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ABSTRACT 

For genetic algorithms (GAs) researchers look for optimal 

control parameters, such as population size or mutation rate. 

Early research was carried out using constant control 

parameters to find optimal parameter values for GA. The 

findings are only specific to the considered problem and 

therefore not suitable to be generalized. In more recent 

research, it was shown that the convergence rate can be 

increased by adaptable control parameters, e.g. mutation rate 

can be varied during the optimization run. Better optimization 

results have been achieved. It was shown how control 

parameters can be varied by self-adapting algorithms. The 

control parameters are coded within the chromosome to make 

them independent from the optimization problem. 

In newer researches, multi-chromosome representations have 

been used to decompose complex problems into a number of 

simpler sub-problems. Each part of the problem is represented 

by a separate chromosome with individual representation.  

Fitness values have been used to measure how good an 

individual fits with its environment (target criteria). 

This paper investigates the effects on GA performance or the 

optimization results by balancing control parameters to the 

fitness of a chromosome (chromosome fitness). 

Further it is investigated how mutation rate can be varied by 

chromosome fitness and whether this affects the optimization 

performance of the GA or the optimization results. 

Keywords 
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1. INTRODUCTION 
In 1975 Holland published a framework on genetic 

algorithms[1]. Today GAs are used for optimization of 

diverse problems in various domains. For today’s more 

complex problems, to better represent reality, heuristics like 

GAs have increased in importance. 

Basic problems in using GAs are questions of genetic 

representation, e.g. binary/real coded, single-

/multi-chromosome and the question of the optimal values for 

the control parameters, e.g. population size, reproduction and 

mutation rates. 

DeJong[2], Grefenstette[3]and Schaffer et al. [4]have been 

focusing finding optimal control parameters for specific 

applications. The results cannot be generalized for other 

problem areas. 

Fogarty[5] andHesser&Männer[6]have used variable 

parameter constellations by varying the control parameters 

during optimization run. Bäck[7]and Hinterding[8]take aware 

of it within the genetic representation itself (self-adapting), to 

get the parameters independent from the problem. 

Newer researches by Juliff[9], Cavill[10]and Davidor[11]on 

GAs work with multi-chromosome representation to solve 

more complex problems. They show it is possible to 

decompose a complex problem into a number of simpler parts. 

Each part of the problem is represented by a separate 

chromosome andeach chromosome can use a different 

representation.  

To measure the quality of the found solution, each individual 

is computed by a so called fitness function. These fitness 

values determine e.g. the probability that an individual is 

chosen for reproduction or mutation and becomes a part of the 

new population. By doing this, better individuals could be 

selected more often and could lead to a population with better 

individuals (solutions). 

By using multi-chromosome representation it might be 

possible to define target criteria for each part (chromosome) 

of the problem. A fitness function, which rates a single 

chromosome within a multi-chromosome representation, is 

called “chromosome fitness”. In case that each chromosome is 

rated, it is possible that one part of the problem has a high 

fitness value and another one is low. Keeping in mind, that 

parts of the problem can influence each other, it might be 

possible to concentrate optimization on the inferior parts and 

less on the good ones. This might lead to better GA 

performance and better optimization results. 

This paper is going to analyzes how the mutation rate can be 

varied, as a function of chromosome fitness and its 

contribution to the optimization performance. 

The paper first analyzes existing research in this area, 

describes the methodology of optimization and testing, the 

characteristics of GA and includes a list of the test scenarios 

(including the used test functions). Chromosome fitness and 

its use to determine mutation probability is explained. The 

results of the investigations are summarized. 

2. CURRENT STAGE OF 

DEVELOPMENT 
Researchers focused on optimal control parameter for specific 

problems. Usually they used common problems such as De 

Jong’s or Schwefel’s functions for test cases and for 

comparing their results. De Jong[2], Grefenstette[3], Schaffer 

et al. [4] are some of the researchers who also searched for 
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optimal control parameter on single-chromosome 

representation. In his early work De Jong [2]showed that 

mutation rates can have a destructive characteristic. If the 

mutation rate is too high, search is like a random search, 

regardless of other parameter settings. Based on his 

experiments, De Jong suggested optimal values for six control 

parameters, e.g. population size of 50-100 individuals, a 

mutation probability of 0.001 per bit (bit-flip) and single-point 

crossover at a rate of 0.6. His parameter set has been used in 

many GA implementations. Grefenstette[3]designed a 

secondary Meta-GA to tune the optimal control parameters for 

the primary GA. In his test scenario he performed five 

numerical test functions on six control parameters. The 

Meta-GA used De Jong’s parameter set. Grefenstette 

confirmed several observations made by De Jong. 

Furthermore he found, that: “…the performance of GAs 

appears to be a nonlinear function on the control parameters” 

[3, p. 127]. He showed that a large generation gap as well as 

the elitist selection strategy (elitism) in general improved 

performance. Also: “In small populations (20 to 40) 

structures, good online performance is associated with either a 

high crossover rate combined with a low mutation rate or a 

low crossover rate combined with a high mutation rate.”[3, p. 

127]. Grefenstette said that mutation rate above 0.05 is in 

general harmful for the optimal performance of GAs[3, p. 

127]. He also suggested optimal control parameters e.g. 

population size of 30 individuals, a mutation rate of 0.01 and 

for two-point crossover a rate of 0.95 (along with his test 

suite). 

Schaffer et al. [4]performed a systematical test on control 

parameters affecting the performance of GAs. Therefore 10 

test functions (including five functions of De Jong) were used 

with 6 population sizes, 10 crossover rates and 7 mutation 

rates. It was observed, that there is a greater sensitivity of the 

GA performance to mutation rate than to crossover rate. This 

seems to be independent from the tested functions. The 

optimal parameter setting was nearly the same as that of 

Grefenstette. For example the optimal mutation rate was seen 

between 0.005 and 0.01, optimal crossover rate in a range of 

0.75-0.95 and a population size of 20-30 individuals [4, p. 

55]. 

The tests produced different optimal parameter sets for 

different problems. Optimal control parameters seem to be 

dependent on each other (e.g. population size to mutation 

rate), on the genetic representation and on the problem to be 

optimized. 

Usually the probability of mutation is constant throughout the 

optimization run. Fogarty [5] was the first to use a variable 

mutation rate. In his work different variants of the distribution 

of mutation probability were compared: (1) constant low 

probability over generations, (2) probability of 0.5 in initial 

population followed by constant low probability, (3) 

exponential decreasing probability, (4) constant probability 

across the bit representation of integers, (5) exponential 

increasing probability across the bit representation of integers. 

Summarizing he states, that varying mutation probability 

significantly improves performance [5, p. 108].  

Hesser&Männer[6], Bäck[7]and also Bäck[12]investigated 

variable mutation rates. In those works mutation rates mainly 

depend on the genotype length and/or the population size. 

Hesser&Männer[6] showed that mutation probability should 

be decreased during convergence, in agreement with the 

results of Fogarty. The benefit of variable mutation rates is 

seen in a high spreading of individuals in the search room on a 

high mutation rate at the beginning. But a high mutation rate 

is destructive [13, p. 56]. Therefore it is the consent that the 

mutation rate should be decreased during convergence [5][6]. 

Furthermore Bäck[7] researched on optimal mutation rates on 

Schwefel’s and De Jong’s functions. His approach showed 

how a GA is able to optimize the mutation rate by itself 

during the optimization run (self-adapting). Therefore the 

mutation rate is taken into the genetic representation of the 

individuals. 

The above mentioned researches on variable or self-adapting 

control parameters focused on a single-chromosome 

representation. In this paper we focus on a multi-chromosome 

representation. 

Pierrot&Hinterding[14] showed that mutation and crossover 

rates need an adaption in regard to the number of 

chromosomes. They furthermore indicated, that: “…a steady 

mutation of one variable per chromosome gives a better result 

than the average of one mutated variable per chromosome.” 

[14, p. 144]. 

Hinterding[8] investigated on self-adapting GAs using a 

multi-chromosome representation. He added an extra 

chromosome for a numeric representation of crossover and 

mutation probability [8, p. 88]. It was demonstrated, that a GA 

that uses self-adaption, gives better results. But for easier 

problems, that only need a few generations, no improvements 

could be realized [8, p. 90]. The reason for this is that several 

generations are necessary to perform a good mutation rate 

(costs of self-adapting). But self-adapting leads to better 

results on complex problems and there is no need for 

hand-tune parameters. 

3. METHODOLOGY OF TESTING 
Mutation is the most sensitive control operator with high 

impact on efficient convergence of GA [4, p. 59][12, p. 7]. To 

investigate the effects of variable mutation rates, we define 

test cases on a set of test-functions (problems to be 

optimized). The optimization follows in a loop, as shown in 

Figure 1. The loop will be done as long as the wanted quality 

of measures is not reached. 

Fig 1: Optimization of a simulation model [15, p. 4]1 

 

For optimization purpose (optimization method) we use a GA 

with multi-chromosome representation. We considered the 

general sequence of action for a GA, as it is shown in Figure 2 

(basic literature on GA: [1][16][17][18][19]). 
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Fig 2: General sequence of actions for our genetic 

algorithm (based on [20, p. 9]2) 

 

 

Following this, every individual of the population is rated by a 

fitness value. After selection in our approach either 

recombination OR mutation is carried out to create a new 

individual. This is necessary to assure that mutation is based 

on fitness value. Usually crossover is done first and upon this 

mutation. Thus, a new individual is created in the moment 

crossover is done. For mutation purpose the (before) 

calculated fitness value associated to the parent individual 

cannot be used to determine mutation rate for the new 

individual. 

We define several test scenarios which will be simulated. For 

simulation purpose we use MLDesigner on an Intel i5 M430 

2.27 GHz CPU running MS Windows 8. 

Each test scenario is performed 100,000 times. We measure 

the number of generations it takes to reach a specific fitness 

value. For later comparison and to see whether there is an 

effect on performance using variable mutation rates, we 

calculate the mean value over all runs to compare which 

scenario finds the peak with the least number of generations. 

4. CHARACTERISTICS OF GA AND 

TEST SCENARIOS 
The initial population is set up at random and contains 20 

individuals. Each individual is binary coded. As shown in 

figure 2 each individual is rated according to a fitness 

function. 

After having created the initial population and according to 

the general sequence in Figure 2, the next step will be to 

select parent individuals based on their individual fitness 

value (selection) to perform genetic operation as mutation or 

crossover. 

Selection is a genetic operator, which controls the search 

direction in the search space. As mentioned above, it 

determines which parents can pass their gens to a child. 

Individuals with better genetic material (higher fitness value) 

are more likely selected. During several iterations, the 

children population converges to an optimum. To prevent 

stagnation at a local optimum, it is important to keep the 

population variety sufficient and the genetic material diverse. 

Therefore parent individuals with low fitness value should 

also be selectable. This keeps the population “alive”. In our 

algorithm this is realized through normalization of fitness 

values of each individual according to the parent population. 

Based on this individuals are selected at random (“Roulette 

Wheel” strategy (see [17, p. 124 f.]). Thus, individuals with 

high fitness value are more likely selected and individuals 

with low fitness value can also be selected. 

Crossover (recombination) is done by one-point crossover 

strategy (see [17, p. 128 f.]on crossover). We keep the 

                                                                 

 

crossover probability 𝑝𝑐constantly at 0.6. De Jong [2] 

described this value as the best one in relation to his work. 

Mutation rates are usually constant during the whole 

optimization run and so it is equal for each individual (see 

[17, p. 129 f.]. In our approach we use a variable mutation rate 

as a function of number of generations and what we call 

chromosome fitness. Mutation is always done by bit-flip and 

it happens at each bit position with probability 𝑝𝑚 . The reason 

for this is, the little length of chromosomes in our 

representation in combination with low mutation probabilities 

like 𝑝𝑚=0.001. 

Finally we use elitism, which is a selection method that forces 

the GA (only) to pass the best individual without any changes 

to the next generation (see [17, p. 124 f.] on elitism). 

Otherwise such an individual can be destroyed and be lost for 

the population. 

In the following we define three test cases and two test-

functions (problems) which should be optimized. As a 

consequence of this several test-scenarios will be performed: 

Case 1 (Constant):   

Multi-chromosome representation - mutation rate is constant,  

Case 2 (Fogarty): 

Multi-chromosome representation - mutation rate is 

decreasing during the optimization run in the same for all 

chromosomes, 

Case 3 (Variable): 

Multi-chromosome representation - mutation rate is variable 

during the optimization run for each chromosome and is based 

on the chromosome fitness. 

 

As test functions we use De Jong’s (1) and Schwefel’s 

function (2). 

De Jong’s function (DF): 

 

fDJ  x, y = x² + y² 

−4 ≤ x, y ≤ 4 

(1) 

 

Schwefel’s function (SF): 

𝑓𝑆 𝑥  =   −𝑥𝑖 ∗ sin(  𝑥𝑖 

𝑛

𝑖=1

 

−500 ≤  𝑥𝑖 ≤ 500 

𝑛 ∈ 𝑁;  𝑥∗     = (𝑥1,
∗ 𝑥2

∗,𝑥3
∗, … , 𝑥𝑛

∗) 

 

(2) 

 

For these functions the minima are known as follows (3, 4): 

 

𝑓𝐷𝐽  𝑥
∗, 𝑦∗ = 0 

at: 𝑥∗ = 0; 𝑦∗ = 0 

 

𝑓𝑆 𝑥
∗      = −𝑛 ∗ 418,9828872 

 at   𝑥𝑖
∗ = 420.968746  ∀𝑖 

𝑛 ∈ 𝑁;  𝑥∗     = (𝑥1,
∗ 𝑥2

∗, 𝑥3
∗, … , 𝑥𝑛

∗) 

(3) 

 

(4) 

 

For both test functions each of the variables should be 

represented by a separate chromosome and therefore we 

implement the GA as haploid multi-chromosome 

representation with two chromosomes. Therefore we split 
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each problem into two parts. Because both functions are sum 

functions, it can easily be done as follows: 

For De Jong’s function the parts are (5, 6): 

 

𝑓𝐷𝐽1
= 𝑥2, 

 

𝑓𝐷𝐽2
= 𝑦2. 

(5) 

 

(6) 

 

Thus x is represented by the first chromosome and y is 

represented by the second chromosome. 

For Schwefel’s function the parts are (7, 8): 

 

 𝑓𝑆1
 𝑥1 = −𝑥1 ∗ sin(  𝑥1 ), 

 

 𝑓𝑆2
 𝑥2 = −𝑥2 ∗ sin(  𝑥2 ). 

(7) 

 

(8) 

 

Thus the first chromosome represents x1 and the second one 

x2. 

For De Jong’s function each chromosome has 13 bits, caused 

by a possible input value with 3 fractional digits to enlarge the 

granularity of the search space. For Schwefel’s function each 

chromosome has 17 bits, caused by a possible input value 

with 2 fractional digits for the same reason. 

In this paper we distinguish between the fitness of an 

individual 𝐹𝐼and the fitness of a chromosome 𝐹𝐶. The 

individual fitness determines the goodness of the individual 

(solution) as a whole and determines the probability that a 

parent individual is selected for mutation, reproduction or 

elitism. The chromosomal fitness is the fitness value of a part 

of an individual (a chromosome) and we use it to determine 

the variable mutation rate for this specific chromosome in 

case that the individual is selected for mutation. 

We tested a set of fitness functions before (e.g. exponential, 

linear, square root) to see which is suitable best for a defined 

fitness level to be reached. At some fitness functions we set a 

limit to 2 or to 10. So the fitness function sets all values which 

were greater than 2 or 10 on a constant low fitness value. Best 

solutions and best performances were reached with an 

exponential and a linear fitness function (see Figure 3 on De 

Jong’s function). 

 

 

Fig 3: Effects on GA performance based on six fitness 

functions on De Jong’s function 

 

We decided to use the exponential fitness function. According 

to this the individual fitness functions 𝐹𝐼 are as follows (see 

Figure 4, Figure 5): 

 

De Jong:  

 

𝐹𝐼𝐷𝐽
 𝑥, 𝑦 = 𝑒−𝑓𝐷𝐽 (𝑥 ,𝑦) (9) 

 

Schwefel: 

 

𝐹𝐼𝑆
 𝑥1 , 𝑥2 = 𝑒(−0,01∗(𝑓𝑆  𝑥1 ,𝑥2 +𝑓𝑆 𝑥1

∗,𝑥2
∗ )) 

𝑓𝑆 𝑥1
∗, 𝑥2

∗ = 837,9657744 

(10) 

 

 

By adding fS x1
∗, x2

∗ to  FIS
(equation 10), we adjust the 

fitness function to the range of possible values (search space). 

By using 0.01 we define the lowering of FIS
within the search 

space (see Figure 5). 

 

 

Fig 4: Individual fitness function for De Jong’s function 

 

 

Fig 5: Individual fitness function for Schwefel’s function 

 

It is seen that we set a high selection pressure by the early 

lowering of the fitness values. Ochoa et al. said that at a high 

selection pressure a higher mutation rate should be used [21, 

p. 321]. That is why we start the test scenarios with a high 

mutation probability of 0.5. We assume, that mutation rate 

above 0.5 is too destructive to achieve good results (compare 

[13]). 

The optimization target is an individual fitness value of 0.995 

for De Jong’s and Schwefel’s function. 

To investigate the effects, we perform scenarios only with 

mutation and selection as genetic operators. This is called 
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native evolution (NE). We also investigate the effects by 

using mutation, reproduction (crossover) and elitism (MCE). 

The parameter sets for our test cases will be as follows: 

Case 1 (Constant): 

In this case the mutation rate is constant during the 

optimization run. Therefore we use a set of seven possible 

values to be tested: 0.001/0.01/0.02/0.05/0.1/0.2/0.5.  

 

Case 2 (Fogarty): 

In this case the mutation rate is decreasing during the 

optimization run. The mutation probability for the first/initial 

generation is 0.5. In all following generations we calculate the 

mutation probability 𝑝𝑚as Fogarty [5] did (equation 11, 12). 

Instead of 0.11375 we use 0.5. 

Fogarty: 

𝑝𝑚1
= 0.5 

 

𝑝𝑚 𝑖
=

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+
0,5

2𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑛𝑢𝑚𝑏𝑒𝑟
 

𝑖 = 2 …𝑛 

 

(11) 

 

 

(12) 

 

Case 3 (Variable): 

In this case the mutation rate is varying based on the 

chromosome fitness 𝐹𝐶. The chromosome fitness based on an 

exponential function is calculated as follows (13-16): 

De Jong: 

 

𝐹𝐶𝐷𝐽
 𝑥 = 𝑒−2∗𝑓𝐷𝐽 1 (𝑥) 

 

𝐹𝐶𝐷𝐽
 𝑦 = 𝑒−2∗𝑓𝐷𝐽 2 (𝑦) 

(13) 

 

(14) 

 

 

Schwefel: 

 

𝐹𝐶𝑆
 𝑥1 =  𝑒(−0,02∗(𝑓𝑆1

 𝑥1 +𝑓𝑆 𝑥1
∗ )) 

 𝑓𝑆 𝑥1
∗ = 418,9828872 

 

𝐹𝐶𝑆
 𝑥2 =  𝑒(−0,02∗(𝑓𝑆2

 𝑥2 )+𝑓𝑆  𝑥2
∗ )) 

 𝑓𝑆 𝑥2
∗ = 418,9828872 

(15) 

 

 

 

(16) 

 

 

In FCDJ
(13, 14) we use the factor of 2 to equalize the lowering 

rate to the reduced search space of the single chromosome. In 

FCS
(15, 16) we changed the factor from 0.01 to 0.02 to 

equalize the lowering rate and replace fS x1
∗, x2

∗  by fS x1
∗  

resp. fS x2
∗  to adjust the fitness function to the reduced 

search space. 

The chromosome fitness determines the mutation rate for a 

specific chromosome. It is set high at low chromosome fitness 

values and vice versa. The mutation probability of a 

chromosome can vary between 0.5 and 0.001. To calculate the 

specific mutation rate of a chromosome either a linear or an 

exponential decreasing function is used (see Error! 

Reference source not found.). 

 

Fig 6: Used functions for decreasing mutation probability 

 

The mutation rate is calculated as follows (17, 18):  

 

linear: 

 

pmc
= 0.5 − 0.499 ∗ FC  (17) 

 

exponential: 

 

pmc
= 0.5 ∗ e(−6.2146∗FC ) (18) 

 

As it can be seen, the mutation probability is based on the 

above mentioned maximum probability of 0.5 as well in the 

linear decreasing function as in the exponential decreasing 

one. To reach the minimum mutation probability of 0.001 at 

the maximum chromosome fitness value of 1, a scaling is 

done by a scaling factor of 0.499 in the linear function and a 

scaling factor 6.2146 in the exponential function. 

For De Jong’s and Schwefel’s functions the global minimum 

will be reached, if each of its parts reaches its minimum. It 

may be possible that this is not always the case, especially 

then if the target criteria are interdependent. In these cases the 

optimum is seen in a balance among the target criteria and the 

optimal balance may lead to a low fitness value for the 

chromosomes and in a consequence to unnecessary high 

mutation rates. Therefore further investigation has to be done. 

A solution might be to add a decreasing factor of e.g. 0.998 to 

each generation to calculate the mutation rate (according to 

Fogarty). This can additionally reduce the mutation rate 

during optimization run. 

The descriptions above lead to 40 test scenarios in total (see 

Error! Reference source not found. and Table 2): 

 

Table 1: Test scenarios on native evolution 

Test-

Function 
Scenarios on GA with native evolution 

De Jong’s 

function 

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5) 

Fogarty 

Variable (linear) 

Variable (exponential) 

Schwefel’s 

function 

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5) 

Fogarty 

Variable (linear) 

Variable (exponential) 
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Table 2: Test scenarios on mutation, crossover and elitism 

(MCE) 

Test-

Function 

Scenarios on GA with mutation, 

crossover and elitism (MCE): 

De Jong’s 

function 

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5) 

Fogarty 

Variable (linear) 

Variable (exponential) 

Schwefel’s 

function 

Constant (0.001/0.01/0.02/0.05/0.1/0.2/0.5) 

Fogarty 

Variable (linear) 

Variable (exponential) 

 

These scenarios are distinguished between 4 variants based on 

the two test functions and the used genetic operators (DF/NE, 

DF/MCE, SF/NE, SF/MCE). 

5. EXPERIMENTAL RESULTS 
We calculated our test scenarios and measured the effects on 

GA performance. Therefore we compared the number of 

generations to find out which scenario needs the least number 

of generations to reach the given fitness level. In the 

following we describe our results in the test cases of De 

Jong’s and Schwefel’s function (see Figures 7 – 10): 

 

 

Fig 7: Results of variant DF/NE 

 

 

Fig 8: Results of variant DF/MCE 

 

 

Fig 9: Results of variant SF/NE 

 

 

Fig 10: Results of variant SF/MCE 

The constant mutation rates lead to a curve with a high 

number of generations for low and high mutation rates. The 

best performance for case 1 is reached at a mutation 

probability in a range of 0.05 and 0.2. 

Within our scenarios in case 2 (Fogarty) an acceptable GA 

performance was reached. Most of the constant test scenarios 

in case 1 reached a better performance. The lowering of the 

population probability at the Fogarty scenarios might be too 

fast when it is cut in nearly a half at each generation. Thus it 

indicates a benefit that no hand-tune is needed. But it seems 

that despite of that an adjustment to the specific problems is 

necessary. 

The scenarios in case 3 (Variable) lead to a better 

performance with a linear decreasing mutation rate and a 

worse performance with a exponential decreasing mutation 

rate, compared with case 2 (Fogarty). We observed this for De 

Jong’s and Schwefel’s function. It arises the question, why is 

the linear decreasing of the mutation rate much better than the 

decreasing with the exponential function. We assume that the 

reason therefore can be seen in a too fast lowering of the 

mutation probability in relation to the chromosome fitness 

with the exponential decreasing function (see Figure 6). 

In case 3 we also observed, that in 3 of 4 variants the linear 

decreasing scenarios led to a better GA performance as it was 

reached in scenarios with constant mutation rates (see Figure 

7-10 and Table 3-4). 

We cannot explain the fact, that GA performance with 

variable mutation rate based on chromosome fitness with a 

linear decreasing function is so good, in comparison with 

constant and Fogarty scenarios. We assume that the reason for 

this can be found in the splitting of the problem into parts and 

therefore chromosome based individual mutation probabilities 

lead to this effect. Further research on these aspects is 

recommended. 
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Table 3: Performance results of test scenarios on  

De Jong’s function (mean value of 100,000 runs) 

Test-Scenario DF/NE DF/MCE 

Constant 0.001 478.4 180.9 

Constant 0.01 61.6 32.9 

Constant 0.02 37.4 23.3 

Constant 0.05 23.4 16.7 

Constant 0.1 22.1 14.5 

Constant 0.2 39.2 15.5 

Constant 0.5 203.4 31.8 

Fogarty (0.5 – 0.001) 205.0 63.6 

Variable (linear 0.5 – 0.001) 13.7 15.9 

Variable (exponential 0.5 – 0.001) 248.9 92.6 

 

Table 4: Performance results of test scenarios on 

Schwefel’s function (mean value of 100,000 runs)  

Test-Scenario SF/NE SF/MCE 

Constant 0.001 ca.160,000 ca.150,000 

Constant 0.01 1,246.3 1,635.2 

Constant 0.02 307.1 466.3 

Constant 0.05 69.8 112.4 

Constant 0.1 44.5 55.0 

Constant 0.2 133.0 45.3 

Constant 0.5 4,080.0 252.2 

Fogarty (0.5 – 0.001) ca.57,000 ca.53,500 

Variable (linear 0.5 – 0.001) 19.1 27.3 

Variable (exponential 0.5 – 0.001) 351.5 159.2 

Figure 11 and 12 illustrate the resulting mutation rates during 

the optimization run in case 2 and case 3 for De Jong’s and 

Schwefel’s functions. As it can be seen, there is a constant 

decreasing of mutation rate in the Fogarty scenario as well as 

in the variable scenarios. The decreasing in Fogarty’s 

scenarios is done by a factor in relation to the number of the 

generation. Related to the variable mutation rate in case 3 we 

assume that the decreasing is caused by convergence of the 

population to an optimum in the optimization run. 

 

 

Fig11: Resulting mutation rate during optimization run at 

De Jong’s function 

 

 

Fig 12: Resulting mutation rate during optimization run at 

Schwefel’s function. 

 

6. SUMMARY AND OUTLOOK 
For a set of test scenarios and several test cases based on two 

test functions, it was shown for a multi-chromosome 

representation that decreasing mutation probability has a 

positive effect on GA performance, as observed by 

Hesser&Männer[6] or Fogarty [5]for single-chromosome 

representation. 

We introduced chromosome fitness as the fitness value of a 

single chromosome in a multi-chromosome representation. 

Thereby we used each single chromosome for representing the 

different parts of the problem. Chromosome fitness 

determines the individual mutation rate for each chromosome: 

high mutation rate for chromosomes with worse fitness values 

and low mutation rate for chromosomes with good fitness 

values. Based on this, each chromosome can be optimized 

with individual increments towards its individual target. 

Thereby the GA performance was faster or in a very good 

range in comparison to the scenarios with constant mutation 

rates. Compared to the Fogarty scenarios it also performed 

better. 

For our approach it is also not necessary to hand-tune the 

control parameter anymore. Hinterding’s approach reached 

this by using self-adapting strategy [8]. But in our approach 

there are no costs of self-adapting. Hinterding understood that 

as the used time to perform a good mutation rate based on the 

specific problem to be optimized. This is relevant for complex 

problems as well as for problems with a long startup phase 

(stabilizing) e.g. for optimization of production facilities.  

In our future work we will test variable mutation rates based 

on chromosome fitness on a complex problem. This will be 

done on patients scheduling and sequencing problem in a 

university hospital with several hospital departments, each of 

them with individual targets and individual conditions. Based 

on several considered wards, the simulation model will have a 

long startup phase. 
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