
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

31

Variable Mutation Rate at Genetic Algorithms:

Introduction of Chromosome Fitness in Connection with

Multi-Chromosome Representation

Matthias Kühn

Technical University Ilmenau
Ehrenbergstraße 29

98693 Ilmenau, Germany

Thomas Severin
Technical University Ilmenau

Ehrenbergstraße 29
98693 Ilmenau, Germany

Horst Salzwedel
MLDesign Technologies Inc.

2230 Saint Francis Drive
CA 94303 Palo Alto, USA

ABSTRACT

For genetic algorithms (GAs) researchers look for optimal

control parameters, such as population size or mutation rate.

Early research was carried out using constant control

parameters to find optimal parameter values for GA. The

findings are only specific to the considered problem and

therefore not suitable to be generalized. In more recent

research, it was shown that the convergence rate can be

increased by adaptable control parameters, e.g. mutation rate

can be varied during the optimization run. Better optimization

results have been achieved. It was shown how control

parameters can be varied by self-adapting algorithms. The

control parameters are coded within the chromosome to make

them independent from the optimization problem.

In newer researches, multi-chromosome representations have

been used to decompose complex problems into a number of

simpler sub-problems. Each part of the problem is represented

by a separate chromosome with individual representation.

Fitness values have been used to measure how good an

individual fits with its environment (target criteria).

This paper investigates the effects on GA performance or the

optimization results by balancing control parameters to the

fitness of a chromosome (chromosome fitness).

Further it is investigated how mutation rate can be varied by

chromosome fitness and whether this affects the optimization

performance of the GA or the optimization results.

Keywords

genetic algorithm, multi-chromosome, mutation rate,

chromosome fitness, optimization

1. INTRODUCTION
In 1975 Holland published a framework on genetic

algorithms[1]. Today GAs are used for optimization of

diverse problems in various domains. For today’s more

complex problems, to better represent reality, heuristics like

GAs have increased in importance.

Basic problems in using GAs are questions of genetic

representation, e.g. binary/real coded, single-

/multi-chromosome and the question of the optimal values for

the control parameters, e.g. population size, reproduction and

mutation rates.

DeJong[2], Grefenstette[3]and Schaffer et al. [4]have been

focusing finding optimal control parameters for specific

applications. The results cannot be generalized for other

problem areas.

Fogarty[5] andHesser&Männer[6]have used variable

parameter constellations by varying the control parameters

during optimization run. Bäck[7]and Hinterding[8]take aware

of it within the genetic representation itself (self-adapting), to

get the parameters independent from the problem.

Newer researches by Juliff[9], Cavill[10]and Davidor[11]on

GAs work with multi-chromosome representation to solve

more complex problems. They show it is possible to

decompose a complex problem into a number of simpler parts.

Each part of the problem is represented by a separate

chromosome andeach chromosome can use a different

representation.

To measure the quality of the found solution, each individual

is computed by a so called fitness function. These fitness

values determine e.g. the probability that an individual is

chosen for reproduction or mutation and becomes a part of the

new population. By doing this, better individuals could be

selected more often and could lead to a population with better

individuals (solutions).

By using multi-chromosome representation it might be

possible to define target criteria for each part (chromosome)

of the problem. A fitness function, which rates a single

chromosome within a multi-chromosome representation, is

called “chromosome fitness”. In case that each chromosome is

rated, it is possible that one part of the problem has a high

fitness value and another one is low. Keeping in mind, that

parts of the problem can influence each other, it might be

possible to concentrate optimization on the inferior parts and

less on the good ones. This might lead to better GA

performance and better optimization results.

This paper is going to analyzes how the mutation rate can be

varied, as a function of chromosome fitness and its

contribution to the optimization performance.

The paper first analyzes existing research in this area,

describes the methodology of optimization and testing, the

characteristics of GA and includes a list of the test scenarios

(including the used test functions). Chromosome fitness and

its use to determine mutation probability is explained. The

results of the investigations are summarized.

2. CURRENT STAGE OF

DEVELOPMENT
Researchers focused on optimal control parameter for specific

problems. Usually they used common problems such as De

Jong’s or Schwefel’s functions for test cases and for

comparing their results. De Jong[2], Grefenstette[3], Schaffer

et al. [4] are some of the researchers who also searched for

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

32

optimal control parameter on single-chromosome

representation. In his early work De Jong [2]showed that

mutation rates can have a destructive characteristic. If the

mutation rate is too high, search is like a random search,

regardless of other parameter settings. Based on his

experiments, De Jong suggested optimal values for six control

parameters, e.g. population size of 50-100 individuals, a

mutation probability of 0.001 per bit (bit-flip) and single-point

crossover at a rate of 0.6. His parameter set has been used in

many GA implementations. Grefenstette[3]designed a

secondary Meta-GA to tune the optimal control parameters for

the primary GA. In his test scenario he performed five

numerical test functions on six control parameters. The

Meta-GA used De Jong’s parameter set. Grefenstette

confirmed several observations made by De Jong.

Furthermore he found, that: “…the performance of GAs

appears to be a nonlinear function on the control parameters”

[3, p. 127]. He showed that a large generation gap as well as

the elitist selection strategy (elitism) in general improved

performance. Also: “In small populations (20 to 40)

structures, good online performance is associated with either a

high crossover rate combined with a low mutation rate or a

low crossover rate combined with a high mutation rate.”[3, p.

127]. Grefenstette said that mutation rate above 0.05 is in

general harmful for the optimal performance of GAs[3, p.

127]. He also suggested optimal control parameters e.g.

population size of 30 individuals, a mutation rate of 0.01 and

for two-point crossover a rate of 0.95 (along with his test

suite).

Schaffer et al. [4]performed a systematical test on control

parameters affecting the performance of GAs. Therefore 10

test functions (including five functions of De Jong) were used

with 6 population sizes, 10 crossover rates and 7 mutation

rates. It was observed, that there is a greater sensitivity of the

GA performance to mutation rate than to crossover rate. This

seems to be independent from the tested functions. The

optimal parameter setting was nearly the same as that of

Grefenstette. For example the optimal mutation rate was seen

between 0.005 and 0.01, optimal crossover rate in a range of

0.75-0.95 and a population size of 20-30 individuals [4, p.

55].

The tests produced different optimal parameter sets for

different problems. Optimal control parameters seem to be

dependent on each other (e.g. population size to mutation

rate), on the genetic representation and on the problem to be

optimized.

Usually the probability of mutation is constant throughout the

optimization run. Fogarty [5] was the first to use a variable

mutation rate. In his work different variants of the distribution

of mutation probability were compared: (1) constant low

probability over generations, (2) probability of 0.5 in initial

population followed by constant low probability, (3)

exponential decreasing probability, (4) constant probability

across the bit representation of integers, (5) exponential

increasing probability across the bit representation of integers.

Summarizing he states, that varying mutation probability

significantly improves performance [5, p. 108].

Hesser&Männer[6], Bäck[7]and also Bäck[12]investigated

variable mutation rates. In those works mutation rates mainly

depend on the genotype length and/or the population size.

Hesser&Männer[6] showed that mutation probability should

be decreased during convergence, in agreement with the

results of Fogarty. The benefit of variable mutation rates is

seen in a high spreading of individuals in the search room on a

high mutation rate at the beginning. But a high mutation rate

is destructive [13, p. 56]. Therefore it is the consent that the

mutation rate should be decreased during convergence [5][6].

Furthermore Bäck[7] researched on optimal mutation rates on

Schwefel’s and De Jong’s functions. His approach showed

how a GA is able to optimize the mutation rate by itself

during the optimization run (self-adapting). Therefore the

mutation rate is taken into the genetic representation of the

individuals.

The above mentioned researches on variable or self-adapting

control parameters focused on a single-chromosome

representation. In this paper we focus on a multi-chromosome

representation.

Pierrot&Hinterding[14] showed that mutation and crossover

rates need an adaption in regard to the number of

chromosomes. They furthermore indicated, that: “…a steady

mutation of one variable per chromosome gives a better result

than the average of one mutated variable per chromosome.”

[14, p. 144].

Hinterding[8] investigated on self-adapting GAs using a

multi-chromosome representation. He added an extra

chromosome for a numeric representation of crossover and

mutation probability [8, p. 88]. It was demonstrated, that a GA

that uses self-adaption, gives better results. But for easier

problems, that only need a few generations, no improvements

could be realized [8, p. 90]. The reason for this is that several

generations are necessary to perform a good mutation rate

(costs of self-adapting). But self-adapting leads to better

results on complex problems and there is no need for

hand-tune parameters.

3. METHODOLOGY OF TESTING
Mutation is the most sensitive control operator with high

impact on efficient convergence of GA [4, p. 59][12, p. 7]. To

investigate the effects of variable mutation rates, we define

test cases on a set of test-functions (problems to be

optimized). The optimization follows in a loop, as shown in

Figure 1. The loop will be done as long as the wanted quality

of measures is not reached.

Fig 1: Optimization of a simulation model [15, p. 4]1

For optimization purpose (optimization method) we use a GA

with multi-chromosome representation. We considered the

general sequence of action for a GA, as it is shown in Figure 2

(basic literature on GA: [1][16][17][18][19]).

decision

situation

valuation optimization

method

simulation

model
 decision making

factors
 measurement of

decission making

factors

objectives,

constraints

quality of

measurement

manifestation

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

33

Fig 2: General sequence of actions for our genetic

algorithm (based on [20, p. 9]2)

Following this, every individual of the population is rated by a

fitness value. After selection in our approach either

recombination OR mutation is carried out to create a new

individual. This is necessary to assure that mutation is based

on fitness value. Usually crossover is done first and upon this

mutation. Thus, a new individual is created in the moment

crossover is done. For mutation purpose the (before)

calculated fitness value associated to the parent individual

cannot be used to determine mutation rate for the new

individual.

We define several test scenarios which will be simulated. For

simulation purpose we use MLDesigner on an Intel i5 M430

2.27 GHz CPU running MS Windows 8.

Each test scenario is performed 100,000 times. We measure

the number of generations it takes to reach a specific fitness

value. For later comparison and to see whether there is an

effect on performance using variable mutation rates, we

calculate the mean value over all runs to compare which

scenario finds the peak with the least number of generations.

4. CHARACTERISTICS OF GA AND

TEST SCENARIOS
The initial population is set up at random and contains 20

individuals. Each individual is binary coded. As shown in

figure 2 each individual is rated according to a fitness

function.

After having created the initial population and according to

the general sequence in Figure 2, the next step will be to

select parent individuals based on their individual fitness

value (selection) to perform genetic operation as mutation or

crossover.

Selection is a genetic operator, which controls the search

direction in the search space. As mentioned above, it

determines which parents can pass their gens to a child.

Individuals with better genetic material (higher fitness value)

are more likely selected. During several iterations, the

children population converges to an optimum. To prevent

stagnation at a local optimum, it is important to keep the

population variety sufficient and the genetic material diverse.

Therefore parent individuals with low fitness value should

also be selectable. This keeps the population “alive”. In our

algorithm this is realized through normalization of fitness

values of each individual according to the parent population.

Based on this individuals are selected at random (“Roulette

Wheel” strategy (see [17, p. 124 f.]). Thus, individuals with

high fitness value are more likely selected and individuals

with low fitness value can also be selected.

Crossover (recombination) is done by one-point crossover

strategy (see [17, p. 128 f.]on crossover). We keep the

crossover probability 𝑝𝑐constantly at 0.6. De Jong [2]

described this value as the best one in relation to his work.

Mutation rates are usually constant during the whole

optimization run and so it is equal for each individual (see

[17, p. 129 f.]. In our approach we use a variable mutation rate

as a function of number of generations and what we call

chromosome fitness. Mutation is always done by bit-flip and

it happens at each bit position with probability 𝑝𝑚 . The reason

for this is, the little length of chromosomes in our

representation in combination with low mutation probabilities

like 𝑝𝑚=0.001.

Finally we use elitism, which is a selection method that forces

the GA (only) to pass the best individual without any changes

to the next generation (see [17, p. 124 f.] on elitism).

Otherwise such an individual can be destroyed and be lost for

the population.

In the following we define three test cases and two test-

functions (problems) which should be optimized. As a

consequence of this several test-scenarios will be performed:

Case 1 (Constant):

Multi-chromosome representation - mutation rate is constant,

Case 2 (Fogarty):

Multi-chromosome representation - mutation rate is

decreasing during the optimization run in the same for all

chromosomes,

Case 3 (Variable):

Multi-chromosome representation - mutation rate is variable

during the optimization run for each chromosome and is based

on the chromosome fitness.

As test functions we use De Jong’s (1) and Schwefel’s

function (2).

De Jong’s function (DF):

fDJ x, y = x² + y²

−4 ≤ x, y ≤ 4

(1)

Schwefel’s function (SF):

𝑓𝑆 𝑥 = −𝑥𝑖 ∗ sin(𝑥𝑖

𝑛

𝑖=1

−500 ≤ 𝑥𝑖 ≤ 500

𝑛 ∈ 𝑁; 𝑥∗ = (𝑥1,
∗ 𝑥2

∗,𝑥3
∗, … , 𝑥𝑛

∗)

(2)

For these functions the minima are known as follows (3, 4):

𝑓𝐷𝐽 𝑥
∗, 𝑦∗ = 0

at: 𝑥∗ = 0; 𝑦∗ = 0

𝑓𝑆 𝑥
∗ = −𝑛 ∗ 418,9828872

 at 𝑥𝑖
∗ = 420.968746 ∀𝑖

𝑛 ∈ 𝑁; 𝑥∗ = (𝑥1,
∗ 𝑥2

∗, 𝑥3
∗, … , 𝑥𝑛

∗)

(3)

(4)

For both test functions each of the variables should be

represented by a separate chromosome and therefore we

implement the GA as haploid multi-chromosome

representation with two chromosomes. Therefore we split

Generate start

population

Start of search

quantifying „fitness“

of individuals

best individual

(quit search)
yes

no

create new

population

End of search

Selection

Recombination/

Mutation

target value

(fitness) reached?

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

34

each problem into two parts. Because both functions are sum

functions, it can easily be done as follows:

For De Jong’s function the parts are (5, 6):

𝑓𝐷𝐽1
= 𝑥2,

𝑓𝐷𝐽2
= 𝑦2.

(5)

(6)

Thus x is represented by the first chromosome and y is

represented by the second chromosome.

For Schwefel’s function the parts are (7, 8):

 𝑓𝑆1
 𝑥1 = −𝑥1 ∗ sin(𝑥1),

 𝑓𝑆2
 𝑥2 = −𝑥2 ∗ sin(𝑥2).

(7)

(8)

Thus the first chromosome represents x1 and the second one

x2.

For De Jong’s function each chromosome has 13 bits, caused

by a possible input value with 3 fractional digits to enlarge the

granularity of the search space. For Schwefel’s function each

chromosome has 17 bits, caused by a possible input value

with 2 fractional digits for the same reason.

In this paper we distinguish between the fitness of an

individual 𝐹𝐼and the fitness of a chromosome 𝐹𝐶. The

individual fitness determines the goodness of the individual

(solution) as a whole and determines the probability that a

parent individual is selected for mutation, reproduction or

elitism. The chromosomal fitness is the fitness value of a part

of an individual (a chromosome) and we use it to determine

the variable mutation rate for this specific chromosome in

case that the individual is selected for mutation.

We tested a set of fitness functions before (e.g. exponential,

linear, square root) to see which is suitable best for a defined

fitness level to be reached. At some fitness functions we set a

limit to 2 or to 10. So the fitness function sets all values which

were greater than 2 or 10 on a constant low fitness value. Best

solutions and best performances were reached with an

exponential and a linear fitness function (see Figure 3 on De

Jong’s function).

Fig 3: Effects on GA performance based on six fitness

functions on De Jong’s function

We decided to use the exponential fitness function. According

to this the individual fitness functions 𝐹𝐼 are as follows (see

Figure 4, Figure 5):

De Jong:

𝐹𝐼𝐷𝐽
 𝑥, 𝑦 = 𝑒−𝑓𝐷𝐽 (𝑥 ,𝑦) (9)

Schwefel:

𝐹𝐼𝑆
 𝑥1 , 𝑥2 = 𝑒(−0,01∗(𝑓𝑆 𝑥1 ,𝑥2 +𝑓𝑆 𝑥1

∗,𝑥2
∗))

𝑓𝑆 𝑥1
∗, 𝑥2

∗ = 837,9657744

(10)

By adding fS x1
∗, x2

∗ to FIS
(equation 10), we adjust the

fitness function to the range of possible values (search space).

By using 0.01 we define the lowering of FIS
within the search

space (see Figure 5).

Fig 4: Individual fitness function for De Jong’s function

Fig 5: Individual fitness function for Schwefel’s function

It is seen that we set a high selection pressure by the early

lowering of the fitness values. Ochoa et al. said that at a high

selection pressure a higher mutation rate should be used [21,

p. 321]. That is why we start the test scenarios with a high

mutation probability of 0.5. We assume, that mutation rate

above 0.5 is too destructive to achieve good results (compare

[13]).

The optimization target is an individual fitness value of 0.995

for De Jong’s and Schwefel’s function.

To investigate the effects, we perform scenarios only with

mutation and selection as genetic operators. This is called

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

35

native evolution (NE). We also investigate the effects by

using mutation, reproduction (crossover) and elitism (MCE).

The parameter sets for our test cases will be as follows:

Case 1 (Constant):

In this case the mutation rate is constant during the

optimization run. Therefore we use a set of seven possible

values to be tested: 0.001/0.01/0.02/0.05/0.1/0.2/0.5.

Case 2 (Fogarty):

In this case the mutation rate is decreasing during the

optimization run. The mutation probability for the first/initial

generation is 0.5. In all following generations we calculate the

mutation probability 𝑝𝑚as Fogarty [5] did (equation 11, 12).

Instead of 0.11375 we use 0.5.

Fogarty:

𝑝𝑚1
= 0.5

𝑝𝑚 𝑖
=

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+
0,5

2𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑖 = 2 …𝑛

(11)

(12)

Case 3 (Variable):

In this case the mutation rate is varying based on the

chromosome fitness 𝐹𝐶. The chromosome fitness based on an

exponential function is calculated as follows (13-16):

De Jong:

𝐹𝐶𝐷𝐽
 𝑥 = 𝑒−2∗𝑓𝐷𝐽 1 (𝑥)

𝐹𝐶𝐷𝐽
 𝑦 = 𝑒−2∗𝑓𝐷𝐽 2 (𝑦)

(13)

(14)

Schwefel:

𝐹𝐶𝑆
 𝑥1 = 𝑒(−0,02∗(𝑓𝑆1

 𝑥1 +𝑓𝑆 𝑥1
∗))

 𝑓𝑆 𝑥1
∗ = 418,9828872

𝐹𝐶𝑆
 𝑥2 = 𝑒(−0,02∗(𝑓𝑆2

 𝑥2)+𝑓𝑆 𝑥2
∗))

 𝑓𝑆 𝑥2
∗ = 418,9828872

(15)

(16)

In FCDJ
(13, 14) we use the factor of 2 to equalize the lowering

rate to the reduced search space of the single chromosome. In

FCS
(15, 16) we changed the factor from 0.01 to 0.02 to

equalize the lowering rate and replace fS x1
∗, x2

∗ by fS x1
∗

resp. fS x2
∗ to adjust the fitness function to the reduced

search space.

The chromosome fitness determines the mutation rate for a

specific chromosome. It is set high at low chromosome fitness

values and vice versa. The mutation probability of a

chromosome can vary between 0.5 and 0.001. To calculate the

specific mutation rate of a chromosome either a linear or an

exponential decreasing function is used (see Error!

Reference source not found.).

Fig 6: Used functions for decreasing mutation probability

The mutation rate is calculated as follows (17, 18):

linear:

pmc
= 0.5 − 0.499 ∗ FC (17)

exponential:

pmc
= 0.5 ∗ e(−6.2146∗FC) (18)

As it can be seen, the mutation probability is based on the

above mentioned maximum probability of 0.5 as well in the

linear decreasing function as in the exponential decreasing

one. To reach the minimum mutation probability of 0.001 at

the maximum chromosome fitness value of 1, a scaling is

done by a scaling factor of 0.499 in the linear function and a

scaling factor 6.2146 in the exponential function.

For De Jong’s and Schwefel’s functions the global minimum

will be reached, if each of its parts reaches its minimum. It

may be possible that this is not always the case, especially

then if the target criteria are interdependent. In these cases the

optimum is seen in a balance among the target criteria and the

optimal balance may lead to a low fitness value for the

chromosomes and in a consequence to unnecessary high

mutation rates. Therefore further investigation has to be done.

A solution might be to add a decreasing factor of e.g. 0.998 to

each generation to calculate the mutation rate (according to

Fogarty). This can additionally reduce the mutation rate

during optimization run.

The descriptions above lead to 40 test scenarios in total (see

Error! Reference source not found. and Table 2):

Table 1: Test scenarios on native evolution

Test-

Function
Scenarios on GA with native evolution

De Jong’s

function

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5)

Fogarty

Variable (linear)

Variable (exponential)

Schwefel’s

function

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5)

Fogarty

Variable (linear)

Variable (exponential)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

36

Table 2: Test scenarios on mutation, crossover and elitism

(MCE)

Test-

Function

Scenarios on GA with mutation,

crossover and elitism (MCE):

De Jong’s

function

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5)

Fogarty

Variable (linear)

Variable (exponential)

Schwefel’s

function

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5)

Fogarty

Variable (linear)

Variable (exponential)

These scenarios are distinguished between 4 variants based on

the two test functions and the used genetic operators (DF/NE,

DF/MCE, SF/NE, SF/MCE).

5. EXPERIMENTAL RESULTS
We calculated our test scenarios and measured the effects on

GA performance. Therefore we compared the number of

generations to find out which scenario needs the least number

of generations to reach the given fitness level. In the

following we describe our results in the test cases of De

Jong’s and Schwefel’s function (see Figures 7 – 10):

Fig 7: Results of variant DF/NE

Fig 8: Results of variant DF/MCE

Fig 9: Results of variant SF/NE

Fig 10: Results of variant SF/MCE

The constant mutation rates lead to a curve with a high

number of generations for low and high mutation rates. The

best performance for case 1 is reached at a mutation

probability in a range of 0.05 and 0.2.

Within our scenarios in case 2 (Fogarty) an acceptable GA

performance was reached. Most of the constant test scenarios

in case 1 reached a better performance. The lowering of the

population probability at the Fogarty scenarios might be too

fast when it is cut in nearly a half at each generation. Thus it

indicates a benefit that no hand-tune is needed. But it seems

that despite of that an adjustment to the specific problems is

necessary.

The scenarios in case 3 (Variable) lead to a better

performance with a linear decreasing mutation rate and a

worse performance with a exponential decreasing mutation

rate, compared with case 2 (Fogarty). We observed this for De

Jong’s and Schwefel’s function. It arises the question, why is

the linear decreasing of the mutation rate much better than the

decreasing with the exponential function. We assume that the

reason therefore can be seen in a too fast lowering of the

mutation probability in relation to the chromosome fitness

with the exponential decreasing function (see Figure 6).

In case 3 we also observed, that in 3 of 4 variants the linear

decreasing scenarios led to a better GA performance as it was

reached in scenarios with constant mutation rates (see Figure

7-10 and Table 3-4).

We cannot explain the fact, that GA performance with

variable mutation rate based on chromosome fitness with a

linear decreasing function is so good, in comparison with

constant and Fogarty scenarios. We assume that the reason for

this can be found in the splitting of the problem into parts and

therefore chromosome based individual mutation probabilities

lead to this effect. Further research on these aspects is

recommended.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

37

Table 3: Performance results of test scenarios on

De Jong’s function (mean value of 100,000 runs)

Test-Scenario DF/NE DF/MCE

Constant 0.001 478.4 180.9

Constant 0.01 61.6 32.9

Constant 0.02 37.4 23.3

Constant 0.05 23.4 16.7

Constant 0.1 22.1 14.5

Constant 0.2 39.2 15.5

Constant 0.5 203.4 31.8

Fogarty (0.5 – 0.001) 205.0 63.6

Variable (linear 0.5 – 0.001) 13.7 15.9

Variable (exponential 0.5 – 0.001) 248.9 92.6

Table 4: Performance results of test scenarios on

Schwefel’s function (mean value of 100,000 runs)

Test-Scenario SF/NE SF/MCE

Constant 0.001 ca.160,000 ca.150,000

Constant 0.01 1,246.3 1,635.2

Constant 0.02 307.1 466.3

Constant 0.05 69.8 112.4

Constant 0.1 44.5 55.0

Constant 0.2 133.0 45.3

Constant 0.5 4,080.0 252.2

Fogarty (0.5 – 0.001) ca.57,000 ca.53,500

Variable (linear 0.5 – 0.001) 19.1 27.3

Variable (exponential 0.5 – 0.001) 351.5 159.2

Figure 11 and 12 illustrate the resulting mutation rates during

the optimization run in case 2 and case 3 for De Jong’s and

Schwefel’s functions. As it can be seen, there is a constant

decreasing of mutation rate in the Fogarty scenario as well as

in the variable scenarios. The decreasing in Fogarty’s

scenarios is done by a factor in relation to the number of the

generation. Related to the variable mutation rate in case 3 we

assume that the decreasing is caused by convergence of the

population to an optimum in the optimization run.

Fig11: Resulting mutation rate during optimization run at

De Jong’s function

Fig 12: Resulting mutation rate during optimization run at

Schwefel’s function.

6. SUMMARY AND OUTLOOK
For a set of test scenarios and several test cases based on two

test functions, it was shown for a multi-chromosome

representation that decreasing mutation probability has a

positive effect on GA performance, as observed by

Hesser&Männer[6] or Fogarty [5]for single-chromosome

representation.

We introduced chromosome fitness as the fitness value of a

single chromosome in a multi-chromosome representation.

Thereby we used each single chromosome for representing the

different parts of the problem. Chromosome fitness

determines the individual mutation rate for each chromosome:

high mutation rate for chromosomes with worse fitness values

and low mutation rate for chromosomes with good fitness

values. Based on this, each chromosome can be optimized

with individual increments towards its individual target.

Thereby the GA performance was faster or in a very good

range in comparison to the scenarios with constant mutation

rates. Compared to the Fogarty scenarios it also performed

better.

For our approach it is also not necessary to hand-tune the

control parameter anymore. Hinterding’s approach reached

this by using self-adapting strategy [8]. But in our approach

there are no costs of self-adapting. Hinterding understood that

as the used time to perform a good mutation rate based on the

specific problem to be optimized. This is relevant for complex

problems as well as for problems with a long startup phase

(stabilizing) e.g. for optimization of production facilities.

In our future work we will test variable mutation rates based

on chromosome fitness on a complex problem. This will be

done on patients scheduling and sequencing problem in a

university hospital with several hospital departments, each of

them with individual targets and individual conditions. Based

on several considered wards, the simulation model will have a

long startup phase.

7. REFERENCES
[1] Holland, J. H. (1975). Adaption in natural and artificial

systems. An introd. analysis with applications to biology,

control, and artificial intelligence. Univ. of Michigan,

Ann Arbor.

[2] DeJong, K. A. (1975). A nalysis of the behavior of a

class of genetic adaptive. Ph.D. thesis, Univ. of

Michigan.

[3] Grefenstette, J. J. (1986). Optimization of control

parameters for genetic algorithms. IEEE Transactions on

Systems, Man and Cybernetics Vol. 16, No. 1, 122–128.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.17, June 2013

38

[4] Schaffer, J. D., Caruana, R. A., Eshelman, L. J., & Das,

R. (1989). A study of control parameters affecting online

performance of genetic algorithms for function

optimization. Proceedings of the Third International

Conference on Genetic Algorithms, 51–60.

[5] Fogarty, T. C. (1989). Varying the probability of

mutation in the genetic algorithm. Proceedings of the 3rd

International Conference on Genetic Algorithms, 104–

109.

[6] Hesser, J.,&Männer, R. (1991). Towards an Optimal

Mutation Probability for Genetic Algorithms.

Proceedings of 1st workshop : Parallel problem solving

from nature, 23–32.

[7] Bäck, T. (1992). Self-Adaption in Genetic Algorithms.

Proceedings of the 1st European Conference on Artificial

Life, 263–271.

[8] Hinterding, R. (1997). Self-adaptation using multi-

chromosomes. Proceedings of the IEEE International

Conference on Evolutionary Computation, Indianapolis,

87–91.

[9] Juliff, K. (1993). A multi-chromosome genetic algorithm

for pallet loading. Proceedings of the 5th International

Conference on Genetic Algorithms, 467–473.

[10] Cavill, R., Smith, S., & Tyrrell, A. (2005). Multi-

Chromosomal Genetic Programming. Proceedings of

Genetic and Evolutionary Computation Conference

(GECCO), Washington D.C., 1753–1759.

[11] Davidor, Y. (1991). Genetic Algorithms And Robotics -

A Heuristic Strategy For Optimization. World Scientific

Publishing Co. Pte. Ltd., Singapur.

[12] Bäck, T. (1993). Optimal mutation rates in genetic

search. Forrest, S. (Ed.), Proceedings of the 5th

International Conference on Genetic Algorithms, 2–8.

[13] Ochoa, G., Harvey, I., & Buxton, H. (1999). Error

thresholds and their relation to optimal mutation rates.

Floreano, J. et al. (Eds.) Proceedings of the Fifth

European Conference on Artificial Life Vol. 1674, 54–

63.

[14] Pierrot, H. J.,&Hinterding, R. (1997). Using multi-

chromosomes to solve a simple mixed integer problem.

Australian Joint Conference on Artificial Intelligence,

137–146.

[15] Nissen, V.,&Biethahn, J. (1999). Ein Beispiel zu

stochastischen Optimierung mittels Simulation und

einem Genetischen Algorithmus. In Simulation als

betriebliche Entscheidungshilfe. State ofthe Art und

neuere Entwicklungen; mit 20 Tabellen, J. Biethahn,

W.,Hummeltenberg, B., Schmidt, P.,Stähly T., & Witte,

Eds. Physica-Verl, Heidelberg, 108–125.

[16] Schwefel, H. P. (1975). Evolutionsstrategien und

numerische Optimierung. Dissertationsschrift,

TechnischeUniversität Berlin.

[17] Mitchell, M. (1996). An introduction to genetic

algorithms. MIT Press, Cambridge, London.

[18] Bäck, T. (1996). Evolutionary algorithms in theory and

practice. Evolution strategies, evolutionary

programming, genetic algorithms. Oxford Univ. Press,

New York.

[19] Goldberg, D. E. (2004). Genetic algorithms in search,

optimization, and machine learning. Addison-Wesley,

Reading, Mass.

[20] Pohlheim, H. (2000). Evolutionäre Algorithmen.

Verfahren, Operatoren und Hinweise für die Praxis.

VDI-Buch. Springer, Berlin.

[21] Ochoa, G., Harvey, I., & Buxton, H. (2000). Optimal

Mutation Rates and Selection Pressure in Genetic

Algorithms. Proceedings of Genetic and Evolutionary

Computation Conference, 315–322.

IJCATM : www.ijcaonline.org

