transactions on Software

Engineering, Vol. 28, No. 11, pp. 1039-1055, November

2002.

[9] IBM Corporation. T Spaces Programmer's Guide, 1998.

Electronic version only.

http://www.almaden.ibm.com/cs/TSpaces/.

[10] “Mobile Agent Reactive

Space,”http://polaris.ing.unimo.it/MOON/MARS/index.h

tml.

[11] R. De Nicola, G L. Ferrari, and R. Pugliese, “KLAIM: A

Kemel Language for Agents Interaction and Mobility,”

IEEE Transactions on Software Engineering, Vol. 24,

No. 5, pp. 315-330, May 1998.

[12] S . A. Moore, “KQML & FLBC: contrasting agent

Communication languages,” Proceedings of the 3hd

Annual Hawaii International Conference. Vol. 6, pp.

6036, January 1999.

[13] “The Ara Platform for Mobile Agents,”

http://wwwagss.inforatik.uni

kl.de/Projekte/Ara/index_e.html

[14] “The Home of the Mole,” http://mole.infonnatik.uni-

stuttgart.de.

IJCATM : www.ijcaonline.org

