
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

15

Enhanced Role based Access Control: Integrating
Auditing and Authentication

Kriti

M.Tech, CSE

Manav Rachna International University, Faridabad,

Haryana, India

Indu Kashyap
Assistant Professor, CSE

Manav Rachna International University, Faridabad,

Haryana, India

ABSTRACT

In past decade lot of research has been done in RBAC (Role

Based Access Control) technology. The industries have also

shown great interest in RBAC. Most of the IT vendors are

offering products that incorporate some form of RBAC.

Today, all major DBMS products support RBAC. RBAC

provides easier management of permissions in an organization

and hence is most widely used model to control access of

legitimate users. However research shows that access control

is not a complete solution for securing a database. Most of the

breaches are done by insiders. So, access control system must

be incorporated with other mechanisms that provide more

features than just controlling access of users. Auditing is such

a mechanism that can log all the transactions occurring on the

database and based on this log an analysis can be done.

Auditing is well effective when we have good authentication.

Authentication processes are vulnerable to SQL Injection

attacks. This paper proposes an enhanced model that increases

the capability of RBAC model by integrating Auditing and

Authentication in simplest ways. In this way this model not

only provides the features of RBAC but also handles common

issues of database security.

Keywords

RBAC, Auditing, SQL Injection, DBMS_FGA,

Authentication, Prepared Statements.

1. INTRODUCTION
RBAC is a proven technology for large-scale authorization.

However lack of a standard model results in uncertainty and

confusion about its utility and meaning [1]. Because of its

relevance in products and applications for the management of

enterprise security, RBAC always has been the focus of

standardization activities. The American National Standard

Institute (ANSI) standard was approved in 2004 and provided

a consistent and uniform definition of RBAC [2]. This ANSI

RBAC standard consists of two parts: a Reference Model and

a Functional Specification. The Reference Model defines sets

of basic RBAC elements and relations, and the Functional

Specification specifies the operations and functions an RBAC

system should support. The RBAC model and functional

specification are organized into four RBAC components: Core

RBAC, Hierarchical RBAC, Static Separation of Duty (SSD)

Relations, and Dynamic Separation of Duty (DSD) Relations

(Constrained RBAC).

The goal of RBAC systems is to provide a model and tools to

help manage access control in complex environment with a

very large number of users and even larger number of data

items [6]. A recent study by National Institute of Standards

and Technology (NIST) demonstrates that RBAC addresses

many needs of the commercial and government sectors [3]

[7]. Most of the organizations base their access control

decisions on the roles that individual users take on as part of

the organization. Other evidence of strong interest in RBAC

comes from the standards arena. Roles are being considered as

part of the emerging technologies. RBAC is also well matched

to prevailing business trends. A number of products support

some form of RBAC directly, and others support closely

related concepts, such as user groups, that can be utilized to

implement roles.

However, access control is also not a complete solution for

securing a system; it must be coupled with auditing [4].

Auditing helps in following ways:

 It performs the analysis of all the requests and activities

of the users in the system.

 It performs logging of all users request and activities for

their later analysis.

 Auditing ensures that authorized user do not misuse their

privileges.

 Auditing can determine flaws in the security system.

In other words auditing holds users accountable for their

actions. Also effective auditing requires good authentication

to be in place.

Access control is different from authentication.

Authentication is a process of signing on to a computer

system by providing an identifier and a password. So,

correctly establishing the identity of the user is the

responsibility of the authentication service. On the other hand,

access control assumes that authentication of the user has

been successfully verified prior to enforcement of access

control. Authentication process is vulnerable to SQL Injection

attacks mostly in case of web applications. In these attacks

attacker tries to add malicious code to legitimate SQL query

and try to gain access to resources or database.

So a model is needed that not only provides features of RBAC

but also should be invulnerable to SQL Injection attacks. Also

it should provide some mechanism to keep an eye on the

activities that an individual user perform in system. In this

paper a model - Authentication & Auditing enabled Role

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

16

Based Access Control (AARBAC) is presented that integrates

features of RBAC with auditing and authentication

mechanisms invulnerable to SQL Injection attacks. The rest of

the paper is organized as follows: In section 2 standard

RBAC model is discussed. In section 3 model AARBAC is

discussed along with description of its various components.

Sections 4 and 5 discusses about how authentication and

auditing can be integrated in simplest ways with RBAC

respectively. Section 6 concludes the paper.

2. OVERVIEW OF ANSI RBAC

Role-Based Access Control (RBAC) is an emerging paradigm

for controlling access to computer resources. RBAC adds the

notion of roles between users and permissions. Roles are

created based on job functions in an organization. Permissions

are assigned to roles. Users are made members of roles based

on their job responsibilities and qualifications, thereby gaining

permissions assigned to those roles. In RBAC, users are

granted permissions based on their roles, not on individual

basis. This abstraction provided by roles significantly

simplifies the management of privileges, and helps enforcing

the principle of least privilege [2] [8].

2.1 Terms & Definitions

 Component: It refers to one of the major blocks of

RBAC features, core RBAC, hierarchical RBAC,

SSD relations, and DSD relations [5].

 Objects: An object can be any system resource

subject to access control, such as a file, printer,

terminal, database record, etc.

 Operations: An operation is an executable image

of a program, which upon invocation executes

some function for the user.

 Permissions: Permission is an approval to perform

an operation on one or more RBAC protected

objects.

 Role: A role is a job function within the context of

an organization with some associated semantics

regarding the authority and responsibility conferred

on the user assigned to the role.

 User: A user is defined as a human being.

Although the concept of a user can be extended to

include machines, networks, or intelligent

autonomous agents, the definition is limited to a

person in this document for simplicity reasons.

2.2 RBAC Reference Model
The RBAC reference model is defined in terms of four model

components—Core RBAC, Hierarchical RBAC, Static

Separation of Duty Relations, and Dynamic Separation of

Duty Relations [5].

Core RBAC defines a minimum collection of RBAC

elements, element sets, and relations in order to completely

achieve a Role-Based Access Control system. This includes

user-role assignment and permission-role assignment

relations, considered fundamental in any RBAC system. In

addition, Core RBAC introduces the concept of role activation

as part of a user‘s session within a computer system. Core

RBAC is required in any RBAC system, but the other

components are independent of each other and may be

implemented separately.

The Hierarchical RBAC component adds relations for

supporting role hierarchies. A hierarchy is mathematically a

partial order defining a seniority relation between roles,

whereby senior roles acquire the permissions of their juniors

and junior roles acquire users of their seniors. In addition,

Hierarchical RBAC goes beyond simple user and permission

role assignment by introducing the concept of a role‘s set of

authorized users and authorized permissions.

A third model component, Static Separation of Duty

Relations, adds exclusivity relations among roles with respect

to user assignments. Because of the potential for

inconsistencies with respect to static separation of duty

relations and inheritance relations of a role hierarchy, the SSD

relations model component defines relations in both the

presence and absence of role hierarchies.

The fourth model component, Dynamic Separation of Duty

Relations, defines exclusivity relations with respect to roles

that are activated as part of a user‘s session.

2.3 Core RBAC

Core RBAC includes sets of five basic data elements called

users (USERS), roles (ROLES), objects (OBS), operations

(OPS), and permissions (PRMS). The RBAC model as a

whole is fundamentally defined in terms of individual users

being assigned to roles and permissions being assigned to

roles. As such, a role is a means for naming many-to-many

relationships among individual users and permissions. In

addition, the core RBAC model includes a set of sessions

(SESSIONS) where each session is a mapping between a user

and an activated subset of roles that are assigned to the user

[4].

Core RBAC model element sets and relations are defined in

Figure 2.1 which also illustrates user assignment (UA) and

permission assignment (PA) relations. The arrows indicate a

many-to-many relationship (i.e., a user can be assigned to one

or more roles, and a role can be assigned to one or more

users). This arrangement provides great flexibility and

granularity of assignment of permissions to roles and users to

roles.

Figure 2.1: Core RBAC

2.4 Hierarchical RBAC

This model component introduces role hierarchies (RH) as

indicated in Figure 2.2. Role hierarchies are commonly

included as a key aspect of RBAC models and are often

included as part of RBAC product offerings. Hierarchies are a

natural means of structuring roles to reflect an organization‘s

lines of authority and responsibility [5].

Role hierarchies define an inheritance relation among roles.

Inheritance has been described in terms of permissions; i.e., r1

―inherits‖ role r2 if all privileges of r2 are also privileges of

r1.

ANSI RBAC recognizes two types of role hierarchies—

general role hierarchies and limited role hierarchies. General

role hierarchies provide support for an arbitrary partial order

to serve as the role hierarchy, to include the concept of

multiple inheritances of permissions and user membership

among roles. Limited role hierarchies impose restrictions

resulting in a simpler tree structure (i.e., a role may have one

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

17

or more immediate ascendants, but is restricted to a single

immediate descendent).

Figure 2.2: Hierarchical RBAC

2.5 Constrained RBAC

Constrained RBAC adds Separation of Duty relations to the

RBAC model. Separation of duty relations are used to enforce

conflict of interest policies that organizations may employ to

prevent users from exceeding a reasonable level of authority

for their positions. ANSI RBAC allows for both static and

dynamic separation of duty as defined within the next two

subsections.

2.5.1 Static Separation of Duty Relations
Conflict of interest in a role-based system may arise as a

result of a user gaining authorization for permissions

associated with conflicting roles. One means of preventing

this form of conflict of interest is through static separation of

duty, that is, to enforce constraints on the assignment of users

to roles.

The static constraints defined in this model are limited to

those relations that that place restrictions on sets of roles and

in particular on their ability to form UA relations. This means

that if a user is assigned to one role, the user is prohibited

from being a member of a second role. An SSD policy can be

centrally specified and then uniformly imposed on specific

roles. From policy perspective, static constraint relations

provides a powerful means of enforcing conflict of interest

and other separation rules over sets of RBAC elements. Static

constraints generally place restrictions on administrative

operations that have the potential to undermine higher-level

organizational Separation of Duty policies [5].

Figure 2.3: Static Separation of Duty Relations

2.5.2 Dynamic Separation of Duty Relations
DSD relations differ from SSD relations by the context in

which these limitations are imposed. This model component

defines DSD properties that limit the availability of the

permissions over a user‘s permission space by placing

constraints on the roles that can be activated within or across a

user‘s sessions. DSD properties provide extended support for

the principle of least privilege in that each user has different

levels of permission at different times, depending on the role

being performed. These properties ensure that permissions do

not persist beyond the time that they are required for

performance of duty. This aspect of least privilege is often

referred to as timely revocation of trust. Dynamic revocation

of permissions can be a rather complex issue without the

facilities of dynamic separation of duty, and as such it has

been generally ignored in the past for reasons of expediency

[5].

This model component provides the capability to enforce an

organization-specific policy of dynamic separation of duty

(DSD). DSD allows a user to be authorized for two or more

roles that do not create a conflict of interest when acted in

independently, but produce policy concerns when activated

simultaneously. For example, a user may be authorized for

both the roles of Cashier and Cashier Supervisor, where the

supervisor is allowed to acknowledge corrections to a

Cashier‘s open cash drawer. If the individual acting in the role

Cashier attempted to switch to the role Cashier Supervisor,

RBAC would require the user to drop the Cashier role, and

thereby force the closure of the cash drawer before assuming

the role Cashier Supervisor. As long as the same user is not

allowed to assume both of these roles at the same time, a

conflict of interest situation will not arise. Dynamic separation

of duty relations are defined as a constraint on the roles that

are activated in a user‘s session (Figure 2.4).

Figure 2.4: Dynamic Separation of Duty Relations

3. ENHANCED MODEL: AARBAC

Access control is also not a complete solution for securing a

system; it must be coupled with auditing. Also effective

auditing requires good authentication to be in place. In this

section a model is presented that integrates RBAC with

Authentication and Auditing module. This model is called

AARBAC (Authentication & Auditing Enabled Role Based

Access Control). This model not only provides feature of

RBAC but also handles and SQL injection attacks effectively.

For simplicity Hierarchical RBAC is integrated with these

modules. However it is possible to integrate any form of

RBAC.

3.1 Components of AARBAC

 Administrator: A database administrator or DBA is a

person responsible for the installation, configuration (

configuration is an arrangement of functional units

according to their nature and characteristics), upgrade,

 administration, monitoring (is a process of collecting

and analyzing data) and maintenance of databases in

an organization.

 Authorization Database: This database contains

authorization information i.e. the information about all

the data items and authorizations the users of system

have on those items. This database is consulted to find

out if a user is attempting to do an operation is actually

authorized to do that operation or not.

http://en.wikipedia.org/wiki/Installation_(computer_programs)
http://en.wikipedia.org/wiki/Computer_configuration
http://en.wikipedia.org/wiki/Functional_unit
http://en.wikipedia.org/wiki/Upgrade
http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/System_Monitoring
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Databases

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

18

Figure 3.1: Enhanced Model- AARBAC (Authentication & Auditing enabled Role Based Access Control)

 User: Any person or a process executing on the behalf of

user who wants to gain access to database items.

 Authentication: It is a process of signing on to a

computer system by providing an identifier and a

password. So, correctly establishing the identity of the

user is the responsibility of the authentication service.

 SQL Injection Countermeasures: Mechanism that

prevents SQL injection attacks during authentication

procedure.

 Reference Monitor: A program executing on the behalf

of users which mediates every attempted access, consults

authorization database etc.

Logging

Auditing

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

19

 Access Control: The process of limiting access to the

system only to authorized users, programs etc.

 RBAC: Role-Based Access Control (RBAC) is an

emerging paradigm for controlling access to computer

resources. RBAC adds the notion of roles between users

and permissions. Roles are created based on job

functions in an organization. Permissions are assigned to

roles. Users are made members of roles based on their

job responsibilities and qualifications, thereby gaining

permissions assigned to those roles. In RBAC, users are

granted permissions based on their roles, not on

individual basis. This abstraction provided by roles

significantly simplifies the management of privileges,

and helps enforcing the principle of least privilege.

 Role: A job function within the organization that

describes the authority and responsibility conferred on a

user assigned to the role.

 Permission: A description of the type of authorized

interaction a subject can have with an object.

 Role Hierarchy: An inheritance relationship established

among roles.

 Database: A passive entity that contains objects and

information e.g. Files, tables, resources etc.

 Auditing: Auditing is the recording and analyzing of

events to provide information about system use and

performance in a clear and understandable manner. The

goal of an auditing system is to be able to determine if

security and other policies are being violated.

 Logging: It is a part of auditing. The logger or logging

procedure records information for analyzing e.g. login

date and time, user‘s role etc.

3.2 Advantages of AARBAC

 Provides features of RBAC, which is the most widely

used access control model in industries.

 Authentication is done prior to authorization.

 Authentication is free from SQL Injection attacks.

 An auditing mechanism is there which keeps track of all

transactions occurring on database.

4. AUTHENTICATION IN AARBAC

4.1 SQL Injection Attacks
In SQL Injection attacks the attacker attempts to modify the

existing SQL statement by adding elements to the WHERE

clause [9] [10]. Most of the SQL Injection attacks occur

during the login authentication.

A simplistic web application may check user authentication

by executing the following query:

SELECT * FROM users

WHERE username = 'bob' and PASSWORD = 'mypassword'

The attacker attempts to manipulate the SQL statement to

execute as:

SELECT * FROM users

WHERE username = ‗xxx‗or ‘b’ =‘b‘ and PASSWORD =

‗xxxx' or 'a' = 'a'

Based on operator precedence, the WHERE clause is true for

every row and the attacker has gained access to the

application [11].

4.2 Preventing SQL Injection Attacks: Use

of Prepared Statements

The Prepared Statement is a more powerful version of a

Statement. Most relational databases handle a JDBC / SQL

query in four steps:
 Parse the incoming SQL query.

 Compile the SQL query.

 Plan/optimize the data acquisition path.

 Execute the optimized query / acquire and return

data.

A Statement will always proceed through the four steps above

for each SQL query sent to the database. A Prepared

Statement pre-executes steps (1) - (3) in the execution process

above. Thus, when creating a Prepared Statement some prior

optimization is performed immediately. The effect is to lessen

the load on the database engine at execution time.

One more benefit of prepared statement is to prevent SQL

Injection by making them impossible in database through the

use of bind variables [13]. An example is shown below [12]

[14]:

PreparedStatement pstmt =conn.prepareStatement ("SELECT

* FROM users WHERE username = (?) and PASSWORD =

(?)");

pstmt.setString (1, usern);

pstmt.setString (2, PASSW);

pstmt.execute();

Here ―?‖ is the bind variable that binds username to variable

usern and PASSWORD to PASSW.

4.3 Example
Consider an example of a simple login procedure by

providing credentials. When the prepared statements are not

used system is vulnerable to SQL Injection and database is

breached as shown below [15]:

stmt = conn.createStatement();

String sql = "select * from login where username='"+un+"'

AND pwd='"+pwd+"'";

rst = stmt.executeQuery(sql);

Here prepared statements are not used so result is:

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

20

Figure 4.1: SQL injection Attack

Now prepared statements are used to prevent SQL Injection

Attack as follows:

String query = "Select * from login where username = ? AND

pwd = ?";

if (pstFlag)

{ pstmt = conn.prepareStatement(query);

pstmt.setString(1, un);

pstmt.setString(2, pwd);

rst = pstmt.executeQuery(); }

Here flag is a Boolean variable which is initially set false,

when the user clicks on ―Preventing SQL Injection‖ this flags

becomes true and the control enters this loop that uses

prepared statements preventing SQL Injection. Now the result

is (Figure 4.2).

Figure 4.2: SQL Injection Attack Prevented

5. AUDITING AND LOGGING IN

AARBAC
Auditing is the recording and analyzing of events to provide

information about system use and performance in a clear and

understandable manner. The goal of an auditing system is to

be able to determine if security policies are being violated.

Given an audit log of ―who‖ did ―what‖ to ―which‖ data

―when‖ and ―how‖ and an effective means of processing the

log, auditing can answer ―why‖. By answering the question of

―why‖, it provides one of the means to detect intrusions into

the system [16].

Malicious access to protected data can cause major damage to

organizations and also problems for the public. According to

study on insider threat by US Secret Service and CERT CC in

2005, 29% of the incidents of intrusion of database system are

done by individuals inside organizations that have privileges

to freely access data. Therefore, auditing systems must

include the ability to prevent and detect internal threats to the

system [17].

5.1 Basic architecture of auditing system
The basic architecture of an auditing system is [16]:

Figure: 5.1 Components of Auditing System

 The logger records information. The information that is

to be stored in the log is determined by the security

policies.

 The analyzer takes the log as the input and analyzes it to

either determine if an event of interest or a problem has

occurred, or if other information needs to be logged.

 The notifier receives the analysis from the analyzer, and

reports the result of the audit.

5.2 Logger

Some important issues related to logging include what, when,

where, how, and how often a database should be logged. The

ways in which the databases address these issues have an

impact on other aspects of the system.

When and how often to log: Audit module should monitor

every command to detect qualified events. If a particular event

is met with the predefined condition by users, it logs

necessary information to the database. This is the fundamental

principle of the database audit. It is also necessary to keep an

eye on events every time to avoid breach of information.

Periodic auditing is also useful depending upon the needs of

an organization.

What to log: It is better to log more and more information

about an event but this is not always feasible. It is good to

keep track of username, name of the schema object accessed,

date and time stamp etc.

Where to log: Oracle permits the administrator to choose the

location of audit trail in either an operating system file or a

database. Oracle uses an audit trail database named

SYS.AUD$ and DATA DICTIONARY table. The

SYS.AUD$ database has several tables such as

DBA_AUDIT_SESSION, DBA_AUDIT_OBJECT, and

DBA_AUDIT_STATEMENT. To make data retrieval easy,

several built-in views are provided to users.

DBA_AUDIT_TRAIL is a view based on the AUD$ table

that presents the information in a readable, text based form.

Users are also able to log to the operating system‘s file. That

is done by use of syslog function. This option is more secure

since the Database Administrator (DBA) does not have

privilege to delete the OS's syslog. This means there is still

evidence of malicious users' activities even if the DBA

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

21

modified some tables or records on purpose and then deleted

audit information from the native database.

How to log: One very important auditing feature of Oracle is

Fine-Grained Auditing (FGA). Normal auditing triggers can

detect who modified which table or which column. In other

words, users can track any data modification on tables if they

write a trigger procedure. Unfortunately, this does not hold for

―SELECT‖ statement since ―SELECT‖ does not change any

data, no trigger can be made. If the security administrator

wants to monitor the person who accesses a particular table,

more specifically a column which contains sensitive data, he

can use Fine-Grained Auditing feature (FGA). Whenever

specified columns are accessed, Oracle logs that event into

FGA audit trail. Then an analyst can check the table whether a

security breach has occurred or not. Let‘s see now how a FGA

policy can be written.

5.3 DBMS-FGA
DBMS_FGA is needed for administering audit policies.

Because the audit function can potentially capture all user

environment and application context values, policy

administration should be executable by privileged users only

[18] [19].

ADD_POLICY Procedure Creates an audit policy using the

supplied predicate as the audit condition.This procedure

creates an audit policy using the supplied predicate as the

audit condition.

Syntax

DBMS_FGA.ADD_POLICY (

object_schema VARCHAR2,

object_name VARCHAR2,

policy_name VARCHAR2,

audit_condition VARCHAR2,

audit_column VARCHAR2,

handler_schema VARCHAR2,

handler_module VARCHAR2,

enable BOOLEAN,

statement_types VARCHAR2,

audit_trail BINARY_INTEGER IN DEFAULT,

audit_column_opts BINARY_INTEGER IN DEFAULT);

Example

begin

dbms_fga.add_policy (

object_schema=>'BANK',

object_name=>'ACCOUNTS',

policy_name=>'ACCOUNTS_ACCESS',

audit_column => 'BALANCE',

audit_condition => 'BALANCE >= 11000'

);

end;

In this example, there is a database ‗BANK‘ which contains a

table named ‗ACCOUNT‘. That table has a column

‗BALANCE‘. If administrator wants to monitor when a user

tries to access records whose balance is more than $11000,

Oracle logs this event to the FGA audit trail.

5.4 Analyzer & Notifier

The ability to analyze the data in the audit logs contributes to

the effectiveness of the auditing system. Since Oracle uses

tables as a location of logs, users can easily access and

investigate them using standard SQL command. Generally the

analysis work is done by administrator or the person with

highest privileges.

After analysis it is the duty of analyzer to notify the result. If

the analysis represents any flaw in DBMS it should be

notified to all the users of DBMS by the analyser else if the

analysis shows any breach the analyser should take

appropriate actions.

6. CONCLUSION

Role Based Access control models are widely in organizations

for access control. In RBAC access control decisions are often

based on the roles individual users take on as part of an

organization. A role specifies a set of transactions that a user

or set of users can perform within the context of an

organization. RBAC provide a means of naming and

describing relationships between individuals and rights,

providing a method of meeting the secure processing needs of

many commercial and civilian government organizations.

Various forms of role based access control have been

described under ANSI standardization. Core RBAC defines

features that are minimally required of all RBAC systems.

Hierarchical RBAC add requirements of role hierarchy.

Hierarchies are a natural means of structuring roles to reflect

an organization‘s lines of authority and responsibility.

Constrained RBAC adds Separation of Duty relations to the

RBAC model. Separation of duty relations are used to enforce

conflict of interest policies that organizations may employ to

prevent users from exceeding a reasonable level of authority

for their positions. RBAC simplifies the access control but

access control is considered to be only a partial solution to

provide security. This paper integrates auditing and

authentication modules to RBAC model and enhanced its

capability to provide security. This model is called AARBAC.

Authentication is different from access control.

Authentication is a process of signing on to a computer

system by providing an identifier and a password. So,

correctly establishing the identity of the user is the

responsibility of the authentication service. Most of the

authentication procedures are affected by SQL Injection

attacks. SQL Injection attacks are code modifying attacks.

Prepared statements can be used to prevent these attacks.

These statements use bind variables that make SQL Injection

attacks impossible. Auditing is a process of finding whether a

security policy is being violated or not by logging and

analyzing events. Oracle provides feature of fine grained

auditing using DBMS_FGA policy. These two modules can

be integrated with any system incorporating RBAC

mechanism to enhance its functionality.

7. REFERENCES

[1] Sandhu, Ravi, David Ferraiolo, and Richard Kuhn, The

NIST model for role-based access control: Towards a

unified standard. Symposium on Access Control Models

and Technologies, Proceedings of the fifth ACM

workshop on Role-based access control, Volume 26, No.

28, 2000, pp. 47- 63.

[2] Li N., J. Byun, and E. Bertino, A critique of the ANSI

standard on role-based access control, Security &

Privacy, IEEE Volume. 5, no. 6, 2007, pp. 41-49.

[3] R. Sandhu and E. J. Coyne, Role-Based Access Control

Models, IEEE Computer, 1996, pp. 38-47.

[4] R. Sandhu and P. Samarati, Access Control: Principles

and Practice, IEEE, Communications Magazine, 1994,

pp. 40-48.

[5] ANSI, American national standard for information

technology – role based access control. ANSI INCITS

359-2004, February 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.2, May 2013

22

[6] S. L. Osborn, Role- Based Access Control, Springer,

Security, Privacy, and Trust in Modern Data

Management, 2007, pp. 55-70.

[7] R. Sandhu, E. J. Coyne H. L. Feinstein and C. E.

Youman, Role – Based Access Control Models, IEEE

Computer, Volume 29, No. 2, February 1996, pp. 38-47.

[8] D. F. Ferraiolo and R. Kuhn, Role – Based Access

Control, 15th National Computer Security Conference,

Baltimore, 1992, pp. 554-563.

[9] S. Tripathi and P. Zehnde, Surveys on Vulnerabilities,

Threats and Security Methods of DBMS, 3rd Biennial

National Conference on Nascent Technologies, 2012, pp.

39-44.

[10] San-Tsai Sun, Ting Han Wei, Stephen Liu, and Sheung

Lau, Classification of SQL Injection Attacks, University

of British Columbia, 2007, pp. 1-6.

[11] Halfond, W. G., Jeremy Viegas, and Alessandro Orso, A

classification of SQL-injection attacks and

countermeasures, In Proceedings of the IEEE

International Symposium on Secure Software

Engineering, Arlington, VA, USA, 2006, pp. 1-11.

[12] S. Kost, An Introduction to SQL Injection Attacks for

Oracle Developers, Integrity Corporation, March 2007,

pp. 5-25.

[13] S. Thomas , L. Williams and Tao Xie, On Automated

Prepared Statement to remove SQL Injection

Vulnerabilities, Elsevier, Information & Software

Technology, No. 51, 2009, pp. 589-598.

[14] R.P. Mahapatra and S. Khan, A Survey Of Sql Injection

Countermeasures, International Journal of Computer

Science & Engineering Survey (IJCSES), Volume 3,

No.3, June 2012, pp. 55-74.

[15] Z. Raveshi, S. R. Idate, Investigation and Analysis of

SQL Injection Attacks on Web Applications: Survey,

International Journal of Engineering and Advanced

Technology (IJEAT), Volume-2, Issue-3 February 2013,

pp. 182-187.

[16] J. Woo, S. Lee, C. Zoltowiski, Database Auditing.

[17] DB Audit for Oracle, Microsoft SQL Server, Sybase

ASE, Sybase ASA, and IBM DB2, SoftTree

Technologies.

[18] T. Bednar, Oracle Database Auditing: Performance

Guidelines, An Oracle White Paper, August 2010.

[19] Oracle Database, PL/SQL Packages and Types

Reference, 10g Release 2 (10.2), B14258-02, pp. 40(1) –

40(13).

IJCATM : www.ijcaonline.org

