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ABSTRACT 
Association rule mining is one of the most important and 

well-researched techniques of data mining, that aims to induce 

associations among sets of items in transaction databases or 

other data repositories. Currently Apriori algorithms play a 

major role in identifying frequent item set and deriving rule 

sets out of it. However there are few shortfalls in conventional 

Apriori Algorithm. They are  i) candidate items generation 

consumes lot of time in the case of large datasets ii) It 

supports majorly the conjunctive nature of association rules 

iii) The single minimum support factor to generate the 

effective rules. However points ii) and iii) have been 

addressed effectively in the earlier work [10] with reference to 

Apriori Algorithm. But this paper majorly worked on the 

above point i).  In the proposed algorithm, FP growth 

algorithm has been taken for a reference in generating 

frequent item set without candidate generation. There are 

appreciable amount of modification and enhancements have 

been worked out in line with the earlier work. Besides this 

work also taken care the integration issues while fitting it 

suitably with the earlier worked out algorithm [10]. This 

packaged Algorithm is named as E-Rules (Effective Rules). 

After incorporating the modified FP Growth Algorithm, it has 

been observed that there is a prominent difference in time 

taken and performance as it does not involve candidate 

generations. Hence „E-Rules‟ addressing the faster generation 

of frequent item sets, so that to offer interesting/useful rules in 

an effective and optimized manner with the help of Genetic 

Algorithm. 

Keywords 
FP Growth Algorithm, Genetic Algorithm, Lift ratio, Multiple 

Minimum Support, Disjunctive Rules. 

 

1. INTRODUCTION 

 

1.1. Association rule mining in Data 

Mining: 

 
Data mining is the task to mining the useful meaningful 

information from data warehouse. It is the source of inexplicit, 

purely valid, and potentially useful and important knowledge 

from large volumes of natural data [8].The selected 

knowledge must be not only precise but also readable, 

comprehensible and ease of understanding. 

 

 

 

Association rule basically use for finding out the useful 

patterns, relation between items found in the database of 

transactions [9].Association rule mining generally 

experimented to find all rules that satisfy user-specified 

minimum support and minimum confidence constraints [3]. 

The important factor that makes association rule mining 

practical and useful is the minimum support. It is used to limit 

the number of rules generated. However, using only a single 

minsup implicitly assumes that all items in the data are of the 

same nature and/or have similar frequencies in the database. 

This is often not the case in real-life applications. In many 

applications, some items appear very frequently in the data, 

while others rarely appear. If the frequencies of items vary a 

great deal, we will encounter two problems: 

1. If minsup is set too high, we will not find those rules that 

involve infrequent items or rare items in the data. 

2. In order to find rules that involve both frequent and rare 

items, then minsup to be kept very low. However, this may 

produce too many rules. 

So when one common support is fixed as minimum support 

for all the items, the rules which are not frequent occur but 

majorly contributing towards profit may get lost without 

notice.  

For example, in a supermarket transaction data, in order to 

find rules involving those infrequently purchased items such 

as food processor and cooking pan (they generate more profits 

per item) very minimum support needs to be set ; but due to 

this the unwanted and rare items will not be get pruned. Hence 

fixing multiple minimum support for each items have become 

significant. 

 

1.2. Crisis in Apriori: 

 
In the earlier work [10] the Apriori algorithm is customized to 

include multiple supports, disjunctive and conjunctive rules 

and Genetic Algorithm was used to generate useful rules 

effectively. Major shortfall in modified Apriori was „time 

taken‟ to generate frequent itemsets. In general Apriori-like 

algorithm may still suffer from the following two nontrivial 

costs, It is costly to handle a huge number of candidate sets 

[12]. It is tedious to repeatedly scan the database and check a 

large set of candidates by pattern matching, which is 

especially true for mining long patterns. 

If one can avoid generating a huge set of candidates, the 

mining performance can be substantially improved. Hence the 

need of introducing an algorithm which takes considerably 

less time was realized. There comes the modified FP growth 

Algorithm.  
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1.3. Conjunctive and Disjunctive rules: 
Association rule mining deals conjunctive rules majorly. But 

using disjunctive rules, extensive rule sets which are very 

much useful in mining the dataset can be found out effectively. 

At times disjunctive rule sets are also preferred to infer 

interesting rules. For example ideal rule set for the below 

query “If classes B or C or D are committed, what is the 

chance that A is also committed?” would be    B OR C OR D 

A, where in the disjunctive nature of rules need to be 

considered for a better analysis. 

 

1.4. Disjunctive Rules: 
Let X = {i1, i2...in} be a set of items. XC = {i1 AND i2 

AND … AND in} or simply {i1i2...in}  is a conjunctive term 

of X, and XD = {i1 OR i2 OR … OR in} is a Disjunctive term 

of X. The possible rule is of one of the following types, 

involving conjunctive and disjunctive terms from the set of 

items X U Y| X ∩ Y = Φ [2][5]. 

 
Table I:Disjunctive Rule Set: 

 

Type Support Confidence 

 

Xc ⟹Yc s = P(XC U YC) c = P(YC | XC) 

Xc ⟹YD s = P(XC U YD) c = P(YC | XD) 

XD ⟹Yc s = P(XD U YC) c = P(YD | XC) 

XD ⟹YD s = P(XD U YD) c = P(YD| XD) 

Rule sets List: 

 
XY Z ⟹VW                       - type XC ⟹ YC 

XY Z ⟹V OR W               - type XC ⟹ YD 

X OR Y OR Z ⟹ VW        - type XD ⟹ YC 

X OR Y OR Z ⟹ V OR W - type XD ⟹ YD 

 
The number of rules that are found by the Associations 

mining function can be reduced by using rule filters if the 

number of frequent item sets is high. Rule filters are a 

powerful way to limit the amount of rules to be generated or 

the content of the rules. This parameter determines the 

maximum number of items that occur in an association rule. 

In the example the frequent itemset (E,A,C) has been used for 

analysis and in this case the maximum rule length is 3 and 

maximum antecedent allowed is 2; the maximum consequents 

allowed are 2.  

 

1.5. Lift Ratio 

 
A high value of confidence suggests a strong association rule. 

However this can be deceptive because if the antecedent 

and/or the consequent have a high support, we can have a high 

value for confidence even when they are independent. A 

better measure to judge the strength of an association rule is to 

compare the confidence of the rule with the benchmark value 

where we assume that the occurrence of the consequent item 

set in a transaction is independent of the occurrence of the 

antecedent for each rule. This benchmark can be found out 

from the frequency counts of the frequent item sets. This 

enables to compute the lift ratio of a rule. The lift ratio is the 

confidence of the rule divided by the confidence assuming 

independence of consequent from antecedent. A lift ratio 

greater than 1.0 suggests that there is some usefulness to the 

rule. The larger the lift ratio, the greater is the strength of the 

association. With the lift value, the importance of a rule can 

be validated in an effective manner.  

Confidence and Life factors are calculated as below, 

 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑁𝑜 .𝑜𝑓  𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠  𝑐𝑜𝑛𝑡𝑎𝑖𝑛  𝑎𝑙𝑙  𝑡𝑒  𝑖𝑡𝑒𝑚𝑠  𝑖𝑛  𝐴 &𝐶

𝑁𝑜 .𝑜𝑓  𝑡𝑟𝑎𝑛𝑠𝑐𝑡𝑖𝑜𝑛𝑠  𝑐𝑜𝑛𝑡𝑎𝑖𝑛   𝑡𝑒  𝑖𝑡𝑒𝑚𝑠   𝑖𝑛  𝐴
 

                  = (𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐴𝑈𝐶)/(𝑠𝑢𝑝𝑝𝑜𝑟𝑡  𝑜𝑓 𝐴) 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 

 
𝑁𝑜.𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑣𝑖𝑛𝑔 𝑡𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝐿𝑖𝑓𝑡 =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
 

 

The above factor can also be included while validating any 

rule set. 

 

1.6. Multiple Minimum Supports: 

 
In many data mining applications [4], some items appear very 

frequently in the data, while others rarely appear. If minsup is 

set too high, those rules that involve rare items will not be 

found. To find rules that involve both frequent and rare items, 

minsup has to be set very low. This may cause combinatorial 

explosion because those frequent items will be associated with 

one another in all possible ways. The disadvantage of support 

is the rare item problem. Items that occur very infrequently in 

the data set are pruned although they would still produce 

interesting and potentially valuable rules. The rare item 

problem is important for transaction data which usually have a 

very uneven distribution of support for the individual items. 

E.g., Consider four items A, B and C in a database. If the 

minimum support count is 10 %, then we may lose the rule set 

AB if it had support 7% .But assume now we have multiple 

minimum item supports are 

  MIS (A) = 20%  MIS (B) = 3% 

  MIS(C) = 4%    

And their actual supports: {A 18%, B 4%, C 3%} 

Then the rule AB is not discarded as it satisfies the rule min 

(MIS (A, B))>=min (Support (A<B)). 
Hence there could be a revision in FP algorithm accordingly. 

 

2. FP-GROWTH ALGORITHM 

 
FP Growth approach is based on divide and conquers strategy 

for producing the frequent item sets[11]. FP-growth is mainly 

used for mining frequent item sets without candidate 

generation. Major steps in FP-growth are, 

Step1: It firstly compresses the database showing frequent 

item set in to FP-tree. FP-tree is built using 2 passes over the 

dataset. 

Step2: It divides the FP-tree in to a set of conditional database 

and mines each database separately, thus extract frequent item 

sets from FP-tree directly.  

FP-tree is a frequent pattern tree can be defined below. 

1. It consists of one root labeled as “null", a set of item prefix 

sub trees as the children of the root, and a frequent-item 

header table. 

2. Each node in the item prefix sub tree consists of three fields: 

item-name, count, and node-link, where item-name registers 

which item this node represents, count registers the number of 

transactions represented by the portion of the path reaching 
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this node, and node-link links to the next node in the FP-tree 

carrying the same item-name, or null if there is none. 

3. Each entry in the frequent-item header table consists of two 

fields, (1) item-name and (2) head of node-link, which points 

to the first node in the FP-tree.  

Based on this definition, we have the following FP-tree 

construction algorithm. Let I = {a1,a2,….. an}  be a set of 

items, and a transaction database DB = (TID1; TID2,….. 

TIDn),where  each TID(i) refers to transaction from 1...n that 

contains a set of items in I. 

 

2.1. Algorithm 1:  

Modified FP-tree construction: 

 

Input: A transaction database DB and a set of minimum 

support threshold. 
Output: Frequent pattern tree 

 
[Note: Appropriate changes for the proposed algorithm has 

been incorporated in the below algorithm.] 

 
1. Scan the transaction database DB once. Collect the set of 

frequent items in each TID(i) and their predefined 

supports(mtk) and actual supports(stk). 

 

2. Create the root of an FP-tree, and label it as 

“null". For each transaction TID(i)  in DB do the 

following.  

If min (mtk(TID(i))) < = stk(TID(i))  then select and sort 

the frequent items in TID(i).Let the sorted frequent item 

list in TID(i)  be [p|P], where p is the  first element and P 

is the remaining list. Call insert tree([p|P]; TID(i)). 

 
3. insert tree([p|P]; TID(i)): 

If TID(i) has a child n, where n.item = p then increment 

n.count by one else create new node N with n.count = 1; 

Link it up from the header table . If P is nonempty call 

insert_tree(P, N) recursively. 

 

2.2. How to find all frequent patterns from 

the FP-Tree: 

 
We can derive the frequent items as follows, 

 

1) Find all frequent patterns containing one of the 

items 

 

2) Find all frequent patterns containing the next 

item but NOT containing the previous one 

 

3) Repeat step 2 until we're out of items 

 

2.3. Algorithm 2:  

FP-Tree frequent patterns generation: 

 
Input:  
FP-tree constructed based on Algorithm 1, 

using DB and a minimum support thresholds. 

Output:  
The complete set of frequent patterns. 

 
Procedure FP-growth (Tree; α) 

{ 

(1) If Tree contains a single path P 

(2) then for each combination (denoted as  β) 

of the nodes in the path P do 

(3) generate pattern βUα with support = 

    minimum support of nodes in β; 

(4) else for each ai in the header of Tree do  

{ 

(5) generate pattern β = ai U α with 

            support = ai.support; 

(6) construct  β 's conditional pattern base and 

then β 's conditional FP-tree Tree β; 

(7) if Tree β ≠ ø ; 

(8) then call FP-growth (Tree β; β)  

} 

} 

 

3. PSEUDO CODE FOR E-RULES: 

Input: 

A set  of n transaction data T , a set of p items to be 

purchased , each item ti, with a minimum support value mi, 

i=1 to p , and a minimum confidence value. 

Output: 

A set of association rules in the criterion of the maximum 

values of minimum supports. 

Procedure: 

Step 1: Perform Algorithm 1. 

Step 2: Perform Algorithm 2. 

This will give Frequent Item Set (FIS). 

Step 3: Generate bit pattern for FIS for all  

possible LFH and RHS rule sets. 

Step 4:  Construct all possible rule sets  

(Disjunction and conjunction) as per  

proposed rule guides in Rule sets List. 

Details are briefed in 3.1. 

Step 5: Calculate confident and Lift factors to  

validate effective rules. 

Step 6: Output the rules which are greater than  

           minimum confident and Lift greater than or equal to 1. 

3.1.  To generate rules: 

 
Each frequent item set in frequent item set derived can be 

given as one of the input for the below algorithm to derive the 

respective conjunctive and disjunctive rules.(E,A,C) frequent 

set has been taken for the demonstration purpose. 

 

Step 1: Create function whose parameters are  

Dataset, list_of_antecedents-A  

, list_of_consequent –C 

List of A and C can be generated using the 

following conditions using Genetic Algorithm. 

Min (A) =Cnt (FIS)-[Cnt (FIS)-1] 

Max (A) =Cnt (FIS)-[(Cnt (FIS)-(Cnt (FIS)-1))] 

Example, If Frequent Item Set (FIS) =3 then 

Maximum Antecedes=2 and Minimum Antecedents 

=1 

This holds true for consequents as well, hence 

Min(C) = Cnt (FIS)-[Cnt (FIS)-1] 
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Max(C) = Cnt (FIS)-[(Cnt (FIS)-(Cnt (FIS)-1))] 

 

 
[A- Antecedent; C-Consequent; Cnt- number of frequent item 

set 

Bit pattern for the frequent item set along with operators are 

like in Table VI. 

And the function returns interesting rules as per Rule sets like 

in Table VIII] 

 
Step 2: Find out allowed antecedents (A) and    

            Consequent(C) 

 

Step 3:  

For each Item set A and for each item set C, 

 

i) Create an offspring when bit pattern (A) is 

not equal to bit pattern(C).  

ii) If Bit pattern (A) and/or Bit pattern(C)>= 

min_predefined_min_support then return 

the rule AC 

iii) Else Prune the rule. 

 
Step 4: Return all valid rules 

A. Example: 

 
An example is given to demonstrate the proposed algorithm 

[3]. Table II shows dataset that contains 10 transactions and 7 

items and the ordered items as per their frequency.   
 

Table II :Dataset  for 10 transactions: 

 

TID Items Ordered 

Items 

1 ABDG BADG 

2 BDE EBD 

3 ABCEF EBACF 

4 BDEG EBDG 

5 ABCEF EBACF 

6 BEG EBG 

7 ACDE EADC 

8 ABE EBA 

9 ABEF EBAF 

10 ACDE EADC 

 

3.2. FP Tree for the dataset in Table II: 

 
A FP tree can be generated as below in Figure :1 

for the data set available in Table II. Each node in the tree 

contains the label of the item along with a counter that shows 

the number of transactions mapped on to the given path. 

 

 

 

 

 

 

 

 

 

 

 

Figure :1 FP Tree generation: 

 

 
 
Initially FP tree contains only the root node represented by the 

null symbol. The FP tree is subsequently extended in the 

following way, 

1. The data set is scanned once to determine the 

support count of each item, infrequently items 

discarded while the frequent items are sorted in 

decreasing support counts. For the data set show in 

Table 2 E is the most frequent item followed by 

B,A,D,C,F an G. 

2. The algorithm makes second pass over the data to 

construct the FP tree. After reading the first 

transaction {B, A, D} the nodes labled as B, A, D 

are created. Every node along the path has 

frequency count of 1. 

3. The above process continues until every transaction 

has been mapped onto one of the paths given in the 

FP tree. The resulting FP tree is as below for the 

dataset mentioned in Table II. 

 
Below tables show the relevant data needed for further 

analysis . 

 
Table III: Predefined minimum support for each items 

(mtk) 

 
Item A B C D E F G 

Min_sup 0.4 0.7 0.3 0.7 0.6 0.2 0.4 

 
 

 

 

 

 
 

NULL 

E:9 

B:7 

A:2 

E
:

9 

B

:
8 

A

:
7 

B:1 

A:4 A:1 

D
:

5 

C
:

4 

F

:
3 

D:2 D:2 D:1 

C:2 C:2 

F:1 F:2 

G

:
3 

G:1 G:1 G:1 

Items Head of Links 
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Table IV: Actual support values of all items(stk=ck/n)  

 

 
Item A B C D E F G 

Support 0.7 0.8 0.4 0.5 0.9 0.3 0.3 

 
 

Table V: Minimum Item Support (MIS) for each 

transaction TID(i)  

 

 
TID Items Ordered 

Items 

MIS 

1 ABDG BAD 0.4 

2 BDE EB 0.6 

3 ABCEF EBACF 0.2 

4 BDEG EBD 0.4 

5 ABCEF EBACF 0.2 

6 BEG EB 0.4 

7 ACDE EADC 0.3 

8 ABE EBA 0.4 

9 ABEF EBAF 0.2 

10 ACDE EADC 0.3 

 
In the above table we can see items in each transaction are 

ordered in descending order of its MIS values and infrequent 

items are removed if any. For example item „G‟ in TID -1 has 

support count less than its corresponding MIS value. Hence it 

has been ignored. 

 

3.3. Conditional Pattern Bases: 

 
The conditional pattern bases and condition FP trees are 

summarized below. 

 

 

 

 

3.4. Frequent items generation: 

 
From the FP-tree construction process, we can see that one 

needs exactly two scans of the transaction database. Let us see 

how the FP tree is constructed for node C. For node C, it 

derives a frequent pattern (E:4, A:4) and two paths in the FP-

tree (E:9,A:2,D:2) and (E:9,B:7,A:4) .The first path indicates 

that string  (E,A,D and C) appears twice in the database.To 

study which string appear together with C, only C's prefix 

path {E:2; A:2; D:2} counts. Similarly, the second path 

indicates string (E,B and A) appears twice in the set of 

transactions in DB, or C's prefix path is {E2,B:2,A:2).These 

two prefix paths of C form C's sub-pattern base, which is 

called C's conditional pattern base (i.e., the sub-pattern base 

under the condition of C's existence). Construction of an FP-

tree on this conditional pattern base (which is called C's 

conditional FP-tree) leads to branch (E:4,A:4).  

 

Hence the frequent patterns are generated as per Algorithm 2. 

They are  {E,A,C,(E,A),(E,D),(E,C),(E,A,D), 

(E,A,C),(E,A,D,C)}  . The search for frequent patterns 

associated with C terminates.   

 

Frequent itemset (E, A, C) has been taken for the 

demonstration purpose. The possible association rules can be 

generated as per below table. First column in the below table 

denotes whether it is Antecedent or Consequent; 1-Antecedent 

0-Consequent. 
 

Table VI :Encoding of Antecedent and Consequent: 
 

Antecedent/Consequent A C E 

1 1 0 0 

1 0 1 0 

1 0 0 1 

1 1 1 0 

1 0 1 1 

1 1 0 1 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 1 1 0 

0 0 1 1 

0 1 0 1 

 

3.5. Bitwise items storage: 

 
In order to read and scan the item sets for the calculation, each 

item needs to get encoded with respect to the transaction into 

bits.Here the encoding style could be 1 for presence of item in 

transaction and 0 for absence.  

 

 

 

 

 

 

 

 

 

 
 

Ite

m 

Conditional 

Path 

Conditional 

Pattern 

Base 

Conditional 

FP tree 

G {(E:9,B:7), 
(E:9,B:7,D:2), 

(B:1,A:1,D:1) 

{(E:1,B:1), 
   (E1,B:1), 

(B1,A1,D1)} 

{(E:2,B:3)}|G} 

F {(E:9,B:7,A:4), 

(E:9,B:7,A:4,C:2)
} 

{(E:1,B:1,A:1), 

(E:2,B:2,A:2)} 

{(E:3,B:3,A:3)|F

} 

C {(E:9,A:2,D:2), 

(E:9,B:7,A:4)} 

{(E:2,A:2,D:2), 

(E:2,B:2,A:2)} 

{(E:4,A:4)|C} 

D {(E:9,A:2), 
(E:9,B:7), 

(B:1,A:1)} 

{(E:2,A:2), 
(E:2,B;2), 

(B:1,A:1)} 

 

{(E:4,A:3,B:3)}|
D 

A {(E:9), 

(E:9,B:7),(B:1)} 

{(E2), 

(E:4,B:4), 

(B:1)} 

{(E:6,B:5)}|A 

B {(E:9)} {(E:7),(ø)} {(E:7),(ø:1)}|B 

E ø ø ø 
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Table VII: The Bit pattern for items. 

 

 
Item Transaction ID Bit Pattern Count 

A {TID1,ITD3,TID5, 

TID7,TID8,TID9, 

TID10} 

1010101111 7 

B {TID1,TID2,TID3, 

TID4,TID5,TID6, 

TID8,TID9} 

1111110110 8 

C {TID3,TID5,TID7, 

TID10} 

0010101001 4 

D {TID1,TID2,TID4, 

TID7,TID10} 

1101001001 5 

E {TID2,TID3,TID4, 

TID5,TID6,TID7, 

TID8,TID9,TID10} 

0111111111 9 

F {TID3,TID5,TID9} 0010100010 3 

G {TID1,TID4,TID6} 1001010000 3 

 

 

The following possible rules can be generated as per Rule sets 

List 1, 

 

“If A is bought then C and E also bought” 

A⟹CE 

“If A is bought then C or E also bought “ 

A⟹C or E 
Similarly the below possible rules can be derived. 

 

Table VIII : Possible Rules for {E,A,C}: 

 
Rule Confident Lift 

Antecedent Symb

ol 

Conseq

uent 

E 
⟹ 

AC 0.444444444 1.111111 

C+E 
⟹ 

A 0.666666667 0.952381 

A 
⟹ 

CE 0.571428571 1.428571 

AE 
⟹ 

C 0.666666667 1.666667 

A 
⟹ 

C+E 0.857142857 0.952381 

E 
⟹ 

A+C 0.666666667 0.952381 

A+E 
⟹ 

C 0.4 1 

A+C 
⟹ 

E 0.857142857 0.952381 

C 
⟹ 

AE 1 1.666667 

CE 
⟹ 

A 1 1.428571 

AC 
⟹ 

E 1 1.111111 

C 
⟹ 

A+E 1 1 

 
Confident and Lift factors can be calculated using the below, 

Confident = Support (AUC)/Support (A) 

Lift = Support (AUC)/Support(C) 

 

Where A-Antecedent C-Consequent 

 

If predefined minimum confident is 0.75 then the rules whose 

confident <0.75 can be pruned .Hence the result set is as 

follows, 

 
Table IX :Pruned Rules: 

Rule Confident Lift 

Antecedent Symbol Consequent 

A 
⟹ 

C+E 

0.8571428

57 0.952381 

A+C 
⟹ 

E 

0.8571428

57 0.952381 

C 
⟹ 

AE 1 1.666667 

CE 
⟹ 

A 1 1.428571 

AC 
⟹ 

E 1 1.111111 

C 
⟹ 

A+E 1 1 

 
From the above table it is inferred that rules having confident 

greater than minimum confident and lift ratio for the same is 

almost 1 or more. This confirms that all these rules have high 

dependency between antecedent and consequents and thus are 

strong and useful rules. 

 

4. GENETIC ALGORITHM: 
Genetic Algorithm (GA)[1]  incorporates Darwinian 

evolutionary theory with sexual reproduction. GA is 

stochastic search algorithm modelled on the process of natural 

selection, which underlines biological evolution. GA has been 

successfully applied in many search, optimization, and 

machine learning problems.GA works in an iteration manner 

by generating new populations of strings from old ones. Every 

string is the encoded binary, real etc., version of a candidate 

solution .An evaluation function associates a fitness measure 

to every string indicating its fitness for the problem. This type 

of representation is relative to position. Presence of 1 at ith 

position indicates occurrence of the item in transaction[i]. 

Similarly presence of 0 at jth position indicates absence of 

item in transaction[j]. 

 

For example, 

 

Bit pattern for A can be given as 1010101111 based on its 

availability in the transactions in table V. Hence conjunction 

and disjunction of few rules can be evaluated and its relative 

count could be calculated as follows, 
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4.1. Boolean Operation on bit pattern for 

few rules: 
 

Table X : Boolean Operation on bit pattern  

Items Operation Result Count 

A and C {1010101111} and 

{0010101001} 

{00101010

01} 

4 

A or C {1010101111} or 

{0010101001} 

{10101011

11} 

5 

(A or C) 

and E 

({1010101111} or 

{0010101001}) and 

{0111111111} 

{00101011

11} 

6 

 

4.2. Genetic operators: 
Genetic Algorithm uses genetic operators [7] to generate the 

offspring of the existing population. This section describes 

three operators of Genetic Algorithms that were used in GA 

algorithm: selection, crossover and mutation. 

1) Selection: The selection operator chooses a chromosome in 

the current population according to the fitness function and 

copies it without changes into the new population.GA 

algorithm used route wheel selection where the fittest 

members of each generation are more chance to select. 

2) Crossover: The crossover operator, according to a certain 

probability, produces two new chromosomes from two 

selected chromosomes by swapping segments of genes. 

 

3) Mutation: The mutation operator is used for maintaining 

diversity. During the mutation phase and according to 

mutation probability, 0.005 in GA algorithm, value of each 

gene in each selected chromosome is changed. 

 

5. RESULT AND DISCUSSION: 

 
From the result of E-Rules, the following comparison has 

been made. Time taken for generating rule sets using 

Modified Apriori (earlier work) and the proposed modified FP 

algorithm for all the item sets generated in the above example 

was observed. Though the volume of itemset taken for is not 

huge enough, the trivial difference has been felt. However 

when E-Rules is applied to large dataset like any medical, 

pharmaceutical data etc., definitely the difference will be felt 

tremendously. 

 

Table X1: Time taken to generate useful rules by E-Rules 

using Modified Apriori and Modified FP 

 

Algorithm Time Taken to 

generate 

frequent itemset 

(in Sec) 

Time Taken to 

generate useful 

rules 

(in Sec) 

Modified Apriori 0.122 0.336 

Modified FP in 

ERules 

0.008 0.222 

 

 

 

 

 

 

 

 

The difference can be shown as below in Figure 2.The 

proposed Algorithm in the earlier work took overall 0.336 sec 

to generate the final useful rule sets. Amongst it took initially 

0.122 sec for generating frequent item set. Whereas „ERules‟ 

captured only 0.222 sec for generating final useful rules 

because it needed only 0.008 sec for generating frequent item 

sets with the proposed algorithm. Hence it drastically reduces 

the time taken to generate the ultimate useful rules. This 

difference is very obvious data for comparison to justify our 

claim effectively. 

 

 

 

Figure 2: Comparison between the modified Apriori and 

the modified FP Algorithms: 

 

 
 

 

 

 

6. CONCLUSION: 

 
E-rules is an integrated algorithm for useful and effective 

association rule mining to capture even useful rare itemsusing 

multiple minimum support; Conjunctive& Disjunctive rules 

sets using Genetic Algorithm; Lift Factor to analyse the 

strength of derived rules. One of the major challenges quoted 

in the previous work was „time taken‟ in frequent item 

generation. That has been drastically reduced using modified 

FP algorithm in the present work. It is claimed that this 

approach is novel as the modified Apriori Algorithm has been 

replaced with modified FP algorithm in Erules to reduce the 

time in generating frequent item generation.  
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7. FUTURE WORKS: 
In future it is planned to integrate UML model or multi level 

data mining to analyse the dataset based on their hierarchy 

before they get into the algorithm. There is also a plan of 

identifying the redundant item sets in the early stage to avoid 

the time taken during rule set generation. And there is also a 

plan to compare the proposed algorithm with other existing 

algorithms [6] to validate the robustness and effectiveness. 

Also planning to simulate a tool for incorporating the 

proposed algorithm. And the scope of including negative rules 

into the proposed algorithm is also lined up in one among the 

future plans.  

 

8. REFERENCES: 
[1]  Anandhavalli M, Suraj Kumar Sudhanshu, Ayush 

Kumar and Ghose M.K. “Optimized association rule 

mining using genetic algorithm”, Advances in 

Information Mining, ISSN: 0975–3265, Volume 1, Issue 

2, 2009 

[2]  Marcus C. Sampaio, Fernando H. B. Cardoso, Gilson P. 

dos Santos Jr.,Lile Hattori  “Mining Disjunctive 

Association Rules” 15 aug. 2008 

[3]  Bing Liu, Wynne Hsu and Yiming Ma “Mining 

Association Rules with Multiple Minimum Supports”; 

ACM SIGKDD International Conference on Knowledge 

Discovery & Data Mining (KDD-99), August 15-18, 

1999, San Diego, CA, USA. 

[4] Yeong-Chyi Lee a, Tzung-Pei Hong b,_, Wen-Yang Lin , 

Mining “Association Rules with Multiple Minimum 

Supports Using MaximumConstraints”; Elsevier Science, 

November `22, 2004. 

[5]  Michelle Lyman, “Mining Disjunctive Association Rules 

Using Genetic Programming” The National Conference 

On Undergraduate Research (NCUR); April 21-23, 2005 

[6] Farah Hanna AL-Zawaidah, Yosef Hasan Jbara, Marwan 

AL-Abed Abu-Zanona, “An Improved Algorithm for 

Mining Association Rules in Large Databases” ; Vol. 1, 

No. 7, 311-316, 2011 

[7] Rupesh Dewang, Jitendra Agarwal, “A New Method for 

Generating All Positive and Negative Association Rules”; 

International Journal on Computer Science and 

Engineering, vol.3,pp. 1649-1657,2011 

[8]  Olafsson Sigurdur, Li Xiaonan, and Wu 

Shuning.”Operations research and data mining,in”: 

European Journal of Operational Research 187 (2008) 

pp:1429–1448. 

[9] Agrawal R., Imielinksi T. and Swami A. “Database 

mining: a performance perspective”, IEEETransactions 

on Knowledge and DataEngineering 5 (6), (1993), pp: 

914–925. 

[10] Kannika Nirai Vaani.M, Ramaraj E “An integrated 

approach to derive effective rules from association rule 

mining using genetic algorithm”, Pattern Recognition, 

Informatics and Medical Engineering (PRIME), 2013 

International Conference, (2013), pp: 90–95. 

[11] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent 

Patterns without Candidate Generation”, Data Mining 

and Knowledge Discovery (8), (2004), pp: 53-87. 

[12]  Oskar Kohonen ,Popular Algorithms in Data Mining and 

Machine Learning (http://www.cis.hut.fi/Opinnot/T-

61.6020/2008/fptree.pdf ;),2008. 

 

IJCATM : www.ijcaonline.org 

http://www.doaj.org/doaj?func=openurl&issn=09753397&genre=journal&uiLanguage=en
http://www.doaj.org/doaj?func=openurl&issn=09753397&genre=journal&uiLanguage=en
http://www.cis.hut.fi/Opinnot/T-61.6020/2008/fptree.pdf
http://www.cis.hut.fi/Opinnot/T-61.6020/2008/fptree.pdf

