
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

28

E-Rules: An Enhanced Approach to Derive Disjunctive

and useful Rules from Association Rule Mining without

Candidate Item Generation

Kannika Nirai Vaani M

Sr. Faculty,

Tech Mahindra Ltd,

Bangalore 560068, Karnataka, India

E Ramaraj

Professor,

Dept of Computer Science and Engineering,
Alagappa University,Karaikudi, Tamil Nadu.

ABSTRACT
Association rule mining is one of the most important and

well-researched techniques of data mining, that aims to induce

associations among sets of items in transaction databases or

other data repositories. Currently Apriori algorithms play a

major role in identifying frequent item set and deriving rule

sets out of it. However there are few shortfalls in conventional

Apriori Algorithm. They are i) candidate items generation

consumes lot of time in the case of large datasets ii) It

supports majorly the conjunctive nature of association rules

iii) The single minimum support factor to generate the

effective rules. However points ii) and iii) have been

addressed effectively in the earlier work [10] with reference to

Apriori Algorithm. But this paper majorly worked on the

above point i). In the proposed algorithm, FP growth

algorithm has been taken for a reference in generating

frequent item set without candidate generation. There are

appreciable amount of modification and enhancements have

been worked out in line with the earlier work. Besides this

work also taken care the integration issues while fitting it

suitably with the earlier worked out algorithm [10]. This

packaged Algorithm is named as E-Rules (Effective Rules).

After incorporating the modified FP Growth Algorithm, it has

been observed that there is a prominent difference in time

taken and performance as it does not involve candidate

generations. Hence „E-Rules‟ addressing the faster generation

of frequent item sets, so that to offer interesting/useful rules in

an effective and optimized manner with the help of Genetic

Algorithm.

Keywords
FP Growth Algorithm, Genetic Algorithm, Lift ratio, Multiple

Minimum Support, Disjunctive Rules.

1. INTRODUCTION

1.1. Association rule mining in Data

Mining:

Data mining is the task to mining the useful meaningful

information from data warehouse. It is the source of inexplicit,

purely valid, and potentially useful and important knowledge

from large volumes of natural data [8].The selected

knowledge must be not only precise but also readable,

comprehensible and ease of understanding.

Association rule basically use for finding out the useful

patterns, relation between items found in the database of

transactions [9].Association rule mining generally

experimented to find all rules that satisfy user-specified

minimum support and minimum confidence constraints [3].

The important factor that makes association rule mining

practical and useful is the minimum support. It is used to limit

the number of rules generated. However, using only a single

minsup implicitly assumes that all items in the data are of the

same nature and/or have similar frequencies in the database.

This is often not the case in real-life applications. In many

applications, some items appear very frequently in the data,

while others rarely appear. If the frequencies of items vary a

great deal, we will encounter two problems:

1. If minsup is set too high, we will not find those rules that

involve infrequent items or rare items in the data.

2. In order to find rules that involve both frequent and rare

items, then minsup to be kept very low. However, this may

produce too many rules.

So when one common support is fixed as minimum support

for all the items, the rules which are not frequent occur but

majorly contributing towards profit may get lost without

notice.

For example, in a supermarket transaction data, in order to

find rules involving those infrequently purchased items such

as food processor and cooking pan (they generate more profits

per item) very minimum support needs to be set ; but due to

this the unwanted and rare items will not be get pruned. Hence

fixing multiple minimum support for each items have become

significant.

1.2. Crisis in Apriori:

In the earlier work [10] the Apriori algorithm is customized to

include multiple supports, disjunctive and conjunctive rules

and Genetic Algorithm was used to generate useful rules

effectively. Major shortfall in modified Apriori was „time

taken‟ to generate frequent itemsets. In general Apriori-like

algorithm may still suffer from the following two nontrivial

costs, It is costly to handle a huge number of candidate sets

[12]. It is tedious to repeatedly scan the database and check a

large set of candidates by pattern matching, which is

especially true for mining long patterns.

If one can avoid generating a huge set of candidates, the

mining performance can be substantially improved. Hence the

need of introducing an algorithm which takes considerably

less time was realized. There comes the modified FP growth

Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

1.3. Conjunctive and Disjunctive rules:
Association rule mining deals conjunctive rules majorly. But

using disjunctive rules, extensive rule sets which are very

much useful in mining the dataset can be found out effectively.

At times disjunctive rule sets are also preferred to infer

interesting rules. For example ideal rule set for the below

query “If classes B or C or D are committed, what is the

chance that A is also committed?” would be B OR C OR D

A, where in the disjunctive nature of rules need to be

considered for a better analysis.

1.4. Disjunctive Rules:
Let X = {i1, i2...in} be a set of items. XC = {i1 AND i2

AND … AND in} or simply {i1i2...in} is a conjunctive term

of X, and XD = {i1 OR i2 OR … OR in} is a Disjunctive term

of X. The possible rule is of one of the following types,

involving conjunctive and disjunctive terms from the set of

items X U Y| X ∩ Y = Φ [2][5].

Table I:Disjunctive Rule Set:

Type Support Confidence

Xc ⟹Yc s = P(XC U YC) c = P(YC | XC)

Xc ⟹YD s = P(XC U YD) c = P(YC | XD)

XD ⟹Yc s = P(XD U YC) c = P(YD | XC)

XD ⟹YD s = P(XD U YD) c = P(YD| XD)

Rule sets List:

XY Z ⟹VW - type XC ⟹ YC

XY Z ⟹V OR W - type XC ⟹ YD

X OR Y OR Z ⟹ VW - type XD ⟹ YC

X OR Y OR Z ⟹ V OR W - type XD ⟹ YD

The number of rules that are found by the Associations

mining function can be reduced by using rule filters if the

number of frequent item sets is high. Rule filters are a

powerful way to limit the amount of rules to be generated or

the content of the rules. This parameter determines the

maximum number of items that occur in an association rule.

In the example the frequent itemset (E,A,C) has been used for

analysis and in this case the maximum rule length is 3 and

maximum antecedent allowed is 2; the maximum consequents

allowed are 2.

1.5. Lift Ratio

A high value of confidence suggests a strong association rule.

However this can be deceptive because if the antecedent

and/or the consequent have a high support, we can have a high

value for confidence even when they are independent. A

better measure to judge the strength of an association rule is to

compare the confidence of the rule with the benchmark value

where we assume that the occurrence of the consequent item

set in a transaction is independent of the occurrence of the

antecedent for each rule. This benchmark can be found out

from the frequency counts of the frequent item sets. This

enables to compute the lift ratio of a rule. The lift ratio is the

confidence of the rule divided by the confidence assuming

independence of consequent from antecedent. A lift ratio

greater than 1.0 suggests that there is some usefulness to the

rule. The larger the lift ratio, the greater is the strength of the

association. With the lift value, the importance of a rule can

be validated in an effective manner.

Confidence and Life factors are calculated as below,

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑁𝑜 .𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎𝑙𝑙 𝑡𝑒 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝐴 &𝐶

𝑁𝑜 .𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡𝑒 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝐴

 = (𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐴𝑈𝐶)/(𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐴)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =

𝑁𝑜.𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑣𝑖𝑛𝑔 𝑡𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝐿𝑖𝑓𝑡 =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

The above factor can also be included while validating any

rule set.

1.6. Multiple Minimum Supports:

In many data mining applications [4], some items appear very

frequently in the data, while others rarely appear. If minsup is

set too high, those rules that involve rare items will not be

found. To find rules that involve both frequent and rare items,

minsup has to be set very low. This may cause combinatorial

explosion because those frequent items will be associated with

one another in all possible ways. The disadvantage of support

is the rare item problem. Items that occur very infrequently in

the data set are pruned although they would still produce

interesting and potentially valuable rules. The rare item

problem is important for transaction data which usually have a

very uneven distribution of support for the individual items.

E.g., Consider four items A, B and C in a database. If the

minimum support count is 10 %, then we may lose the rule set

AB if it had support 7% .But assume now we have multiple

minimum item supports are

 MIS (A) = 20% MIS (B) = 3%

 MIS(C) = 4%

And their actual supports: {A 18%, B 4%, C 3%}

Then the rule AB is not discarded as it satisfies the rule min

(MIS (A, B))>=min (Support (A<B)).
Hence there could be a revision in FP algorithm accordingly.

2. FP-GROWTH ALGORITHM

FP Growth approach is based on divide and conquers strategy

for producing the frequent item sets[11]. FP-growth is mainly

used for mining frequent item sets without candidate

generation. Major steps in FP-growth are,

Step1: It firstly compresses the database showing frequent

item set in to FP-tree. FP-tree is built using 2 passes over the

dataset.

Step2: It divides the FP-tree in to a set of conditional database

and mines each database separately, thus extract frequent item

sets from FP-tree directly.

FP-tree is a frequent pattern tree can be defined below.

1. It consists of one root labeled as “null", a set of item prefix

sub trees as the children of the root, and a frequent-item

header table.

2. Each node in the item prefix sub tree consists of three fields:

item-name, count, and node-link, where item-name registers

which item this node represents, count registers the number of

transactions represented by the portion of the path reaching

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

30

this node, and node-link links to the next node in the FP-tree

carrying the same item-name, or null if there is none.

3. Each entry in the frequent-item header table consists of two

fields, (1) item-name and (2) head of node-link, which points

to the first node in the FP-tree.

Based on this definition, we have the following FP-tree

construction algorithm. Let I = {a1,a2,….. an} be a set of

items, and a transaction database DB = (TID1; TID2,…..

TIDn),where each TID(i) refers to transaction from 1...n that

contains a set of items in I.

2.1. Algorithm 1:

Modified FP-tree construction:

Input: A transaction database DB and a set of minimum

support threshold.
Output: Frequent pattern tree

[Note: Appropriate changes for the proposed algorithm has

been incorporated in the below algorithm.]

1. Scan the transaction database DB once. Collect the set of

frequent items in each TID(i) and their predefined

supports(mtk) and actual supports(stk).

2. Create the root of an FP-tree, and label it as

“null". For each transaction TID(i) in DB do the

following.

If min (mtk(TID(i))) < = stk(TID(i)) then select and sort

the frequent items in TID(i).Let the sorted frequent item

list in TID(i) be [p|P], where p is the first element and P

is the remaining list. Call insert tree([p|P]; TID(i)).

3. insert tree([p|P]; TID(i)):

If TID(i) has a child n, where n.item = p then increment

n.count by one else create new node N with n.count = 1;

Link it up from the header table . If P is nonempty call

insert_tree(P, N) recursively.

2.2. How to find all frequent patterns from

the FP-Tree:

We can derive the frequent items as follows,

1) Find all frequent patterns containing one of the

items

2) Find all frequent patterns containing the next

item but NOT containing the previous one

3) Repeat step 2 until we're out of items

2.3. Algorithm 2:

FP-Tree frequent patterns generation:

Input:
FP-tree constructed based on Algorithm 1,

using DB and a minimum support thresholds.

Output:
The complete set of frequent patterns.

Procedure FP-growth (Tree; α)

{

(1) If Tree contains a single path P

(2) then for each combination (denoted as β)

of the nodes in the path P do

(3) generate pattern βUα with support =

 minimum support of nodes in β;

(4) else for each ai in the header of Tree do

{

(5) generate pattern β = ai U α with

 support = ai.support;

(6) construct β 's conditional pattern base and

then β 's conditional FP-tree Tree β;

(7) if Tree β ≠ ø ;

(8) then call FP-growth (Tree β; β)

}

}

3. PSEUDO CODE FOR E-RULES:

Input:

A set of n transaction data T , a set of p items to be

purchased , each item ti, with a minimum support value mi,

i=1 to p , and a minimum confidence value.

Output:

A set of association rules in the criterion of the maximum

values of minimum supports.

Procedure:

Step 1: Perform Algorithm 1.

Step 2: Perform Algorithm 2.

This will give Frequent Item Set (FIS).

Step 3: Generate bit pattern for FIS for all

possible LFH and RHS rule sets.

Step 4: Construct all possible rule sets

(Disjunction and conjunction) as per

proposed rule guides in Rule sets List.

Details are briefed in 3.1.

Step 5: Calculate confident and Lift factors to

validate effective rules.

Step 6: Output the rules which are greater than

 minimum confident and Lift greater than or equal to 1.

3.1. To generate rules:

Each frequent item set in frequent item set derived can be

given as one of the input for the below algorithm to derive the

respective conjunctive and disjunctive rules.(E,A,C) frequent

set has been taken for the demonstration purpose.

Step 1: Create function whose parameters are

Dataset, list_of_antecedents-A

, list_of_consequent –C

List of A and C can be generated using the

following conditions using Genetic Algorithm.

Min (A) =Cnt (FIS)-[Cnt (FIS)-1]

Max (A) =Cnt (FIS)-[(Cnt (FIS)-(Cnt (FIS)-1))]

Example, If Frequent Item Set (FIS) =3 then

Maximum Antecedes=2 and Minimum Antecedents

=1

This holds true for consequents as well, hence

Min(C) = Cnt (FIS)-[Cnt (FIS)-1]

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

Max(C) = Cnt (FIS)-[(Cnt (FIS)-(Cnt (FIS)-1))]

[A- Antecedent; C-Consequent; Cnt- number of frequent item

set

Bit pattern for the frequent item set along with operators are

like in Table VI.

And the function returns interesting rules as per Rule sets like

in Table VIII]

Step 2: Find out allowed antecedents (A) and

 Consequent(C)

Step 3:

For each Item set A and for each item set C,

i) Create an offspring when bit pattern (A) is

not equal to bit pattern(C).

ii) If Bit pattern (A) and/or Bit pattern(C)>=

min_predefined_min_support then return

the rule AC

iii) Else Prune the rule.

Step 4: Return all valid rules

A. Example:

An example is given to demonstrate the proposed algorithm

[3]. Table II shows dataset that contains 10 transactions and 7

items and the ordered items as per their frequency.

Table II :Dataset for 10 transactions:

TID Items Ordered

Items

1 ABDG BADG

2 BDE EBD

3 ABCEF EBACF

4 BDEG EBDG

5 ABCEF EBACF

6 BEG EBG

7 ACDE EADC

8 ABE EBA

9 ABEF EBAF

10 ACDE EADC

3.2. FP Tree for the dataset in Table II:

A FP tree can be generated as below in Figure :1

for the data set available in Table II. Each node in the tree

contains the label of the item along with a counter that shows

the number of transactions mapped on to the given path.

Figure :1 FP Tree generation:

Initially FP tree contains only the root node represented by the

null symbol. The FP tree is subsequently extended in the

following way,

1. The data set is scanned once to determine the

support count of each item, infrequently items

discarded while the frequent items are sorted in

decreasing support counts. For the data set show in

Table 2 E is the most frequent item followed by

B,A,D,C,F an G.

2. The algorithm makes second pass over the data to

construct the FP tree. After reading the first

transaction {B, A, D} the nodes labled as B, A, D

are created. Every node along the path has

frequency count of 1.

3. The above process continues until every transaction

has been mapped onto one of the paths given in the

FP tree. The resulting FP tree is as below for the

dataset mentioned in Table II.

Below tables show the relevant data needed for further

analysis .

Table III: Predefined minimum support for each items

(mtk)

Item A B C D E F G

Min_sup 0.4 0.7 0.3 0.7 0.6 0.2 0.4

NULL

E:9

B:7

A:2

E
:

9

B

:
8

A

:
7

B:1

A:4 A:1

D
:

5

C
:

4

F

:
3

D:2 D:2 D:1

C:2 C:2

F:1 F:2

G

:
3

G:1 G:1 G:1

Items Head of Links

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

32

Table IV: Actual support values of all items(stk=ck/n)

Item A B C D E F G

Support 0.7 0.8 0.4 0.5 0.9 0.3 0.3

Table V: Minimum Item Support (MIS) for each

transaction TID(i)

TID Items Ordered

Items

MIS

1 ABDG BAD 0.4

2 BDE EB 0.6

3 ABCEF EBACF 0.2

4 BDEG EBD 0.4

5 ABCEF EBACF 0.2

6 BEG EB 0.4

7 ACDE EADC 0.3

8 ABE EBA 0.4

9 ABEF EBAF 0.2

10 ACDE EADC 0.3

In the above table we can see items in each transaction are

ordered in descending order of its MIS values and infrequent

items are removed if any. For example item „G‟ in TID -1 has

support count less than its corresponding MIS value. Hence it

has been ignored.

3.3. Conditional Pattern Bases:

The conditional pattern bases and condition FP trees are

summarized below.

3.4. Frequent items generation:

From the FP-tree construction process, we can see that one

needs exactly two scans of the transaction database. Let us see

how the FP tree is constructed for node C. For node C, it

derives a frequent pattern (E:4, A:4) and two paths in the FP-

tree (E:9,A:2,D:2) and (E:9,B:7,A:4) .The first path indicates

that string (E,A,D and C) appears twice in the database.To

study which string appear together with C, only C's prefix

path {E:2; A:2; D:2} counts. Similarly, the second path

indicates string (E,B and A) appears twice in the set of

transactions in DB, or C's prefix path is {E2,B:2,A:2).These

two prefix paths of C form C's sub-pattern base, which is

called C's conditional pattern base (i.e., the sub-pattern base

under the condition of C's existence). Construction of an FP-

tree on this conditional pattern base (which is called C's

conditional FP-tree) leads to branch (E:4,A:4).

Hence the frequent patterns are generated as per Algorithm 2.

They are {E,A,C,(E,A),(E,D),(E,C),(E,A,D),

(E,A,C),(E,A,D,C)} . The search for frequent patterns

associated with C terminates.

Frequent itemset (E, A, C) has been taken for the

demonstration purpose. The possible association rules can be

generated as per below table. First column in the below table

denotes whether it is Antecedent or Consequent; 1-Antecedent

0-Consequent.

Table VI :Encoding of Antecedent and Consequent:

Antecedent/Consequent A C E

1 1 0 0

1 0 1 0

1 0 0 1

1 1 1 0

1 0 1 1

1 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 0

0 0 1 1

0 1 0 1

3.5. Bitwise items storage:

In order to read and scan the item sets for the calculation, each

item needs to get encoded with respect to the transaction into

bits.Here the encoding style could be 1 for presence of item in

transaction and 0 for absence.

Ite

m

Conditional

Path

Conditional

Pattern

Base

Conditional

FP tree

G {(E:9,B:7),
(E:9,B:7,D:2),

(B:1,A:1,D:1)

{(E:1,B:1),
 (E1,B:1),

(B1,A1,D1)}

{(E:2,B:3)}|G}

F {(E:9,B:7,A:4),

(E:9,B:7,A:4,C:2)
}

{(E:1,B:1,A:1),

(E:2,B:2,A:2)}

{(E:3,B:3,A:3)|F

}

C {(E:9,A:2,D:2),

(E:9,B:7,A:4)}

{(E:2,A:2,D:2),

(E:2,B:2,A:2)}

{(E:4,A:4)|C}

D {(E:9,A:2),
(E:9,B:7),

(B:1,A:1)}

{(E:2,A:2),
(E:2,B;2),

(B:1,A:1)}

{(E:4,A:3,B:3)}|
D

A {(E:9),

(E:9,B:7),(B:1)}

{(E2),

(E:4,B:4),

(B:1)}

{(E:6,B:5)}|A

B {(E:9)} {(E:7),(ø)} {(E:7),(ø:1)}|B

E ø ø ø

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

Table VII: The Bit pattern for items.

Item Transaction ID Bit Pattern Count

A {TID1,ITD3,TID5,

TID7,TID8,TID9,

TID10}

1010101111 7

B {TID1,TID2,TID3,

TID4,TID5,TID6,

TID8,TID9}

1111110110 8

C {TID3,TID5,TID7,

TID10}

0010101001 4

D {TID1,TID2,TID4,

TID7,TID10}

1101001001 5

E {TID2,TID3,TID4,

TID5,TID6,TID7,

TID8,TID9,TID10}

0111111111 9

F {TID3,TID5,TID9} 0010100010 3

G {TID1,TID4,TID6} 1001010000 3

The following possible rules can be generated as per Rule sets

List 1,

“If A is bought then C and E also bought”

A⟹CE

“If A is bought then C or E also bought “

A⟹C or E
Similarly the below possible rules can be derived.

Table VIII : Possible Rules for {E,A,C}:

Rule Confident Lift

Antecedent Symb

ol

Conseq

uent

E
⟹

AC 0.444444444 1.111111

C+E
⟹

A 0.666666667 0.952381

A
⟹

CE 0.571428571 1.428571

AE
⟹

C 0.666666667 1.666667

A
⟹

C+E 0.857142857 0.952381

E
⟹

A+C 0.666666667 0.952381

A+E
⟹

C 0.4 1

A+C
⟹

E 0.857142857 0.952381

C
⟹

AE 1 1.666667

CE
⟹

A 1 1.428571

AC
⟹

E 1 1.111111

C
⟹

A+E 1 1

Confident and Lift factors can be calculated using the below,

Confident = Support (AUC)/Support (A)

Lift = Support (AUC)/Support(C)

Where A-Antecedent C-Consequent

If predefined minimum confident is 0.75 then the rules whose

confident <0.75 can be pruned .Hence the result set is as

follows,

Table IX :Pruned Rules:

Rule Confident Lift

Antecedent Symbol Consequent

A
⟹

C+E

0.8571428

57 0.952381

A+C
⟹

E

0.8571428

57 0.952381

C
⟹

AE 1 1.666667

CE
⟹

A 1 1.428571

AC
⟹

E 1 1.111111

C
⟹

A+E 1 1

From the above table it is inferred that rules having confident

greater than minimum confident and lift ratio for the same is

almost 1 or more. This confirms that all these rules have high

dependency between antecedent and consequents and thus are

strong and useful rules.

4. GENETIC ALGORITHM:
Genetic Algorithm (GA)[1] incorporates Darwinian

evolutionary theory with sexual reproduction. GA is

stochastic search algorithm modelled on the process of natural

selection, which underlines biological evolution. GA has been

successfully applied in many search, optimization, and

machine learning problems.GA works in an iteration manner

by generating new populations of strings from old ones. Every

string is the encoded binary, real etc., version of a candidate

solution .An evaluation function associates a fitness measure

to every string indicating its fitness for the problem. This type

of representation is relative to position. Presence of 1 at ith

position indicates occurrence of the item in transaction[i].

Similarly presence of 0 at jth position indicates absence of

item in transaction[j].

For example,

Bit pattern for A can be given as 1010101111 based on its

availability in the transactions in table V. Hence conjunction

and disjunction of few rules can be evaluated and its relative

count could be calculated as follows,

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

34

4.1. Boolean Operation on bit pattern for

few rules:

Table X : Boolean Operation on bit pattern

Items Operation Result Count

A and C {1010101111} and

{0010101001}

{00101010

01}

4

A or C {1010101111} or

{0010101001}

{10101011

11}

5

(A or C)

and E

({1010101111} or

{0010101001}) and

{0111111111}

{00101011

11}

6

4.2. Genetic operators:
Genetic Algorithm uses genetic operators [7] to generate the

offspring of the existing population. This section describes

three operators of Genetic Algorithms that were used in GA

algorithm: selection, crossover and mutation.

1) Selection: The selection operator chooses a chromosome in

the current population according to the fitness function and

copies it without changes into the new population.GA

algorithm used route wheel selection where the fittest

members of each generation are more chance to select.

2) Crossover: The crossover operator, according to a certain

probability, produces two new chromosomes from two

selected chromosomes by swapping segments of genes.

3) Mutation: The mutation operator is used for maintaining

diversity. During the mutation phase and according to

mutation probability, 0.005 in GA algorithm, value of each

gene in each selected chromosome is changed.

5. RESULT AND DISCUSSION:

From the result of E-Rules, the following comparison has

been made. Time taken for generating rule sets using

Modified Apriori (earlier work) and the proposed modified FP

algorithm for all the item sets generated in the above example

was observed. Though the volume of itemset taken for is not

huge enough, the trivial difference has been felt. However

when E-Rules is applied to large dataset like any medical,

pharmaceutical data etc., definitely the difference will be felt

tremendously.

Table X1: Time taken to generate useful rules by E-Rules

using Modified Apriori and Modified FP

Algorithm Time Taken to

generate

frequent itemset

(in Sec)

Time Taken to

generate useful

rules

(in Sec)

Modified Apriori 0.122 0.336

Modified FP in

ERules

0.008 0.222

The difference can be shown as below in Figure 2.The

proposed Algorithm in the earlier work took overall 0.336 sec

to generate the final useful rule sets. Amongst it took initially

0.122 sec for generating frequent item set. Whereas „ERules‟

captured only 0.222 sec for generating final useful rules

because it needed only 0.008 sec for generating frequent item

sets with the proposed algorithm. Hence it drastically reduces

the time taken to generate the ultimate useful rules. This

difference is very obvious data for comparison to justify our

claim effectively.

Figure 2: Comparison between the modified Apriori and

the modified FP Algorithms:

6. CONCLUSION:

E-rules is an integrated algorithm for useful and effective

association rule mining to capture even useful rare itemsusing

multiple minimum support; Conjunctive& Disjunctive rules

sets using Genetic Algorithm; Lift Factor to analyse the

strength of derived rules. One of the major challenges quoted

in the previous work was „time taken‟ in frequent item

generation. That has been drastically reduced using modified

FP algorithm in the present work. It is claimed that this

approach is novel as the modified Apriori Algorithm has been

replaced with modified FP algorithm in Erules to reduce the

time in generating frequent item generation.

0.122

0.008

0.336

0.222

0.001

0.051

0.101

0.151

0.201

0.251

0.301

0.351

Modified Apriori in
earlier work

Modified FP in
Erules

Modified Apriori VS Modified
FP in ERules

Frequent Itemset Generation Ruleset Generation

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.19, June 2013

7. FUTURE WORKS:
In future it is planned to integrate UML model or multi level

data mining to analyse the dataset based on their hierarchy

before they get into the algorithm. There is also a plan of

identifying the redundant item sets in the early stage to avoid

the time taken during rule set generation. And there is also a

plan to compare the proposed algorithm with other existing

algorithms [6] to validate the robustness and effectiveness.

Also planning to simulate a tool for incorporating the

proposed algorithm. And the scope of including negative rules

into the proposed algorithm is also lined up in one among the

future plans.

8. REFERENCES:
[1] Anandhavalli M, Suraj Kumar Sudhanshu, Ayush

Kumar and Ghose M.K. “Optimized association rule

mining using genetic algorithm”, Advances in

Information Mining, ISSN: 0975–3265, Volume 1, Issue

2, 2009

[2] Marcus C. Sampaio, Fernando H. B. Cardoso, Gilson P.

dos Santos Jr.,Lile Hattori “Mining Disjunctive

Association Rules” 15 aug. 2008

[3] Bing Liu, Wynne Hsu and Yiming Ma “Mining

Association Rules with Multiple Minimum Supports”;

ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (KDD-99), August 15-18,

1999, San Diego, CA, USA.

[4] Yeong-Chyi Lee a, Tzung-Pei Hong b,_, Wen-Yang Lin ,

Mining “Association Rules with Multiple Minimum

Supports Using MaximumConstraints”; Elsevier Science,

November `22, 2004.

[5] Michelle Lyman, “Mining Disjunctive Association Rules

Using Genetic Programming” The National Conference

On Undergraduate Research (NCUR); April 21-23, 2005

[6] Farah Hanna AL-Zawaidah, Yosef Hasan Jbara, Marwan

AL-Abed Abu-Zanona, “An Improved Algorithm for

Mining Association Rules in Large Databases” ; Vol. 1,

No. 7, 311-316, 2011

[7] Rupesh Dewang, Jitendra Agarwal, “A New Method for

Generating All Positive and Negative Association Rules”;

International Journal on Computer Science and

Engineering, vol.3,pp. 1649-1657,2011

[8] Olafsson Sigurdur, Li Xiaonan, and Wu

Shuning.”Operations research and data mining,in”:

European Journal of Operational Research 187 (2008)

pp:1429–1448.

[9] Agrawal R., Imielinksi T. and Swami A. “Database

mining: a performance perspective”, IEEETransactions

on Knowledge and DataEngineering 5 (6), (1993), pp:

914–925.

[10] Kannika Nirai Vaani.M, Ramaraj E “An integrated

approach to derive effective rules from association rule

mining using genetic algorithm”, Pattern Recognition,

Informatics and Medical Engineering (PRIME), 2013

International Conference, (2013), pp: 90–95.

[11] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent

Patterns without Candidate Generation”, Data Mining

and Knowledge Discovery (8), (2004), pp: 53-87.

[12] Oskar Kohonen ,Popular Algorithms in Data Mining and

Machine Learning (http://www.cis.hut.fi/Opinnot/T-

61.6020/2008/fptree.pdf ;),2008.

IJCATM : www.ijcaonline.org

http://www.doaj.org/doaj?func=openurl&issn=09753397&genre=journal&uiLanguage=en
http://www.doaj.org/doaj?func=openurl&issn=09753397&genre=journal&uiLanguage=en
http://www.cis.hut.fi/Opinnot/T-61.6020/2008/fptree.pdf
http://www.cis.hut.fi/Opinnot/T-61.6020/2008/fptree.pdf

