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ABSTRACT 

The primary issue involved in image and signal 

processing is to efficiently remove noise from a digital color 

image while preserving its features. A fuzzy filter is presented 

for the reduction of additive noise for digital color images. 

The filter consists of two sub filters. The first sub filter 

computes fuzzy distances among the color components of the 

central pixel and its neighborhood. These distances decide in 

what extent each component should be corrected.  The 

objective of the second sub filter is to calculate the color 

components differences to retain the fine details of the image. 

One distance measure as the Minkowski’s distance and other 

as the Absolute distance are selected and compared their 

performances using Peak Signal to Noise Ratio  PSNR .  In 

this paper the performance of the fuzzy noise filter with two 

distance measures is compared by changing the noise ratio 

and window size. 

Keywords 

Absolute distance, Additive noise, fuzzy filter, fuzzy rule-

based systems, Minkowski’s distance. 

1. INTRODUCTION: 
To carry and transfer information images are one of 

the most important tools. The research field of image 

processing not only comprehends technologies for capture and 

transfer images, but also techniques to anatomize these 

images. Image processing is a growing research field. Images 

have always played an important and essential role in human 

life, not only as a way to communicate, but also for other 

applications like scientific, commercial, military and 

industrial. In this paper we will focus on a technique that 

removes noise from color images using fuzzy logic. 

 Especially there are three types of noise exist: 

Gaussian noise, Salt & pepper noise, Speckle noise. Gaussian 

noise is statistical noise that has a probability density function 

of the normal distribution (also known as Gaussian 

distribution). It is most commonly used as additive white 

Gaussian noise (AWGN). Salt & pepper noise itself as 

randomly occurring white and black pixels. A noise reduction 

method which uses a median filter is suitable for salt & 

pepper noise reduction. This type of noise can be described as 

dark pixels on bright background and bright pixels on dark 

background.  Images corrupt with Salt and pepper noise when 

quick transients, such as faulty switching, take place. Speckle 

noise is also known as multiplicative noise, i.e. the gray levels 

of speckle noisy pixels are in direct proportion to the local 

gray levels in any area of an image.  

Distance computation plays an important role in removal of 

noise from color images. The distance among two couples is 

calculated according to the Minkowski’s and absolute 

distances. To calculate scaling factors of the filter Takagi-

sugeno fuzzy model is used. In this method three 2-D 

distances (distance between red–green, red–blue, and green–

blue) along with three fuzzy rules are used to compute the 

scaling factors. The concept behind evolution of fuzzy rules is 

to assign large scaling factors to the neighbors that have 

similar colors as the centre pixel.  

 Fuzzy set theory and fuzzy logic [1] offer us 

powerful tools to describe and process human knowledge. 

Some of the fuzzy filters designed earlier for noise reduction 

are a new fuzzy filter for image enhancement  [2], noise 

adaptive soft switching median filter  [3], noise reduction by 

fuzzy image filtering [4], fuzzy two-step color filter [5], a 

fuzzy impulse noise detection and reduction method [6], and 

so on. The different methods using fuzzy filters for reduction 

of noise are explained in the literature [7]-[9]. Most of these 

state-of-art methods are mainly developed for the reduction of 

fat-tailed noise like impulse noise. These filters are able to 

outperform rank-order techniques (such as median based 

filters). Nevertheless, most of the current fuzzy techniques do 

not produce convincing results for additive noise, which is 

illustrated in [10], [11]. Another shortcoming of the current 

methods is that most of these filters are especially developed 

for grayscale images. It is, of course, possible to extend these 

filters to color images. However, this introduces many 

artifacts, especially on edge or texture elements. Therefore, 

this paper presents a new and simple fuzzy technique for 

filtering color images corrupted with narrow-tailed and 

medium narrow-tailed noise (e.g., Gaussian noise) without 

introducing these artifacts.  

 A digital color image (denoted as X ) can be 

represented by using a certain color space (e.g., RGB, HSV, 

L*a*b*). The most commonly used color space is called 

―RGB,‖ which has one overwhelmingly important 

characteristic i.e., every scanner and digital camera can 

produce images with RGB-encoded color. And also every 

image-handling device and color-aware application can 

handle images with RGB-encoded color. It is the official 

default color space for the World Wide Web. Colors in the 

RGB model are represented by a 3-D vector, with the first 
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vector element being the red, the second being the green and 

the third being the blue, respectively. The red, green and blue 

components are called the three primary components, each 

component is quantized to the range [0,  2 1]
m
 . In practice, 

a digital color image X  can be represented by a 2-D array of 

vectors where an address  ,k l defines a position in X , 

called a pixel or picture element. If  , ,1X k l  denotes the 

red component,  , , 2X k l  the green component and 

 , , 3X k l  the blue component of a pixel at position  ,k l  

in an (noise-free) image X , then we can denote the noisy 

color image NI at position  ,k l  as follows: 

 

     

        

, ,1  , , 2  , , 3  = 

, ,1  , , 2  , , 31 2 3     

  

  

NI k l NI k l NI k l

X k l X k l X k l     (1)                                                                 
 

 With 1 , 2  and 3  three separate randomly 

Gaussian distributed values with means  ,   and 1 2 3    

and standard deviations   ,  and 
1 2 3

   , respectively. NI

is the color image that is corrupted with additive white 

Gaussian noise. 

2. FIRST SUBFILTER WITH FUZZY 

RULES: 

While capturing or transmission of images the effect of noise 

may degrade the quality of the image so it is desirable to 

perform some sort of noise reduction on an image. The 

general idea for noise reduction is to average a pixel using 

other pixel values from its neighborhood, but simultaneously 

take into account the important image structures such as edges 

and color component distances, which should not be 

destroyed by the filter. The goal of the first subfilter of is to 

discriminate between local variations due to noise and due to 

image structures such as edges. This is realized by using the 

color component distances instead of component differences 

as done in most current filters. For example, to filter a certain 

red component at position  ,k l , we use the distances 

between red–green and red–blue of a certain neighborhood 

centered at  ,k l  instead of  just a neighborhood in the red 

component array. The difference between this new proposed 

filter and other vector based approaches as [12]–[13] is that 

we do not calculate the 3-D distances between pixels 

(distances between two pixels where a pixel is considered as a 

vector), but we use three 2-D distances (distances between 

red–green, red–blue, and green–blue) together with three 

fuzzy rules to calculate the weights used for the Takagi–

Sugeno fuzzy model [14] explained in the next section. 

 

 

2.1 Distance determination: 

 The red, green, and blue component at a certain 

pixel position of a noisy input image NI is denoted as

 , ,1NI k l ,  , , 2NI k l  and  , , 3NI k l , respectively. So, 

for each pixel position, we have three components that define 

the color. For each pixel position  ,k l  we define the 

following pairs: the pair red and green denoted as 

      ,   k,l,1 , , , 2RG k l NI NI k l  the pair red and blue 

denoted as       ,   k,l,1 , , , 3RB k l NI NI k l  and the 

pair green and blue denoted as

      ,   k,l,2 , , , 3GB k l NI NI k l . To filter the current 

image pixel, we use a window of size  2 1I ×  2 1I  

centered at position  ,k l . Next we assigned certain scaling 

factors to each of the pixels in the window. The scaling 

factors  , ,1w k i l j  ,  , , 2w k i l j   and 

 , ,3w k i l j    are for the red, green and blue 

components at position  ,k i l j   respectively. These 

scaling factors are assigned according to the following fuzzy 

rules, where a Takagi-sugeno fuzzy model [10] was used. 

Fuzzy rule 1: The first fuzzy rule defines the weight 

 , ,1 w k i l j  for the red component of the neighbor

 , ,1 NI k i l j , i.e. 

IF the distances are small between the pairs

 ,RG k l ,  , RG k i l j  and  ,RB k l , 

 , RB k i l j THEN the scaling factor  , ,1 w k i l j  

is large. 

Fuzzy rule 2: The second fuzzy rule defines the weight 

 , , 2 w k i l j for the green component of the neighbor

 , , 2 NI k i l j , i.e. 

IF the distances are small between the pairs

 ,RG k l ,  , RG k i l j  and  ,GB k l , 

 , GB k i l j THEN the scaling factor  , , 2 w k i l j  

is large. 

Fuzzy rule 3: The third fuzzy rule defines the weight 

 , ,3 w k i l j  for the blue component of the neighbor

 , , 3 NI k i l j , i.e. 

 

IF the distances are small between the pairs

 ,RB k l ,  , RB k i l j  and  ,GB k l ,  , GB k i l j

THEN the scaling factor  , ,3 w k i l j  is large. 

The concept behind these simple fuzzy rules is to 

assign large scaling factors to the neighbors that have similar 

colors as the center pixel. In color images it is optimum to 

consider pixels as colors instead of taking them as three 

separate color components. When only the separate color 

components are considered, more artifacts are introduced, 

especially on the contour of objects. The distance between 

two couples is calculated according to the Minkowski’s 

distances. This is illustrated in equation (2) for red–green pair 
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    

    

    

, , ,  =

1/2
2

, ,1 , ,1  +

2
 , , 2 , , 2

 

  

  

 
 
 
 

D RG k l RG k i l j

NI k i l j NI k l

NI k i l j NI k l

                       

(2)

 

Another distance measure which is the Absolute 

distance is also illustrated in the following equation (3) for 

red-green pair. 

 

    

   

   

, , ,  = 

, , 1 , , 1  +

 , , 2 , , 2

 

  

  

D RG k l RG k i l j

NI k i l j NI k l

NI k i l j NI k l

                          
(3)                   

 

To compute the value that expresses the degree to 

which the distance of two couples is small, we will make use 

of the fuzzy set small . Fuzzy sets are commonly represented 

by membership functions. From such functions we can derive 

the corresponding membership degrees. If the distance 

between two couples has a membership degree one (zero) in 

the fuzzy set small , it means that this distance is considered 

as (not) small for sure. Membership degrees between zero and 

one indicate that we do not know for sure if such distance is 

small or not, so there is some kind of uncertainty. For more 

background information about fuzzy logic, we refer to [1], 

[15], and [16]. A membership function small , denoted as 

small
  is shown in Fig. 1. An alternative notation for the 

membership function small  is given in equation (4) 

 

2

, if 
 = 

0,             if  >  






 
     
 
 

t y
y t

y tsmall

y t
                                  

(4)

                                            

 

With t ] 0, 2 ] for the normalized input image NI  

 

Figure1: Membership function small 

We have define three such fuzzy sets, one for each pair (one 

for the pair red–green, another for the pair red–blue, and the 

last one for the pair green–blue). All these fuzzy sets depend 

on the parameter as seen in (4) and Fig. 1. These parameters 

are denoted as PRG , PRB and PGB .The parameter PRG is 

determined adaptively as follows. Similarly the remaining two 

parameters are calculated for remaining two pairs RB  and 

GB  .   

    ,  = , , ,max

,



 

P k l k l i j
RG RG

k l

                             (5)                     

Where   defines the  2 1  I ×  2 1  I neighborhood 

around the central pixel, i.e.

 ,  ,  1, ..., 0, ..., 1,    i j I I I I , and where

 , , , k l i j
RG

,  , , , k l i j
RB

 and  , , , k l i j
GB

 were 

used as convenient notation for the distances.(i.e., 

    , , ,  = ( , ), ,  k l i j D RG k l RG k i l j
RG

, similarly 

for  , , , k l i j
RB

 and  , , , k l i j
GB

 ). 

So, the parameters (for the spatial position  ,k l )  ,P k lRG ,

 ,P k lRB  , and  ,P k lGB are equal to the maximal 

distance between the red–green, red–blue, and green–blue 

pairs in a  2 1  I ×  2 1  I neighborhood around the 

centre pixel  ,k l .The  ’s of expression (6) are used to 

calculate the scaling factors as introduced by fuzzy rules. In 

these rules, we can observe an intersection of two fuzzy sets, 

which is generally specified by mapping T . We have used the 

algebraic product T -norms. This means for instance that the 

fuzzification of the antecedent of fuzzy rule 1 is

     , , ,   , , ,
1 2

   k l i j k l i j
small smallRG RB

, where 

1


small  and 2


small are equal to membership function

small , shown in expression (2), with parameters  ,P k lRG  

and  ,P k lRB , respectively. The obtained value 

      , , ,   , , ,
1 2

   k l i j k l i j
small smallRG RB

is called 

the activation degree of the fuzzy rule and is used to obtain 

corresponding scaling factor, i.e.

       , ,1  = , , ,   , , ,
1 2

     w k i l j k l i j k l i j
small smallRG RB

, 

similarly the remaining two scaling factors are calculated by 

using activation degrees.  

  Where 1


small  , 2


small and 3


small are equal 

to membership function small , shown in expression (2), with 

parameters  ,P k lRG ,  ,P k lRB and  ,P k lGB  

respectively. The output of the first subfilter can finally be 

illustrated for the red component, where the output image is 

denoted as A , i.e., 

 

 

 
   

 

, ,1   , ,1

, ,1

, ,1

 
     
 


 
   
 


I I

w k i l j NI k i l j
i I j I

A k l
I I

w k i l j
i I j I

             

 (6)                                                         

The filtering method for the green and blue component is 

similar to the one above. 
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3. SECOND SUBFILTER TO RETAIN 

FINE DETAILS: 
The Second subfilter is a complementary filter to the first one. 

The objective of this subfilter is to improve the first method 

by reducing the noise in the color components differences 

without deteriorating the fine details of the image. This is 

realized by calculating the local differences in the red, green, 

and blue environment individually. These differences are then 

combined to calculate the local estimation of the centre pixel. 

Analogous to the first subfilter, we use a window of size 

 2 1J ×  2 1J , where J  is not necessarily equal to I , 

centered at  ,k l to filter the current image pixel at position

 ,k l . Next, we calculate the local differences (also called 

gradients or derivatives) for each element of the window 

denoted as BDR , BDG  and BDB  for the red, green, and 

blue environment, respectively. If the output image of the 

previous subfilter is denoted as A , then the local difference 

for red component is calculated by using (7). Similarly the 

remaining differences are calculated. 

 

     ,  A , ,1 , ,1   BD i j k i l j A k lR                        (7)                      

 For all  , , ..., 0, ....,  i j J J . These differences are finally 

combined to calculate the following correction terms: 

        
1

, , , ,
3

  e i j BD i j BD i j BD i jR BG
                (8)          

       i.e., we calculate the average of the difference for the red, 

green, and blue component at the same position. 

3.1. Output of the second subfilter: 

Finally, the output of the second subfilter, denoted 

as B , for red component is determined as follows. Like red 

component the outputs for green and blue components are 

determined. 

  

 
    

 

, ,1 ,

, ,1
2

2 1

 
    
 





J J
A k i l j e i j

i J j J
B k l

J

  (9)        

 

With  , ,1B k l  is the red component of the output image and 

where  ,e i j  is the correction term for the neighboring pixel

 , ,1 A k i l j . 

 

4. SIMULATION RESULTS: 

As a measure of objective similarity between a filtered image 

and the original one, we use the peak signal-to-noise ratio 

 PSNR in decibels  dB
 

 
 

2

, 10 log10
,


S

PSNR FI NI
MSE FI NI

                      (10)

                                                                 

 

 
   

3 2
, , , ,

1 1 1
,

3

   
  



  
N M

NI k l c FI k l c
c k l

MSE FI NI
NM          

(11)                                                                 

                                   

The numerical results for Minkowski’s distance and for 

absolute distance in terms of PSNR values are shown in table I 

and table II. Table I shows the numerical results for colored 

Lena image of size (512x512) for different noise levels with 

respect to variation in window size. Table II shows the 

numerical results for colored Baboon eye image of size 

(512x512) for different noise levels with respect to variation 

in window size. Figure-6 to Figure-16 shows the visual 

observations for the results tabulated in table I. Figure-2 to 

figure-5 shows the graphical representation of variation in 

PSNR values for different size of windows with respect to 

different levels of noise for both Minkowski’s and Absolute 

distances.   

 

Table-1 

Comparison of proposed method with other filtering 

methods for the (512x512) colored Lena image 

 PSNR (dB) 

 Lena image 

  5 10 20 30 40 

Noisy 37.6898 32.6498 29.9416 29.1524 28.7689 

 

Minkowski’s 

distance 

(3x3,3x3) 32.7361 30.6698 29.0070 28.4260 28.1320 

(3x3,5x5) 31.6998 30.1381 28.7946 28.2851 28.0453 

(3x3,7x7) 31.0647 29.8505 28.7020 28.2438 28.0057 

(3x3,9x9) 30.5690 29.6030 28.6167 28.2005 27.9810 

 

Absolute 

distance  

(3x3,3x3) 38.5100 37.4666 35.1361 33.9245 33.2771 

(3x3,5x5) 37.1350 36.6597 35.0819 34.0835 33.4906 

(3x3,7x7) 36.3272 36.0885 34.9429 34.0845 33.5494 

(3x3,9x9) 35.7535 35.6591 34.8166 34.0916 33.5905 
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Table II 

Comparison of proposed method with other filtering 

methods for the (512x512) colored Baboon eye image 

 PSNR (dB) 

 Baboon image 

  5 10 20 30 40 

Noisy 37.1812 32.0382 29.4092 28.5992 28.2410 

 

Minkowski’s 

distance 

(3x3,3x3) 34.0968 30.8973 28.8649 28.2453 27.9835 

(3x3,5x5) 31.7804 30.0869 28.6232 28.1142 27.8922 

(3x3,7x7) 30.5080 29.5292 28.4631 28.0407 27.8392 

(3x3,9x9) 29.8011 29.1596 28.3276 27.9694 27.7971 

 

Absolute 

distance 

(3x3,3x3) 44.7091 41.0410 36.4986 34.7709 33.8436 

(3x3,5x5) 42.6113 40.6683 36.9627 35.2639 34.3868 

(3x3,7x7) 40.7347 39.7010 36.9103 35.3839 34.4346 

(3x3,9x9) 39.4863 38.8561 36.7473 35.3917 34.4542 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure2: Graphical representation of Minkowski’s 

distance for Lena image for different noise levels and 

window size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3: Graphical representation of Absolute distance 

for Lena image for different noise levels and window size 

 

 

 

 

 

 

 

Figure4: Graphical representation of Minkowski’s 

distance for Baboon eye image for different noise levels 

and window size 

 

 

 

 

 

 

 

 

 

Figure5: Graphical representation of Absolute distance 

for Baboon eye image for different noise levels and 

window size 
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Figure6: Original Lena image 

(a) (b) (c) (d) (e)

Figure7: Illustration of Minkowski’s distance results for 

Lena image with 5   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window 

(a) (b) (c) (d) (e)

Figure8: Illustration of Minkowski’s distance results for 

Lena image with 10   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window 

(a) (b) (c) (d) (e)

Figure9: Illustration of Minkowski’s distance results for 

Lena image with 20   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window 

(a) (b) (c) (d) (e)

Figure10: Illustration of Minkowski’s distance results for 

Lena image with 30   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) (e)

Figure11: Illustration of Minkowski’s distance results for 

Lena image with 40   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window 

(a) (b) (c) (d) (e)

Figure12:Illustration of Absolute distance results for Lena 

image with 5   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 

(a) (b) (c) (d) (e)

Figure13:Illustration of Absolute distance results for Lena 

image with 10   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 

(a) (b) (c) (d) (e)

Figure14:Illustration of Absolute distance results for Lena 

image with 20   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 
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(a) (b) (c) (d) (e)

Figure15:Illustration of Absolute distance results for Lena 

image with 20   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 

(a) (b) (c) (d) (e)

 Figure16:Illustration of Absolute distance results for Lena 

image with 20   (a) Noisy image (b) Corresponding 

output image for (3x3, 3x3) window (c) Corresponding 

output image for (3x3, 5x5) window (d) Corresponding 

output image for (3x3, 7x7) window (e) Corresponding 

output image for (3x3, 9x9) window. 

5. CONCLUSION: 
This paper proposed a fuzzy noise filter for removal of 

additive noise for any type of digital color images. The main 

advantage of this filter is, it is showing better results at higher 

levels of noise. Numerical measures and visual observations 

have shown convincing results. By observation from tables I 

& II it is clear that the fuzzy noise filter with varying window 

sizes is performed well and also it is showing better results at 

higher noise levels. 

6. REFERENCES: 
[1] E. E. Kerre, Fuzzy Sets and Approximate Reasoning, 

Xian, China: Xian Jiaotong Univ. Press, 1998. 

[2] Farzam Farbiz, Mohammad Bager Menhaj, Seyed A. 

Motamedi, and Martin T. Hagan ―A New Fuzzy Logic 

Filter for Image Enhancement‖ IEEE TRANSACTIONS 

ON SYSTEMS, MAN, AND CYBERNETICS—PART 

B: CYBERNETICS, VOL. 30, NO. 1, FEBRUARY 

2000. 

[3] How-Lung Eng, Student Member, IEEE, and Kai-Kuang 

Ma ―Noise Adaptive Soft-Switching Median Filter‖ 

IEEE TRANSACTIONS ON IMAGE PROCESSING, 

VOL. 10, NO. 2, FEBRUARY 2001 

[4] Dimitri Van De Ville, Mike Nachtegael, Dietrich Van der 

Weken, Etienne E. Kerre, Wilfried Philipsand Ignace 

Lemahieu ―Noise Reduction by Fuzzy Image 

Filtering‖IEEE TRANSACTIONS ON FUZZY 

SYSTEMS, VOL. 11, NO. 4, AUGUST 2003. 

 [5] Stefan Schulte, Valérie De Witte, Mike Nachtegael, 

Dietrich Van der Weken, and Etienne E. Kerre ―Fuzzy 

Two-Step Filter for Impulse Noise Reduction From 

Color Images‖ IEEE TRANSACTIONS ON IMAGE 

PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006. 

[6] Stefan Schulte, Mike Nachtegael, Valérie De Witte, 

Dietrich Van der Weken, and Etienne E. Kerre ―A Fuzzy 

Impulse Noise Detection and Reduction Method‖ IEEE 

TRANSACTIONS ON IMAGE PROCESSING, VOL. 

15, NO. 5, MAY 2006. 

[7] Stefan Schulte ―Fuzzy and Nonlinear Restoration and 

Analysis Techniques for Digital Images‖. 

[8] P.Venkatesan & G.Nagarajan ―Removal of Gaussian and 

Impulse Noise in the Color Image Progression with 

Fuzzy Filters‖ International Journal of Electronics 

Signals and Systems (IJESS), ISSN: 2231- 5969, Vol-3, 

Iss-1, 2013. 

[9] Tom Mélange, Mike Nachtegael, and Etienne E. Kerre 

―Fuzzy Random Impulse Noise Removal from Color 

Image Sequences‖ IEEE TRANSACTIONS ON IMAGE 

PROCESSING, VOL. 20, NO. 4, APRIL 2011. 

[10] S. Schulte, B. Huysmans, A. Piˇzurica, E. E. Kerre, and 

W. Philips, ―A new fuzzy-based wavelet shrinkage 

image denoising technique,‖ Lecture Notes Comput. Sci., 

vol. 4179, pp. 12–23, 20  

[11] Stefan Schulte, Valérie De Witte, and Etienne E. Kerre 

―A Fuzzy Noise Reduction Method for Color Images‖ 

IEEE TRANSACTIONS ON IMAGE PROCESSING, 

VOL. 16, NO. 5, MAY 2007 1425 

[12] C. Vertan and V. Buzuloiu, ―Fuzzy nonlinear filtering of 

color images,‖ in Fuzzy Techniques in Image Processing, 

E. E. Kerre and M. Nachtegael, Eds., 1st ed. Heidelberg, 

Germany: Physica Verlag, 2000, vol. 52, pp. 248–264. 

 [13] S. M. Guo, C. S. Lee, and C. Y. Hsu, ―An intelligent 

image agent based on soft-computing techniques for 

color image processing,‖ Expert Syst Appl., vol. 28, pp. 

483–494, Apr. 2005 

[14] T. Takagi and M. Sugeno, ―Fuzzy identification of 

systems and its applications to modeling and control,‖ 

IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, 

pp. 116–132, Jan. 1985. 

[15] L. A. Zadeh, ―Fuzzy sets,‖ Inf. Control, vol. 8, no. 3, pp. 

338–353, 1965. 

[16] ——, ―Fuzzy logic and its application to approximate 

reasoning,‖ Inf. Process., vol. 74, pp. 591–594, 1973. 

 

 

 

 

 

 

 

IJCATM : www.ijcaonline.org 


