
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

27

New Approach to Mitigate XML-DOS and HTTP-DOS

Attacks for Cloud Computing

Reza Manouchehri Sarhadi

Research Scholar,
Dept. of Applied Computer Science,

UITM, Rzeszow, Poland,

Vahid Ghafori
Research Scholar,

Dept. of Applied Computer Science,
UITM, Rzeszow, Poland,

ABSTRACT

Moving towards Cloud Computing is accelerating and

businesses are trying to present their software in the cloud.

Cloud uses SOA and web services to present always

accessible services which raise up threats and vulnerabilities.

Users need to access Cloud from anywhere and this

availability comes from presenting services as Web Service

over the Internet. Web service in Cloud Computing specially

in SaaS plays an important role to present business

functionality. Web services are intended to be accessible from

different places and applications.

It leads to evolve some vulnerabilities which have to be

seriously considered.

One of major vulnerabilities is DDoS attack based on HTTP

protocol and XML technology called HTDOS and XDOS

which works on layer 7 OSI model and can easily pass

through firewalls and take down the server.

 In the paper we develop a Cloud defender system called

CSQD (Cloud Service Queuing Defender) to detect and

mitigate XML vulnerabilities in web services.

CSQD also applies a traceback solution to discover origin of

attack.

CSQD system is a self-learner system which means if an

attack successfully brings down the server the CSQD finds the

malicious request and adds it to its database to stop the same

future attacks.

Our results show that CSQD is effective and efficient in

detecting and mitigating most of DoS attacks.

Keywords

Cloud Computing, SaaS , XDoS , HDoS , DDoS.

1. INTRODUCTION
Cloud Computing is divided into three models [1]:

Infrastructure as a Service (IaaS), Platform as a service (PaaS)

and Software as as Service (SaaS).

SaaS has become popular as delivery model which supports

Service Oriented Architecture (SOA) and web services

technologies for many business applications [2].

Cloud Computing and SOA complete and support each other

nevertheless they can be followed separately or

simultaneously . SOA permits user frontend applications and

enterprise backend servers to have easily approach to cloud

offerings by supplying a backbone [11].

Services in SOA mostly implemented in Web Services

because they are based as the standard technology [9].

Web Services can act as a communication channel to connect

distinctive messaging platform , making information available

between applications and publish inside functions over the

internet [10].

Users need to access Cloud from anywhere and this

availability comes from presenting services as web service

over the Internet and causes SaaS layer to have lowest

security level.

In SaaS model for public cloud, attacks target following area

[3]:

 Availability

 Data Security

 Network Security

 Identity Management

As [4] says availability is considered as one of the top three

concerns for CIOs. Occurring a DoS attack which suspends a

business for some hours can lead to big losses for the

business.

Web Services are vulnerable to various attacks which

occurring one can question a business at least.

One of the most typical attacks is DOS attack which can get

caught by IDS but when it comes to web service, situations

are completely different [12].

According to [14] 94% of data centers have seen DoS attacks

and most of attacks have taken placed over HTTP.

Web services are mostly invoked over HTTP protocol and it

gives attackers good opportunity to travel through IDS and

firewalls. [13]

Using web services in SaaS introduces new DDoS attacks

namely HyperText Transport Protocol (HTTP) and Extensible

Mark-up Language (XML) Denial of Service (DoS) attack or

HX-DoS attack which their aims are to take down a web

service or system running that service.

DOS attacks in Web Services are excessively asymmetric. It

takes attacker a little to launch a attack payload without

wasting a lot of bandwidth or CPU . Besides XML processors

are vulnerable to DOS attacks even those already tested [16].

There are some standards for Web Services which ordinarily

cover other aspects of security such as confidentiality,

authentication and so on but none of them address DoS

attacks even some of them are prone to DoS attacks [15].

2. Related Work
Many works have been done in the network security area but

security for cloud computing is something new and

challengeable. In direction of security in cloud computing lots

of research is moving towards. Every day is seen that Cloud is

having the problem according to new vulnerabilities and

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

28

Not

Available

Yes

No

Result

exists several live examples in which cloud is enduring new

attacks.

Using web Services in Cloud leads to bring one of the most

important attacks to cloud computing which comes from

HTTP Denial of Service or XML-Based Denial of Service

attacks. These kinds of attacks are easily implemented but

several times more difficult to be stopped.

Previous work on cloud security defense was done by Ashley

Chonka [4]. He proposed a protector based on neural network

to detect and filter DOS attacks and also offered a solution to

discover origin of attack in the basis of tracebacking.He had

developed the solution according to his previous research on

SOTA, which was based on service-oriented architecture and

service-oriented grid architecture.

Alwyn Roshan Pais [5] , presented a XML firewall to mitigate

different XML vulnerabilities . The firewall is based on Role

Based Access Control (RBAC) model and validates the input

xml documents before sending to the web services.

Similar work to Chonka was done by Lanjuan Yang [6]. He

offered an approach namely SBTA which was in the basis of

Service Oriented Architecture (SOA) and suggested a filter

approach to filter attacks and a solution to find source of

attack.

Figure 1: CSQD Flowchart

Another work in same area is done by Tarun Karnwal [7]. He

offered a security service called filtering tree, which work like

a service broker within a SOA model. It is converting the

consumer request in XML tree form and uses a virtual Cloud

defender which will defend from these types of attacks.

Poison

Request

Database

Response

System

No

XML Vulnerability

Detection System

No

Yes

Valid

Request

Controller

Server

availability
PoisonRequest

Manager

Check

Response

Result

Blacklist

Database

Time

Consuming

Parts

Database

Black

List

Consumer

 Web Services

Request

Request

List

Request

Scheduler

Packet

Marking

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

29

3. Cloud Service Queuing Defender

(CSQD)

3.1 Architecture
CSQD is a detector and defender system which also presents a

way to find source of attack.

It can be placed anywhere between server and client but it is

suggested to be placed as much as close to ingress router

As Figure1 illustrates CSQD contains following parts:

 Request Controller

 XML Vulnerability Detection System

 Poison Request Manager

 Request Scheduler

 Packet Marking

 Check Response

 System Response

When a request is sent by a consumer it is first checked

whether or not the server is up.

It is possible that last request has taken down the server. In

this case Poison Request Manager is informed to find last

activity which caused server unavailable.

For normal circumstance the request is directed to XML

Vulnerability Detection System to check request against

different XML attacks such as malicious XML messages,

XML DoS attacks. Afterwards the request is forwarded to

Request Scheduling If no negative response is received.

In situations that an attack is detected it will be sent to

Response System. This system prepares an appropriate

message and also inserts the sender‘s IP address into Blacklist

database. Request Scheduler puts the request in a list data

structure. This data structure is used to track and find poison

and malformed requests. If a request is put in the list it will be

processed by the server otherwise will be kept in waiting

state.

Packet Marking adds some tags in header of request. These

headers are not modified during traveling the network. These

tags will be used to find source of attack.

After processing the request, the web service forwards the

results to Check Response. Check Response validate the

response and removes processed request from Request List

3.2 Data Stores
We have used three databases and one internal data store in

our architecture.

 Blacklist database :

It contains IP addresses which have to be blocked.

Once a report comes from detection module which

indicates a request is malicious Response system

 Poison Request database :

The database is used to record discovered attacks.

Once the server recovers after an attack system

looks for the request which has brought down the

server and saves it in the Poison Request database.

It has three attributes namely IP address, content

and date

 Time-consuming parts :

It contains two attributes namely name and URL.

Administrator enters these information manually.

 Request List :

It is an internal data store which keeps and tracks incoming

requests. Every element of this data store consists five

attribute namely IP address, content, requested URL, ID and

date.

This data store plays an important role in the system. Requests

which are inserted in the Request List will be processed

3.3 Algorithm for CSQD
Step 1: wait for new request

Step 2: Check the server if it is up or down .

Step 3: If the server is down find malicious request and go to

Step 1

Step 4: Accept a new request.

Step 5: If the request is in Blacklist discard it and go to Step 1

Step 6: Send request to detection module:

Check size of the request

Check DTD content

Check malicious content

Check DOS pattern

If one of the above criteria occurs, send the request to Step 6

otherwise send it to Step 8

Step 7: Put the IP address in the Blacklist and send an

appropriate message and go to Step 1

Step 8: If the request is a type of time-consuming part and

threshold for maximum concurrent time-consuming part has

reached go to waiting state.

Step 9: Generate unique ID for the request and extract some

useful information from the request.

Step 10: If Request List has enough space insert the request

otherwise go to waiting state.

Step 11: Add the unique ID and IP address of router and

request to the header

Step 12: process the request

Step 13: Check the response and find the request in Request

List and remove it

4. Evaluation
In this part we have evaluated our implemented defense

system against different type of XML attacks. A Windows

Framework Communication (WCF) application is developed

in C# to expose different web services. This WCF application

is a SOA based application which presents an online music

store.

It is also developed a front-end application which consumes

web services and provides normal and malformed traffics.

Two computers are used as a consumer and supplier. We

setup our firewall in the supplier system and front-end

application in consumer system.

At first we measure response time for requests without using

our defense system. Afterwards we deploy the defense system

and calculate the response time again. The time elapsed per

request without using defender is shown in Figure 2.

Then we calculate response time with defender. Figure 3

shows a performance for web service using CSQD.

It shows that we have a overhead using our defender. As

number of request increases the overhead rises.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

30

Figure 2: Response Time without CSQD

To show this overhead we subtract both previous results and

As we can see in figure 4 the difference between two charts.

The overhead depends on some criteria:

 Buffer Size:

Size of buffer is one of the important effective key

in performance. If size of buffer is low and number

of requests is high the defender uses too much delay

to process requests.

Figure 3 :Response Time using CSQD

 Response time :

If a response time for a request is high the request will remain

in the buffer more. In other words the request occupies the

buffer up to gets a response back. However it prevents

entering other request in the buffer and the defender is forced

to use delaying.

 Waiting Time :

The time which is given to a request when the buffer is full

and the request will be in the waiting state. If a waiting time is

high it is possible that buffer finds a free space but the request

is still in the waiting state.

Figure 4: Difference Response Time

5. CONCLUSION
According to results obtained, our CSQD is effective and

efficient in detecting and mitigating most of DOS attacks.

CSQD system is a self-learner system which means if an

attack successfully brings down the server the CSQD finds the

malicious request and adds it to its database to stop the same

future attacks. To achieve this target CSQD keeps requests in

a buffer till a response backs to the system.

It also adds some tags in the header of requests to find source

of attack because IPv6 will replace IPv4 and current IP

traceback will not be supported.

6. REFERENCES
[1] Peter Mell, Timothy Grance. The NIST definition of

cloud computing. NIST. [Online] September 2011.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf.

[2] definition Software as a Service (SaaS).

SearchCloudComputing. [Online]

http://searchcloudcomputing.techtarget.com/definition/S

oftware-as-a-Service.

[3] Clinton DSouza, Rafael Santana. Vulnerabilities in SaaS

Layer of Cloud Computing. s.l. : Arizona State

University, 2012.

[4] Page, Scott. Cloud Computing-Availability. SlideShare.

[Online] http://www.slideshare.net/s2page/cloud-

computing-availability-8517731.

[5] Cloud security defence to protect cloud computing

against HTTP-DoS and XML-DoS attacks. Ashley

0

5

10

15

20

25

1 100 300 500 700 900 20004000

Ti
m

e
 in

 M
ili

Se
co

n
d

s

No. of Requests

Response Time
without Defender

0

5

10

15

20

25

30

1 100 300 500 700 900 20004000

Ti
m

e
 in

 M
ili

Se
co

n
d

No. of Request

Response Time with
Defender

0

1

2

3

4

5

6

1 100 300 500 700 900 2000 4000

Defference Response
Time

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

31

Chonka, Yang Xiang n, Wanlei Zhou, Alessio Bonti.

2011, Elsevier, pp. 1097–1107.

[6] Protection against Denial of Service and Input

Manipulation Vulnerabilities in Service Oriented

Architecture. Alwyn Roshan Pais, Deepak D.J., and B.R.

Chandavarkar. Chennai ,India : Springer, 2011.

Advances in Network Security and Applications. pp.

331–343.

[7] Defense of DDoS Attack for Cloud Computing. Lanjuan

Yang, Tao Zhang, Jinyu Song, JinShuangWang, Ping

Chen. Zhangjiajie, China : IEEE, 2012. Computer

Science and Automation Engineering (CSAE). pp. 626-

629.

[8] A Comber Approach to Protect Cloud Computing against

XML DDoS and HTTP DDoS attack. Tarun Karnwal, T.

Sivakumar, G. Aghila. Bhopal : IEEE, 2012. Electrical,

Electronics and Computer Science (SCEECS). pp. 1-5.

[9] T. Erl, Service-Oriented Architecture (SOA): Concepts,

Technology, and Design, Prentice Hall, 2005

[10] J. B. ,. A. G. Rajkumar Buyya, Cloud Computing:

Principles and Paradigms, Hoboken, New Jersey: John

Wiley & Sons , Inc, 2011.

[11] F. Bowen, "How SOA can ease your move to cloud

computing," [Online]. Available: http://www-

01.ibm.com/software/solutions/soa/newsletter/nov09/arti

cle_soaandcloud.html.

[12] CCNA Security Course booklet version1.0, Indianapolis:

Cisco Press, 2010

[13] M. Harwood, Security Strategies in Web Applications

and Social Networking, Jones & Bartlett Learning,LLC,

2011

[14] P. Dinham, "Denial-of service attacks vulnerability

increases with the cloud," 29 Januaury 2013. [Online].

Available: http://www.itwire.com/business-it-

news/security/58480-denial-of-service-attacks-

vulnerability-increases-with-the-cloud.

[15] Elisa Bertino, Lorenzo D. Martino , Federica Paci ,Anna

C. Squicciarini. 2010. Security for Web Services and

Service-Oriented Architectures. s.l. : Springer, 2010.

[16] Harwood, Mike. 2011. Security Strategies in Web

Applications and Social Networking. s.l. : Jones &

Bartlett Learning,LLC, 2011.

IJCATM : www.ijcaonline.org

