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ABSTRACT 

Accurate and reliable production forecasting is certainly a 

significant step for the management and planning of the 

petroleum reservoirs. This paper presents a new neural 

approach called higher-order neural network (HONN) to 

forecast the oil production of a petroleum reservoir. In 

HONN, the neural input variables are correlated linearly as 

well as nonlinearly, which overcomes the limitation of the 

conventional neural network. Hence, HONN is a promising 

technique for petroleum reservoir production forecasting 

without sufficient network training data. A sandstone 

reservoir located in Gujarat, India was chosen for simulation 

studies, to prove the efficiency of HONNs in oil production 

forecasting with insufficient data available. In order to reduce 

noise in the measured data from the oil field a pre-processing 

procedure that consists of a low pass filter was used. Also an 

autocorrelation function (ACF) and cross-correlation function 

(CCF) was employed for selecting the optimal input variables. 

The results from these simulation studies show that the 

HONN models have enhanced forecasting capability with 

higher accuracy in the prediction of oil production.  

Keywords: 
 Production forecasting, reservoir performance, higher-order 

neural network, higher-order synaptic operation. 

1. INTRODUCTION 
An important phase in the field of petroleum reservoir 

engineering is concerned with the forecasting of oil 

production from the reservoir. This estimation of reserves in 

the petroleum reservoirs involves massive investment of 

money, time and technology under a wide range of operating 

and maintenance scenarios such as well operations and 

completion, artificial lift, workover, production, and injection 

operations. A fairly precise estimation of oil quantity in the 

reservoir is in demand; however, the rock and fluid properties 

of the reservoirs are highly nonlinear and heterogeneous in 

nature. Therefore, it is difficult to estimate an accurate 

upcoming oil production. The oil production from a reservoir 

depends on many static and dynamic parameters such as 

porosity and permeability of rocks (static parameters), and 

fluid saturation and pressure in the reservoir (dynamic 

parameters). When these static and dynamic parameters are 

available, the forecasting of oil production of a reservoir 

would be more accurate. However, all the parameter data are 

not always available. This limited data access from the oil 

fields lessens the accuracy of production forecasting.  

In the past, several forecasting methods have been developed 

from decline curve analysis to soft computing techniques[1]. 

For the past few decades, artificial intelligence has been 

extensively applied  such as neural computing, fuzzy 

inference systems and genetic algorithms in petroleum 

industries because of its potential to handle the nonlinearities 

and time-varying situations[2]. Neural networks (NN) is one of 

the most attractive methods of artificial intelligence to cope 

with the nonlinearities in production forecasting[3] as well as 

in parameter estimation[4] due to its ability to learn and adapt 

to new dynamic environments. Numerous researches have 

shown successful implementation of NN in the field of oil 

exploration and development such as pattern recognition in 

well test analysis[5], reservoir history matching[6], prediction 

of phase behavior[7], prediction of natural gas production in 

the United States [8] and reservoir characterization[2] by 

mapping the complex nonlinear input-output relationship. In 

conventional NN model, each neural unit (neuron) performs 

linear synaptic operation of neural inputs and synaptic 

weights. Later, extensive researches on NN and applications 

have been studied by Lee, et al.[9], Rumelhart and McClelland 

[10], Giles and Maxwell[11], Gosh and  Shin[12], Homma and  

Gupta [13], Gupta, et al. [14], Redalapalli[15], Song[16], Tiwari[17]. 

The innovative neural structure embeds higher-order synaptic 

operations (HOSO). Furthermore, the NN with HOSO 

architecture was introduced and named as Higher-order neural 

network (HONN)[14], [18]. The exclusive feature of HONN is 

the expression of the correlation of neural inputs by 

computing products of the inputs. It has been found that 

HONN has significant advantages over conventional NN such 

as faster training, reduced network size, and smaller 

forecasting errors [15], [16], [17], [19].  

This paper presents a new neural approach by employing 

HONN to forecast oil production from an oil field reservoir 

with limited parameter data: i) oil production data and ii) oil, 

gas and water production data. Two case studies are carried 

out to verify the potential of the proposed neural approach 

with the limited available parameters from an oil field in 

Gujarat, India. In case study-1, only one dynamic parameter 

data, oil production data, are used for forecasting, whereas in 

case study-2, three dynamic parameter data, oil, gas and water 

production data are used for forecasting. A pre-processing 

step is included for the preparation of neural inputs. The 

details are explained in the succeeding sections. 
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2. Neural Networks (NN) and its Extension 

to Higher-order Neural Networks 

(HONN) 

Neural networks (NN) are composed of several layers of 

neural units (neurons): input layer, hidden layers and output 

layer. A neural unit is structured mainly with two operations: 

synaptic operation for weighting, and somatic operation for 

mapping. In a conventional neural unit, the weighting process 

is operated with linear correlation of neural inputs, 

x_a=(x_0,x_1,x_2,…〖,x〗_n )∈ R^(n+1)  (x_0  is bias),  and 

neural weights, w_a=(w_0,w_1,w_2,…〖,w〗_n )∈ R^(n+1)  

(w_0=1). The linear correlation can be expressed 

mathematically as 

𝑣 = 𝑤0𝑥0 +  𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (1) 

 

However, in the nature, the correlation of neural inputs and 

neural weights is not simply linear, but rather related 

nonlinearly. This observation introduced a nonlinear (higher-

order) synaptic operation, and NN with the higher-order 

synaptic operation (HOSO) (see Figure 1) was developed and 

named as higher-order neural networks (HONN)[19], [20], 

[21]. HOSO of HONN embraces the linear correlation 

(conventional synaptic operation) as well as the higher-order 

correlation of neural inputs with synaptic weights (up to nth-

order correlation).   

An nth order HOSO is defined as 

𝑣 = 𝑤0𝑥0 +  𝑤𝑖1
𝑥𝑖1

𝑛

𝑖1=1

+ 

+   𝑤𝑖1𝑖2
𝑥𝑖1

𝑥𝑖2

𝑛

𝑖2=𝑖1

𝑛

𝑖1=1

+ ⋯

+   …  𝑤𝑖1𝑖2…𝑖𝑁 𝑥𝑖1
𝑥𝑖2

… … 𝑥𝑖𝑁

𝑛

𝑖𝑁 =𝑖𝑁−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1 =1

 

(2) 

 

and the somatic operation, which yields the neural output, is 

defined as 

𝑦 =  ∅ 𝑣  (3) 

 

In this paper, HOSO have been used up to third-order.  The 

first-order (conventional linear correlation), the second-order 

and the third-order synaptic operations are called linear 

synaptic operation (LSO), quadratic synaptic operation (QSO) 

and cubic synaptic operation (CSO), respectively are applied. 

The higher-order neural network (HONN) is illustrated in 

Figure 2. HONN consists of multiple interconnected layers: 

input layer, hidden layers and output layer. The input layer 

conveys n number of input data to the first hidden layer. Each 

hidden layer includes different number of neurons, and 

consequently the output layer contains m neurons. The 

number of the hidden layers and the number of neurons in 

each hidden layer can be assigned after careful investigation 

for different applications.  

HONN is trained by an error based algorithm in which 

synaptic weights (connection strength) are adjusted to 

minimize the error between desired and neural outputs[19], 

[20], [21]. Let x(k)∈R^n be the neural input pattern at time 

step k=1,2…n corresponding to desired output y_d (k)∈R^1 

and neural output y(k). The error of a pattern can be 

calculated as 

𝑒 𝑘 = 𝑦 𝑘 − 𝑦𝑑 𝑘  (4) 

 

The overall error for an epoch E(k) is defined as 

𝐸 𝑘 =
1

2
𝑒2 𝑘  

(5) 

 

The overall error (squared error) is minimized by updating the 

weight matrix wa as 

𝒘𝑎 𝑘 + 1 = 𝒘𝑎 𝑘 + ∆𝒘𝑎 𝑘   (6) 

where the change in weight matrix is denoted by ∆wa (k) 

which is proportional to the gradient of the error function E(k) 

as 

∆𝒘𝑎 𝑘 = −𝛼
𝜕𝐸 𝑘 

𝜕𝒘𝑎 𝑘 
 

(7) 

 

where α>0 is the learning rate which effects the performance 

of the algorithm during the updating process. The details can 

be found in the reference by Gupta et. al [14]. 

3. Model Performance Evaluation Criteria 

Several statistical methods have been used to evaluate the 

performance of neural networks in the literature. In these 

studies, the following performance parameters are applied to 

substantiate the statistical accuracy of the performance of 

HONNs: root mean square error (RMSE) and mean absolute 

percentage error (MAPE). These performance measurements 

are commonly used evaluation criteria in assessing the model 

performance. They indicate the deviation of prediction of 

applied HONN models, and are defined as 

Root mean square error (RMSE): 

𝑅𝑀𝑆𝐸

=  
1

𝑛
 (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2

𝑛

𝑖=1

       
(8) 

Mean Absolute Percentage Error (MAPE): 
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𝑀𝐴𝑃𝐸 =
100

𝑛
  

𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑝𝑟𝑒𝑑

𝑦𝑖
𝑜𝑏𝑠  

𝑛

𝑖=1

    (9) 

where 𝑦𝑜𝑏𝑠  is the observed data, 𝑦𝑝𝑟𝑒𝑑  is the predicted data, 

and n is the number of data points. 

Regression analysis is carried out for demonstrating the 

HONN model performance during validation phase. The 

model performance assessed by regression analysis is 

illustrated using regression or parity plots. Using regression 

plots one can assess how consistent is the forecasted data with 

the observed data.  It is considered that if the regression of a 

model follows Y=T line more closely the model can perform 

better prediction (see Figure 6), since the Y=T lines represent 

the best fit.   

In order to illustrate the consistency in performance 

of HONN model towards forecasting the production data, we 

have used two performance measurement metrics. The results 

obtained using both metrics are different in their calculated 

values, but the significance of each metrics is similar in 

performance measurement of HONN model. Since the 

production data used as neural input, preprocessed data and 

raw data have different scales, it is preferable to use MAPE 

for estimating the relative error [22]. 

4. Pre-Processing: Optimal Selection of 

Input Variables 

Before performing a prediction by HONN, it is 

important and necessary to preprocess the available input data 

because of two main reasons: i) noise reduction and ii) proper 

selection of input variables. The measured oil production data 

from the field include noise. It is not appropriate to use the 

raw data for neural network training because NN requires 

extremely low learning rates. A preprocessing of the raw 

experimental production data was, therefore, incorporated in 

all cases to minimize measurement errors. Moving average is 

a type of low pass filter that transforms the time series 

monthly production data into smooth trends. This filter does 

weighted averaging of past data points in the time series 

production data within the specified time span to generate a 

smoothed estimate of a time series.  The time span of moving 

average depends on the analytical objectives of the problem. 

For case studies, we used moving average filter with a time 

span of five-points since it is found to be optimal for reducing 

the random noise by retaining the sharpest step response 

associated with production data. Moving average filter is the 

simplest and perhaps optimal filter that can be used for time 

domain signals as reported by Smith [23]. 

After noise reduction process, auto-correlation 

analysis is carried out to find optimal input variables. 

Determining the significant input variables is an important 

task in the process of training HONN model for production 

forecasting. A thorough understanding of dynamics in 

petroleum reservoir is necessary to avoid missing key input 

variables and prevent introduction of spurious input variables 

that create confusion in training process. Currently, there is no 

strict rule for the selection of input variables. Most of the 

heuristic methods for selecting input variables are ad-hoc or 

have experimental basis. In this paper, the significant input 

variables are selected by employing auto-correlation function 

(ACF) for single parameter data and cross-correlation 

function (CCF) for multiple parameter data.  These statistical 

methods provide the correlation between different input 

variables by identifying potentially influencing variables at 

different time lags. The idea behind these statistical methods 

is to investigate the dependence between the input variables.  

ACF is a set of auto-correlation coefficients 

arranged as a function of observations separated in time. It is a 

common tool for assessing the pattern in time series 

production data at numerous time lags. Consider the 

observations  𝑥𝑡  and 𝑥𝑡+𝑘  ; t= 1, 2, …, n; then the 

autocorrelation coefficient 𝑟(𝑘) at lagk can be calculated using 

Eq.10 

𝑟(𝑘) =
1

𝑛
 (𝑥𝑡 − 𝑥 )

𝑛−𝑘

𝑡=1

−  𝑥𝑡+𝑘 − 𝑥  ;    𝑥 

=  𝑥𝑡

𝑛

𝑡=1

 

                   

(10) 

The CCF is a set of cross-correlation coefficients 

arranged as a function of observations of one or more time 

series data at different time steps (lag). Consider two time 

series xt and yt, t= 1, 2, …, n; the time series yt may be 

correlated to the past lags of time series xt and this can be 

calculated using Eq. 11.  Here rxy (k) is the cross-correlation 

coefficient between xt and yt and k is the lag. This means 

measurements in the variable y are lagging or leading those in 

x by k time steps. 

rxy (k)

=
n  (xt−x )(yt−y ) −  xt  yt  

 n  xt
2 −   xt 

2  n  yt
2 −   yt 

2
  

                   

(11

) 

The present study is based only on positive lags. The presence 

of positive lagk between xt and yt indicates that the 

relationship between these time series will be most significant 

when the data in x at time t are related to data in y at time t+k. 

In case study-1, ACF is applied to determine the optimal 

input variables because only monthly oil production data is 

used for forecasting. In case study-2, three parameter data, oil, 

gas and water production data, are available as input and 

hence CCF is used to determine the optimal input variables. 

5. THE RESERVOIR UNDER STUDY 
The simulation studies are carried out with the 

production data from a real oil field reservoir which has 94 

months of production history. The oil field is located in south-

western part of Cambay Basin in Gujarat. This field consists 

of total 8 oil producing wells. The structure of the field trends 

NNW-SSE in direction and bounded by a fault on either side, 

which separates the structure from the adjoining lows. The 

reservoir structure is controlled by East-West trending normal 

fault in the north, and it narrows down towards south. The 

field composed of 3 sandstone layers (L-1, L-2, and L-3) 

having varying thickness up to 25 m, and the layers are 

separated by thin shales with thickness in the range of 1m to 
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2m. The graphical presentation of oil field reservoir for this 

study is shown in Figure 3. 

The initial reservoir pressure was recorded as 144 

kg/cm2 at 1397m. The quantity of reserved oil inplace was 

2.47MMt, and the cumulative oil production until September 

2009 was 0.72MMt which is 29.1% of the inplace reserve and 

64.5% of ultimate reserve. The field started producing oil 

from February 2000 through Well-1 at a rate of 58m3/d and 

December 2000 through Well-2. The initial reservoir pressure 

recorded at Well-1 was 144.6 kg/cm2 at 1385m. From the 

production performance, the cumulative productions of oil, 

gas water from Well-1 till September 2009 are 0.156MMt, 

8.1MMm3, and 7.2 Mm3, respectively. Later, other wells 

(Well-3 ~ Well-8) were drilled and put on production in 

different years until 2009. 

 The interest of this study is in forecasting the oil 

production from the oldest well of the field, Well-1. Two 

cases are studied for oil production forecasting using: i) only 

oil production data and ii) oil, water and gas production data.  

Tables 1. (a) and (b) present the raw and smoothed monthly 

oil, gas and water productions ratios corresponding to each 

maximum production values of Well-1 from 2001 to 2009. 

For an efficient training for HONN, the monthly production 

ratios were calculated using the maximum production of 

products (3000 m3/month for oil, 150000 m3/month for gas, 

and 1500 m3/month for water) through the 9 years production 

history of Well-1. 

5.1 Structure of HONN 
For this study, a number of design factors for HONN were 

considered such as selection of neural structure (order of 

synaptic operation), numbers of neurons and hidden layers. 

Also, different mapping functions (somatic operation) were 

selected after careful investigation in each layer: a sigmoidal 

(hyperbolic tangent) function for hidden layers and a linear 

function for the output layer.  

Three synaptic operations, linear synaptic operation 

(LSO), quadratic synaptic operation (QSO) and cubic synaptic 

operation (CSO) were employed for this study.  Only one 

hidden layer was used since it resulted in the best output for 

time sequence applications such as forecasting [17], and 

different number of neurons (1~5) in the hidden layer were 

applied. Each HONN model was run with learning rate of 

0.01 and different initial synaptic weights. The learning rate 

was dynamically updated by multiplying with 1.05 for 

decreasing error and with 0.7 for increasing error. The pre-

processed data were divided into three segments for training, 

testing and validation. The number of data sets used for 

training and testing of HONN model for each case study 

varied; however, last 16 months (month 78~94) data are used 

to validate HONN models for case study. Each model was 

performed for 200 epochs for training and testing, and then, a 

validation was carried out.  

The network was designed for prediction mode. If 

the input to the network was production data at time t, then 

the output is taken to at time t+1. During the network training, 

the network output was compared with the production data at 

time t+1 and the error was used to correct the synaptic 

weights. This means that the network is used as a one-step-

ahead predictor. This is necessary for production forecasting. 

 

 5.2 Case Study-1 

The monthly oil production ratios from month 1 to 

month 94 were used for oil production forecasting as listed in 

Table 1 a. In the pre-processing stage, the oil production ratio 

data were smoothed using a five point moving average filter. 

The smoothed oil production data are presented in Table 1 b. 

The graphical representation of original oil production data 

and smoothed data are shown in Figure 4.  As seen in the 

figure, the high peaks of the data were smoothed. After the 

smoothing process, the auto-correlation of the oil production 

data was calculated by auto-correlation function (ACF). The 

ACF plot of oil production after smoothing is presented in 

Figure 5. The ACF shows that the lags from lag0 to lag21 

have some correlation within the 95% confidence level 

(outside of the blue lines, positive region). From the ACF 

plot, it was identified that lag1 and lag2 have the most 

significant correlation which means that the input variables in 

these lags are the optimal to train HONN. In view of above, 

we trained HONN to forecast oil production based on three 

scenarios:  

1) using only lag1 (single lag1) 

2) using only lag2 (single lag2)  

3) using lag1 and lag2 (accumulated lag2)  

1) HONN using Single Lag1 

In scenario 1, first 51 months data were used for training 

and next 26 months data for testing. The lag1 data presented 

to HONN after pre-processing are given in Table 2. In this 

table, input corresponds to oil productions rates from Well-1 

and target corresponds to the oil production data that has been 

advanced by one step. The regressions of the best HONN 

models with LSO, QSO and CSO for the validation set of data 

are presented in Figures 6. (a), (b), (c); respectively.  

The simulation results from HONN model in terms 

of RMSE and MAPE are show in Table 3. The selection 

criteria for a better model are lower values of MAPE and 

RMSE. From simulation results, the best model was HONN 

with LSO having five neurons in the hidden layer. The 

performance indices of best model shows HONN with LSO 

resulted in MAPE = 13.86%. With CSO, MAPE =14.89% was 

achieved with three neural units in the hidden layer, and 

MAPE =15.98% was achieved with QSO having five neurons 

in the hidden layer. 

2) HONN using Single Lag2 

For scenario 2, first 50 months data for training and 

next 26 months data for testing were selected applying single 

lag2 after pre-processing and the data were arranged as listed 

in Table 4. In single lag2, the target data used for HONN are 

advanced by 2 time steps. 

Table 5 lists the simulation results using single lag2 

from HONN models. The performance indices of the best 

HONN model with LSO resulted in MAPE = 18.6. However, 

the HONNs with QSO and CSO did not result in acceptable 

outputs with single lag2. Parity plots are not included here for 

brevity. 

3) HONN using accumulated Lag2 
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For this scenario, accumulated lag2 (lag1 and lag2), the 

input, train and test data are shown in Table 6. Input-1 and 

Input-2 in Table 6 corresponds to oil production from Well-1 

at time lag1 and time lag-2.  

The simulation results using accumulated lag2 are 

presented in Table 7. From this table it is seen that HONN 

with LSO having two neurons in the hidden layer resulted in 

MAPE = 13.671% and RMSE=0.067. These results are 

comparable to those obtained in scenario1 but the standard 

deviations are higher, meaning, thereby, that using lag2 in any 

form does not help the predictions. 

For case study-1, the overall performance measure 

shows that HONN with LSO resulted in good performances 

by yielding a stable value between the range of, RMSE =
0.066~0.084 and 𝑀𝐴𝑃𝐸 = 13~18% with different 

configurations of neurons in the hidden layer.  

5.3 Case Study-2 

For this simulation study, monthly oil, gas and 

water production rates from Well-1 from September 2001 to 

March 2009 were used for oil production forecasting.  Table 1 

a and b, present the monthly oil, gas and water production 

data ratios for 94 months before and after smoothing. 

This case study shows how additional input 

parameters (gas and water production) influence the 

performance of HONN model in forecasting oil production. 

The production data were preprocessed by applying 

smoothing process and cross-correlation. The smoothing 

process was carried out by a moving averaging filter with five 

sequence data points as discussed earlier. Oil, gas and water 

production ratios, before and after smoothing, are graphically 

presented in Figure 4 (oil), Figure 7.a (gas) and Figure 7.b 

(water). After that, smoothed data were used to find cross-

correlation function (CCF) between three production data as 

shown in Figure 8. The significant input variables were 

determined using CCF by identifying the correlation between 

oil and other components. It is observed from the CCF plot 

that the correlations between oil and oil (auto-correlation), oil 

and gas, oil and water are significant at lag1; lag1; and lag2, 

and lag23, respectively (Table 8). A total of 4 input vectors 

were identified for monthly oil production forecasting by 

HONN model.  The smoothed data from Table 1 b. were 

arranged applying the lags obtained from the CCF plot as 

presented in Table 8. Input1 represents the correlation of oil at 

lag1, input 2 and input 3 refers to the correlation of oil with 

gas production at lag1 and lag2, and input 4 represents the 

correlation of oil with water production at lag23 (see Table 9 

for the input and output data for this case). 

Table 10 presents the results from HONN models 

with its performance measure in terms of RMSE and MAPE 

for different configurations of neurons in the hidden layer and 

synaptic operation. In this case study, the best model resulted 

in MAPE=15.13%, and RMSE=0.069 by HONN with QSO 

having four neurons in the hidden layer. 

6. PRODUCTION FORECASTING 

Using the HONN, one-step-ahead production model, for 

Well-1 in the Tarapur block of Cambay Basin, predictions 

were made for 16 months (from February 2008 to September 

2009 (i.e month 77 ~ 94) beyond the date used for model 

development and its training.  A comparison of the prediction 

by the best HONN model with LSO using single lag1 with the 

actual oil production is presented by Figure 9. As seen in this 

model, the match is satisfactory for the first 13 months. 

7. DISCUSSIONS 

From the case studies, the performance evaluation 

criteria indicates that the better oil production forecasting can 

be achieved using HONN with LSO with only one input 

parameter i.e. oil production data. In this study, the selection 

of lag time is an important factor that influences the 

forecasting results. Auto-correlation function (ACF) indicates 

that the most significant lag for oil production forecasting 

with only one parameter (oil production) is lag1, and HONN 

with LSO yields the best forecasting oil production in this 

case. Intuitively, it can be expected that QSO and CSO would 

result in better outcome than that of LSO. However, this case 

study comes up with opposite result. This can be explained by 

recalling that only one input parameter (oil production), used 

in case study-1, does not generate complex correlation with 

target parameter (oil production to be predicted). Thus, in this 

case, linear combination of synaptic operations could result in 

better prediction. However, in case study-2, the three input 

parameters, namely; oil, gas and water production rates may 

generate nonlinearity and heterogeneity between input and 

target parameters. In this case, the higher-order synaptic 

operations, QSO and CSO, would be better suited to forecast 

the oil production.  

It is observed that the performance of HONN with 

LSO in the case study-1 shows less MAPE than that in the 

case study-2. One would expect that since gas and water 

production rates are intimately connected with oil production 

rate, case study-2 ought to have shown better match or less 

MAPE. The contrary results may be attributed to the 

possibility that the noise in gas and water production 

measurements even after filtering may have overshadowed the 

advantage gained by added input information. Additionally, 

the number of input patterns in case study-1 is higher than that 

in the case study-2. The reduction in the number of input 

patterns for training HONN in the case study-2 is caused by 

the number of lags. In the case study-2,  the highest number of 

lags is 23 which reduce the input pattern numbers as P – 23 

where P is the number of initial input patterns. The patterns 

for oil, gas and water productions are selected based on cross-

correlated pattern Overall, it can be inferred that for the 

application of HONN for forecasting, the number of input 

variables is one of the significant factors in determining the 

order of synaptic operation.  

Mean absolute percentage error (MAPE) is a 

measure of uncertainty in forecasting of oil production from a 

single well. A high value of 13 ~ 15% is indicative of lack of 

enough input information to the HONN model. One important 

information that is missing is clearly the well pressure 

(bottom hole pressure). Another one is the presence of other 

wells in its vicinity and their production pattern which, to 

some extent, could have been reflected by the well pressure. It 

may, therefore, be anticipated that if we were to use this 

procedure for all the five wells in this reservoir, MAPE will 

be reduced. Preliminary work on these lines indicates a 

reduction by as much as 75% in the MAPE. This work will be 

published at a future date when completed. 
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8. CONCLUSION 

A new neural approach for forecasting oil 

production using higher-order neural network (HONN) was 

proposed in this paper. Two case studies were carried out with 

the data from an oil field situated at Cambay basin, Gujarat, 

India, to demonstrate the forecasting ability of HONN models.  

The simulation study indicates that HONN has high 

potential for application in oil production forecasting with 

limited available input parameters of petroleum reservoirs. 

The HONN methodology applied to forecasting of oil 

production yielded 13.86 and 15.13 of MAPE in the two cases 

examined. In order to achieve the MAPE, two pre-processing 

procedures were found to be beneficial: i) noise reduction and 

ii) selection of optimal input variables. In this study, a low 

pass filtering process, a 5-point moving averaging filter, for 

noise reduction was used. Auto-correlation function for single 

input parameter and cross-correlation function for multiple 

input parameters were employed to determine the most 

significant correlation between the parameters. Considering 

the limited available input parameters for forecasting, the 

performance indicates that HONN has a high potential to 

overcome this limitation. Also, for complicated input patterns, 

such as in the cast study-2, the higher combination of the 

input products reduces the computational cost, which yields 

faster results.  
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Table 1 a. Ratio of monthly oil, gas and water production 

to corresponding maximum production value of nine years 

from Well-1. 

Months Oil Gas Water Months Oil Gas Water 

1 0.982 0.982 0.096 48 0.240 0.164 0.920 

2 0.930 0.930 0.135 49 0.241 0.163 0.965 

3 0.950 0.950 0.245 50 0.198 0.140 0.625 

4 0.907 0.907 0.244 51 0.192 0.150 0.670 

5 0.862 0.862 0.144 52 0.200 0.160 0.653 

6 0.704 0.704 0.074 53 0.174 0.131 0.603 

7 0.922 0.922 0.060 54 0.157 0.110 0.699 

8 0.972 0.972 0.076 55 0.147 0.102 0.686 

9 0.874 0.884 0.057 56 0.101 0.073 0.810 

10 0.927 0.914 0.052 57 0.097 0.073 0.785 

11 0.818 0.806 0.287 58 0.150 0.108 0.602 

12 0.764 0.753 0.326 59 0.091 0.065 0.386 

13 0.884 0.872 0.152 60 0.123 0.088 0.557 

14 0.862 0.849 0.134 61 0.205 0.148 0.666 

15 0.813 0.801 0.111 62 0.207 0.149 0.622 

16 0.624 0.618 0.180 63 0.205 0.145 0.664 

17 0.393 0.387 0.542 64 0.133 0.096 0.516 

18 0.507 0.500 0.410 65 0.102 0.071 0.635 

19 0.517 0.386 0.366 66 0.114 0.076 0.701 

20 0.536 0.401 0.375 67 0.107 0.073 0.686 

21 0.490 0.368 0.420 68 0.110 0.073 0.688 

22 0.486 0.364 0.537 69 0.127 0.089 0.626 

23 0.478 0.359 0.552 70 0.059 0.040 0.224 

24 0.396 0.297 0.688 71 0.124 0.093 0.612 

25 0.462 0.346 0.369 72 0.118 0.089 0.644 

26 0.454 0.341 0.529 73 0.050 0.038 0.784 

27 0.474 0.356 0.498 74 0.127 0.098 0.645 

28 0.451 0.338 0.735 75 0.117 0.090 0.473 

29 0.460 0.242 0.665 76 0.109 0.083 0.489 

30 0.440 0.264 0.712 77 0.129 0.099 0.572 

31 0.352 0.211 0.636 78 0.160 0.122 0.590 

32 0.350 0.210 0.643 79 0.142 0.108 0.556 

33 0.315 0.189 0.671 80 0.147 0.114 0.555 

34 0.326 0.196 0.690 81 0.165 0.130 0.490 

35 0.336 0.245 0.651 82 0.141 0.111 0.547 

36 0.248 0.170 0.904 83 0.162 0.126 0.507 

37 0.351 0.235 0.725 84 0.095 0.073 0.570 

38 0.344 0.230 0.692 85 0.090 0.067 0.546 

39 0.165 0.078 0.434 86 0.141 0.107 0.478 

40 0.166 0.117 0.432 87 0.104 0.080 0.579 

41 0.146 0.109 0.398 88 0.092 0.079 0.551 

42 0.163 0.121 0.439 89 0.076 0.047 0.539 

43 0.158 0.109 0.420 90 0.081 0.055 0.583 

44 0.173 0.119 0.419 91 0.078 0.050 0.663 

45 0.267 0.183 0.812 92 0.087 0.059 0.599 

46 0.207 0.142 0.616 93 0.009 0.006 0.159 

47 0.281 0.193 0.886 94 0.418 0.284 0.270 

 

 

 

 

Table 1 b. Ratio of smoothed monthly oil, gas and water 

production to corresponding maximum production value 

of nine years from Well-1. 

 

Months Oil Gas Water Months Oil Gas Water 

1 0.982 0.917 0.096 48 0.233 0.149 0.802 

2 0.954 0.890 0.159 49 0.230 0.151 0.813 

3 0.926 0.865 0.173 50 0.214 0.145 0.767 

4 0.871 0.813 0.168 51 0.201 0.139 0.703 

5 0.869 0.811 0.153 52 0.184 0.129 0.650 

6 0.873 0.815 0.120 53 0.174 0.122 0.662 

7 0.867 0.811 0.082 54 0.156 0.107 0.690 

8 0.880 0.821 0.064 55 0.135 0.091 0.717 

9 0.903 0.840 0.106 56 0.130 0.087 0.716 

10 0.871 0.808 0.160 57 0.117 0.079 0.654 

11 0.853 0.789 0.175 58 0.112 0.077 0.628 

12 0.851 0.783 0.190 59 0.133 0.091 0.599 

13 0.828 0.762 0.202 60 0.155 0.105 0.567 

14 0.789 0.727 0.181 61 0.166 0.112 0.579 

15 0.715 0.658 0.224 62 0.175 0.117 0.605 

16 0.640 0.589 0.275 63 0.170 0.114 0.621 

17 0.571 0.503 0.322 64 0.152 0.100 0.628 

18 0.515 0.428 0.375 65 0.132 0.086 0.640 

19 0.489 0.381 0.423 66 0.113 0.073 0.645 

20 0.507 0.377 0.422 67 0.112 0.071 0.667 

21 0.501 0.351 0.450 68 0.103 0.066 0.585 

22 0.477 0.334 0.514 69 0.105 0.069 0.567 

23 0.462 0.324 0.513 70 0.108 0.072 0.559 

24 0.455 0.319 0.535 71 0.096 0.065 0.578 

25 0.453 0.317 0.527 72 0.096 0.067 0.582 

26 0.447 0.313 0.564 73 0.107 0.076 0.632 

27 0.460 0.303 0.559 74 0.104 0.074 0.607 

28 0.456 0.288 0.628 75 0.106 0.076 0.593 

29 0.435 0.263 0.649 76 0.128 0.092 0.554 

30 0.411 0.236 0.678 77 0.131 0.094 0.536 

31 0.383 0.208 0.665 78 0.137 0.098 0.552 

32 0.357 0.200 0.670 79 0.149 0.107 0.553 

33 0.336 0.196 0.658 80 0.151 0.109 0.548 

34 0.315 0.189 0.712 81 0.151 0.110 0.531 

35 0.315 0.193 0.728 82 0.142 0.103 0.534 

36 0.321 0.201 0.732 83 0.131 0.095 0.532 

37 0.289 0.179 0.681 84 0.126 0.090 0.530 

38 0.255 0.155 0.637 85 0.118 0.084 0.536 

39 0.234 0.143 0.536 86 0.104 0.076 0.545 

40 0.197 0.122 0.479 87 0.101 0.071 0.539 

41 0.160 0.100 0.425 88 0.099 0.069 0.546 

42 0.161 0.107 0.422 89 0.086 0.058 0.583 

43 0.181 0.120 0.498 90 0.083 0.054 0.587 

44 0.194 0.126 0.541 91 0.066 0.040 0.509 

45 0.217 0.139 0.631 92 0.135 0.085 0.455 

46 0.234 0.149 0.731 93 0.171 0.109 0.343 

47 0.247 0.158 0.840 94 0.418 0.265 0.270 
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Table 2. The train and test data used to train HONN 

model for scenario 1 (lag1) 

 

 

 

 

 

 

Table 3.  Performance measure of HONN with oil 

production ratio using single Lag1. 

Synaptic 

Operation 

Number 

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear 

Synaptic 

Operation 

1 

1 0.068 0.002 15.932 2.635 

2 0.067 0.001 15.680 2.195 

3 0.067 0.001 16.379 2.471 

4 0.068 0.001 14.500 1.660 

5 0.067 0.001 13.863 0.442 

Quadratic 

Synaptic 

Operation 

1 

1 0.066 0.000 17.040 0.888 

2 0.067 0.001 18.370 2.575 

3 0.066 0.000 16.940 2.120 

4 0.067 0.001 16.554 0.840 

5 0.068 0.002 15.983 1.864 

Cubic 

Synaptic 

Operation 

1 

1 0.066 0.000 15.647 1.081 

2 0.066 0.000 15.295 2.092 

3 0.066 0.000 14.890 1.689 

4 0.067 0.002 16.742 2.676 

5 0.066 0.001 16.375 1.264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Months Input Target Months Input Target 

1 0.982 0.954 40 0.197 0.160 

2 0.954 0.926 41 0.160 0.161 

3 0.926 0.871 42 0.161 0.181 

4 0.871 0.869 43 0.181 0.194 

5 0.869 0.873 44 0.194 0.217 

6 0.873 0.867 45 0.217 0.234 

7 0.867 0.880 46 0.234 0.247 

8 0.880 0.903 47 0.247 0.233 

9 0.903 0.871 48 0.233 0.230 

10 0.871 0.853 49 0.230 0.214 

11 0.853 0.851 50 0.214 0.201 

12 0.851 0.828 51 0.201 0.184 

13 0.828 0.789 52 0.184 0.174 

14 0.789 0.715 53 0.174 0.156 

15 0.715 0.640 54 0.156 0.135 

16 0.640 0.571 55 0.135 0.130 

17 0.571 0.515 56 0.130 0.117 

18 0.515 0.489 57 0.117 0.112 

19 0.489 0.507 58 0.112 0.133 

20 0.507 0.501 59 0.133 0.155 

21 0.501 0.477 60 0.155 0.166 

22 0.477 0.462 61 0.166 0.175 

23 0.462 0.455 62 0.175 0.170 

24 0.455 0.453 63 0.170 0.152 

25 0.453 0.447 64 0.152 0.132 

26 0.447 0.460 65 0.132 0.113 

27 0.460 0.456 66 0.113 0.112 

28 0.456 0.435 67 0.112 0.103 

29 0.435 0.411 68 0.103 0.105 

30 0.411 0.383 69 0.105 0.108 

31 0.383 0.357 70 0.108 0.096 

32 0.357 0.336 71 0.096 0.096 

33 0.336 0.315 72 0.096 0.107 

34 0.315 0.315 73 0.107 0.104 

35 0.315 0.321 74 0.104 0.106 

36 0.321 0.289 75 0.106 0.128 

37 0.289 0.255 76 0.128 0.131 

38 0.255 0.234 77 0.131 0.137 

39 0.234 0.197 
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Table 4. The train and test data used to train HONN 

model for scenario 2 (lag2) 

Months Input Target Months Input Target 

1 0.982 0.926 39 0.234 0.160 

2 0.954 0.871 40 0.197 0.161 

3 0.926 0.869 41 0.160 0.181 

4 0.871 0.873 42 0.161 0.194 

5 0.869 0.867 43 0.181 0.217 

6 0.873 0.880 44 0.194 0.234 

7 0.867 0.903 45 0.217 0.247 

8 0.880 0.871 46 0.234 0.233 

9 0.903 0.853 47 0.247 0.230 

10 0.871 0.851 48 0.233 0.214 

11 0.853 0.828 49 0.230 0.201 

12 0.851 0.789 50 0.214 0.184 

13 0.828 0.715 51 0.201 0.174 

14 0.789 0.640 52 0.184 0.156 

15 0.715 0.571 53 0.174 0.135 

16 0.640 0.515 54 0.156 0.130 

17 0.571 0.489 55 0.135 0.117 

18 0.515 0.507 56 0.130 0.112 

19 0.489 0.501 57 0.117 0.133 

20 0.507 0.477 58 0.112 0.155 

21 0.501 0.462 59 0.133 0.166 

22 0.477 0.455 60 0.155 0.175 

23 0.462 0.453 61 0.166 0.170 

24 0.455 0.447 62 0.175 0.152 

25 0.453 0.460 63 0.170 0.132 

26 0.447 0.456 64 0.152 0.113 

27 0.460 0.435 65 0.132 0.112 

28 0.456 0.411 66 0.113 0.103 

29 0.435 0.383 67 0.112 0.105 

30 0.411 0.357 68 0.103 0.108 

31 0.383 0.336 69 0.105 0.096 

32 0.357 0.315 70 0.108 0.096 

33 0.336 0.315 71 0.096 0.107 

34 0.315 0.321 72 0.096 0.104 

35 0.315 0.289 73 0.107 0.106 

36 0.321 0.255 74 0.104 0.128 

37 0.289 0.234 75 0.106 0.131 

38 0.255 0.197 76 0.128 0.137 

 

 

 

 

 

Table 5. Performance measure of HONN with oil 

production ratio using single lag2. 

Synaptic 

Operation 

Number  

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear 

Synaptic 

Operation 

1 

1 0.082 0.003 19.182 1.392 

2 0.083 0.002 18.599 0.818 

3 0.083 0.002 18.985 1.224 

4 0.084 0.002 19.273 1.487 

5 0.080 0.004 21.345 1.785 

Quadratic 

Synaptic 

Operation 

1 

1 0.076 0.001 25.953 2.882 

2 0.076 0.001 24.899 2.202 

3 0.077 0.001 23.824 2.189 

4 0.079 0.003 21.624 3.454 

5 0.076 0.000 24.146 0.930 

Cubic 

Synaptic 

Operation 

1 

1 0.076 0.001 25.223 2.165 

2 0.078 0.001 21.822 1.798 

3 0.076 0.001 24.943 1.734 

4 0.076 0.000 25.745 0.716 

5 0.078 0.004 23.315 1.930 
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Table 6. The train and test data used to train HONN 

model for scenario 3 (accumulated lag2) 

Months 

Input-

1 

Input-

2 Target Months 

Input-

1 

Input-

2 Target 

1 0.982 0.954 0.926 39 0.234 0.197 0.160 

2 0.954 0.926 0.871 40 0.197 0.160 0.161 

3 0.926 0.871 0.869 41 0.160 0.161 0.181 

4 0.871 0.869 0.873 42 0.161 0.181 0.194 

5 0.869 0.873 0.867 43 0.181 0.194 0.217 

6 0.873 0.867 0.880 44 0.194 0.217 0.234 

7 0.867 0.880 0.903 45 0.217 0.234 0.247 

8 0.880 0.903 0.871 46 0.234 0.247 0.233 

9 0.903 0.871 0.853 47 0.247 0.233 0.230 

10 0.871 0.853 0.851 48 0.233 0.230 0.214 

11 0.853 0.851 0.828 49 0.230 0.214 0.201 

12 0.851 0.828 0.789 50 0.214 0.201 0.184 

13 0.828 0.789 0.715 51 0.201 0.184 0.174 

14 0.789 0.715 0.640 52 0.184 0.174 0.156 

15 0.715 0.640 0.571 53 0.174 0.156 0.135 

16 0.640 0.571 0.515 54 0.156 0.135 0.130 

17 0.571 0.515 0.489 55 0.135 0.130 0.117 

18 0.515 0.489 0.507 56 0.130 0.117 0.112 

19 0.489 0.507 0.501 57 0.117 0.112 0.133 

20 0.507 0.501 0.477 58 0.112 0.133 0.155 

21 0.501 0.477 0.462 59 0.133 0.155 0.166 

22 0.477 0.462 0.455 60 0.155 0.166 0.175 

23 0.462 0.455 0.453 61 0.166 0.175 0.170 

24 0.455 0.453 0.447 62 0.175 0.170 0.152 

25 0.453 0.447 0.460 63 0.170 0.152 0.132 

26 0.447 0.460 0.456 64 0.152 0.132 0.113 

27 0.460 0.456 0.435 65 0.132 0.113 0.112 

28 0.456 0.435 0.411 66 0.113 0.112 0.103 

29 0.435 0.411 0.383 67 0.112 0.103 0.105 

30 0.411 0.383 0.357 68 0.103 0.105 0.108 

31 0.383 0.357 0.336 69 0.105 0.108 0.096 

32 0.357 0.336 0.315 70 0.108 0.096 0.096 

33 0.336 0.315 0.315 71 0.096 0.096 0.107 

34 0.315 0.315 0.321 72 0.096 0.107 0.104 

35 0.315 0.321 0.289 73 0.107 0.104 0.106 

36 0.321 0.289 0.255 74 0.104 0.106 0.128 

37 0.289 0.255 0.234 75 0.106 0.128 0.131 

38 0.255 0.234 0.197 76 0.128 0.131 0.137 

 

 

 

 

 

Table 7. Performance measure of HONN with  oil 

production ratio using accumulated lag2 

Synaptic 

Operatio

n 

Numb

er of 

Hidde

n 

Layer 

Numbe

r of 

Neuron

s 

RMSE MAPE 

Mea

n SD Mean SD 

Linear 

Synaptic 

Operatio

n 

1 

1 

0.07

1 

0.00

5 

15.15

3 

1.59

8 

2 

0.06

7 

0.00

3 

13.67

1 

1.06

8 

3 

0.07

2 

0.00

4 

14.71

4 

1.17

0 

4 

0.06

9 

0.00

7 

16.02

5 

2.60

6 

5 

0.06

9 

0.00

2 

14.57

5 

1.00

0 

Quadrati

c 

Synaptic 

Operatio

n 

1 

1 

0.06

4 

0.00

2 

16.65

1 

1.67

0 

2 

0.06

9 

0.00

3 

18.08

3 

2.72

0 

3 

0.06

9 

0.00

2 

17.30

2 

1.77

7 

4 

0.06

9 

0.00

4 

16.25

0 

2.20

4 

5 

0.06

5 

0.00

4 

16.22

9 

3.49

2 

Cubic 

Synaptic 

Operatio

n 

1 

1 

0.06

6 

0.00

4 

18.18

9 

1.83

4 

2 

0.07

1 

0.00

4 

15.31

5 

0.96

4 

3 

0.07

0 

0.00

4 

16.75

9 

1.56

3 

4 

0.07

0 

0.00

9 

17.03

4 

1.78

0 

5 

0.07

0 

0.00

6 

16.40

7 

2.91

4 

 

Table 8. Most significant input variable selected based on 

CCF of monthly production data 

Cross-Correlation Variables Significant lags 

Oil-Oil lag1 

Oil-Gas lag1 ,lag2 

Oil-Water lag23 
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Table 10. Performance measure of HONN with oil, gas 

and water production ratio. 

Synaptic  

Operation 

Number 

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear 

Synaptic 

Operation 

(LSO) 

1 

1 0.068 0.005 17.896 3.547 

2 0.071 0.003 17.863 3.846 

3 0.076 0.004 17.951 1.533 

4 0.070 0.006 18.563 4.083 

5 0.068 0.005 20.223 1.955 

Quadratic 

Synaptic 

Operation 

(QSO) 

1 

1 0.065 0.003 15.612 0.765 

2 0.061 0.010 15.853 1.541 

3 0.064 0.006 15.953 2.439 

  
 

4 0.069 0.007 15.128 0.475 

5 0.071 0.011 18.358 1.076 

Cubic 

Synaptic 

Operation 

(CSO) 

1 

1 0.070 0.002 17.034 0.749 

2 0.076 0.007 16.073 1.684 

3 0.078 0.005 19.214 0.776 

4 0.074 0.002 16.363 0.774 

5 0.054 0.008 17.906 1.047 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. The train and test data used for training HONN 

model for case study-2 

Months Input-1 Input-2 Input-3 Input-4 Target 

1 0.462 0.324 0.334 0.096 0.455 

2 0.455 0.319 0.324 0.159 0.453 

3 0.453 0.317 0.319 0.173 0.447 

4 0.447 0.313 0.317 0.168 0.46 

5 0.46 0.303 0.313 0.153 0.456 

6 0.456 0.288 0.303 0.12 0.435 

7 0.435 0.263 0.288 0.082 0.411 

8 0.411 0.236 0.263 0.064 0.383 

9 0.383 0.208 0.236 0.106 0.357 

10 0.357 0.2 0.208 0.16 0.336 

11 0.336 0.196 0.2 0.175 0.315 

12 0.315 0.189 0.196 0.19 0.315 

13 0.315 0.193 0.189 0.202 0.321 

14 0.321 0.201 0.193 0.181 0.289 

15 0.289 0.179 0.201 0.224 0.255 

16 0.255 0.155 0.179 0.275 0.234 

17 0.234 0.143 0.155 0.322 0.197 

18 0.197 0.122 0.143 0.375 0.16 

19 0.16 0.1 0.122 0.423 0.161 

20 0.161 0.107 0.1 0.422 0.181 

21 0.181 0.12 0.107 0.45 0.194 

22 0.194 0.126 0.12 0.514 0.217 

23 0.217 0.139 0.126 0.513 0.234 

24 0.234 0.149 0.139 0.535 0.247 

25 0.247 0.158 0.149 0.527 0.233 

26 0.233 0.149 0.158 0.564 0.23 

27 0.23 0.151 0.149 0.559 0.214 

28 0.214 0.145 0.151 0.628 0.201 

29 0.201 0.139 0.145 0.649 0.184 

30 0.184 0.129 0.139 0.678 0.174 

31 0.174 0.122 0.129 0.665 0.156 

32 0.156 0.107 0.122 0.67 0.135 

33 0.135 0.091 0.107 0.658 0.13 

34 0.13 0.087 0.091 0.712 0.117 

35 0.117 0.079 0.087 0.728 0.112 

36 0.112 0.077 0.079 0.732 0.133 

37 0.133 0.091 0.077 0.681 0.155 

38 0.155 0.105 0.091 0.637 0.166 

39 0.166 0.112 0.105 0.536 0.175 

40 0.175 0.117 0.112 0.479 0.17 

41 0.17 0.114 0.117 0.425 0.152 

42 0.152 0.1 0.114 0.422 0.132 

43 0.132 0.086 0.1 0.498 0.113 

44 0.113 0.073 0.086 0.541 0.112 

45 0.112 0.071 0.073 0.631 0.103 

46 0.103 0.066 0.071 0.731 0.105 

47 0.105 0.069 0.066 0.84 0.108 

48 0.108 0.072 0.069 0.802 0.096 

49 0.096 0.065 0.072 0.813 0.096 

50 0.096 0.067 0.065 0.767 0.107 

51 0.107 0.076 0.067 0.703 0.104 

52 0.104 0.074 0.076 0.65 0.106 

53 0.106 0.076 0.074 0.662 0.128 

54 0.128 0.092 0.076 0.69 0.131 

55 0.131 0.094 0.092 0.717 0.137 
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Figure 1. A neural unit (neuron) with higher-order 

synaptic operation (HOSO)
[14]

. 
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Figure 2. A schematic diagram of HONN with 

multilayer.     
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Figure 3. The top structure map of the oil 

bearing reservoir with well locations. In this case study, 

the oil production from Well-1 is forecasted. 

 
Figure 4. Oil production history of Well-1 from 2001~2009 

before and after smoothing 

 
Figure 5. ACF of oil production after pre-processing. The 

blue line represents the confidential level of correlation 

(outside of the line represents 95% of confidence). 

(b)  (c) 

 
Figure 6. Regression of validation set of HONN with (a) 

LSO having 5 neurons in the hidden layer, (b) QSO 

having 5 neurons in the hidden layer (c) CSO having three 

neurons in the hidden layer. 
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(a)  

(b)  

Figure 7.  (a) Gas production data from Well-1 before and 

after smoothing (b) Water production from Well-1 before 

and after smoothing. 

 

Figure 8. CCF of smoothed oil, gas and water production 

data. The legend represents the correlation between two 

parameters; notation inside the legend box C01,C02 and 

C03 represent oil, gas and  water respectively. 

 

 

Figure 9. Comparison between the actual oil production 

and the forecasted results from HONN with LSO using 

single lag-1 from case study-1. 
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Measured

HONN-LSO Results

IJCATM : www.ijcaonline.org 


