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ABSTRACT 

Approximate string matching has been used in many 

applications such as, text retrieval, spell checker and DNA 

sequence matching in computational biology. In this paper, 

we implemented bit-vector algorithm using MATLAB for 

approximate string matching on Rhodopsin protein sequence 

of class Aves. Our experiments on real data of Rhodopsin 

protein sequences demonstrate that the algorithm can work as 

expected. The experiment results shows that the Rhodopsin 

protein sequence of the species in same genus is more 

approximately match each other compared to the species from 

different genus in the same family, Furthermore, for the 

species from different genus in the same family, its Rhodopsin 

protein sequence is more approximately match each other 

compared to the species from different family in the same 

order.   
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1. INTRODUCTION 
Approximate string matching has been used in many 

applications such as, text retrieval, spell checker and DNA 

sequence matching in computational biology. DNA sequences 

can be regarded as strings over the alphabet A, C, G, T. 

Searching a pattern or patterns in DNA sequences can be done 

using approximate string matching techniques. 

Several algorithms have been proposed for searching patterns 

in DNA sequences. Cheng et al. [1] developed an algorithm 

for approximate string matching in DNA sequences. They 

proposed an indexing structure that can improve the searching 

efficiency of suffix array, and also a parallel computing 

technique for indexing and searching DNA sequences in PC 

clusters. Liu et al. [2] proposed FAAST (fast algorithm for 

approximate string matching) for solving the k-mismatch 

problem of the approximate string matching and tested the 

algorithm using simulated dataset and real ribosomal 

fungal/bacterial DNA sequences from NCBI DNA sequence 

database. Basic Local Alignment Search Tool (BLAST) 

developed by Altschul et al. [3] is a popular tool used by 

researchers for comparing a pattern in a DNA sequence with a 

database of DNA sequences. FASTA [4] is also a tool for 

DNA and protein sequence alignment. It uses heuristic 

algorithm to do the searching. 

In this paper, we implemented the bit-vector algorithm 

described in [5] for approximate string matching on 

Rhodopsin protein sequence of class Aves. Rhodopsin is a 

pigment in photoreceptor cells of retina. This pigment is 

responsible for the perception of light (light-absorber) [6]. 

The objective of this research is to find out whether a 

Rhodopsin protein sequence from a species is approximately 

match to the Rhodopsin protein sequence of other species 

from the same and different genus, family and order.  

The remainder of this paper is organized as follows. In 

Section 2, we provide the background of approximate string 

matching. Section 3 discusses the bit-vector algorithm and 

related work, and Section 4 explains the implementation of 

bit-vector algorithm and testing method used. Results of the 

experiments and discussion are presented in Section 5. 

Finally, we conclude our work in Section 6. 

2. APPROXIMATE STRING 

MATCHING 
Generally, string matching techniques can be divided into: 1) 

exact string matching and 2) approximate string matching. 

The exact string matching problem is to find all occurrences 

of a given pattern P in a string T, while the approximate string 

matching tries to find substrings in the string T that are within 

a predefined distance (called edit distance) from the given 

pattern P [7]. 

There are two variants of approximate string matching 

problem, k-mismatch problem and k-difference problem. We 

focus on the k-difference problem in this paper. Given a 

pattern P = p1 p2 … pm with length m, a string T = t1 t2 … tn 

with length n, and a positive integer threshold k  0, the k-

difference problem is to find all substrings of T ending at tj (or 

all positions j in T), whose edit distance, d(T, P), to P is at 

most k (i.e., d  k). The edit distance (Levenshtein distance 

[8]), d between two strings is defined as the minimum number 

of edits (insertion, deletion, and substitution/replacement of a 

single character) needed to make the two strings equal [7]. For 

example, we have a string x = abca and a pattern y = abba to 

be matched in x. In this case, d(x, y) is equal to 1 since we 

need one substitution in y (replace its third character with 'c') 

in order to make x equal to y. Using the same method, we can 

easily compute that d(abca, cca) = 2.  

There are several well-known techniques for approximate 

string matching, for example, dynamic programming [9, 10] 

and bit-vector algorithm [5]. Using the classic dynamic 

programming approach [9], the solution to the approximate 

string matching problem is computed using an (m+1)  (n+1) 

dynamic programming (DP) matrix, C[0..m, 0..n] in which 

each element C[i, j] is the minimum edit distance between 

pattern p1 p2 … pi and any substring of T (ending at tj). After 
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the computation process, all locations j such that C[m, j]  k 

are the solutions to the problem. For example, we want to find 

the pattern bbba in the text bacabbbbac with d  2 (i.e., k = 2, 

less than 2 differences), Figure 1 shows the DP matrix. As 

shown in the figure, we can find 7 locations (shaded in the last 

row) in the string that approximately match to the pattern. The 

computation can be done in O(mn) time and O(m) space [11, 

5]. Later, Ukkonen [10] improved this classic dynamic 

programming approach, and reduced its running time to O(kn) 

time. More complete survey on approximate string matching 

can be found in [12] and [10]. 

3. BIT-VECTOR ALGORITHM 
Myers [5] proposed a bit-vector algorithm for approximate 

string matching. The idea of this algorithm is to process the 

DP matrix using bit-parallelism. To parallelize the DP matrix, 

the differences (deltas) between consecutive rows and 

columns of the DP matrix, C[i, j] are used (instead of their 

absolute values) to encode the DP matrix using bit-vectors 

[13]. Let 

hi, j = C[i, j] – C[i, j–1]  {–1, 0, +1} 

vi, j = C[i, j] – C[i–1, j]  {–1, 0, +1} 

di, j = C[i, j] – C[i–1, j–1]  {0, +1} 

where hi,j, vi,j, and di,j are the horizontal adjacency 

property, vertical adjacency property, and diagonal property, 

respectively. These delta vectors are encoded as bit-vectors 

using the following Boolean variables, 

VPi, j = (vi, j = +1) 

VNi, j = (vi, j = –1) 

HPi, j = (hi, j = +1) 

HNi, j = (vi, j = –1) 

D0i, j = (di, j = 0) 

Then we have these equivalences, 

HNi, j  VPi, j–1 AND D0i, j 

VNi, j  HPi–1, j AND D0i, j 

HPi, j  VNi, j–1 OR NOT (VPi, j–1 OR D0i, j) 

VPi, j  HNi–1, j OR NOT (HPi–1, j OR D0i, j) 

D0i, j  (pi = tj) OR VNi, j–1 OR HNi–1, j 

where 

(1) HNi, j is the horizontal negative delta vector. 

(2) VNi, j is the vertical negative delta vector. 

(3) HPi, j is the horizontal positive delta vector. 

(4) VPi, j is the vertical positive delta vector. 

(5) D0i, j is the diagonal zero delta vector. 

(6) (i, j) denotes row i and column j. 

(7) p denotes the pattern. 

(8) t denotes the text string.  

The bit-vector algorithm for approximate string matching 

consists of 2 stages: 1) preprocessing and 2) searching, 

scoring and output. Let  is the alphabet and B[c] | c   is 

a bit-vector. The preprocessing stage does the computation of 

bit-vectors. These two stages are shown in Algorithm 1 and 

Algorithm 2. We refer the reader to [5], [7] and [13] for the 

details of the algorithm. 

Algorithm 1 Preprocessing 

for c   do 

B[c] = 0m 

end for 

for j  1 to m do 

B[pj] = B[pj] | 0
m–j10j–1  

end for 

VP = 1m 

VN = 0m 

score = m 

 

Algorithm 2 Searching, scoring and output 

for pos  1 to n do 

X = B[tpos] | VN 

D0 = ((VP + (X & VP))  VP) | X 

HN = VP & D0 

HP = VN | ~ (VP | D0) 

X = HP << 1 

VN = X & D0 

VP = (HN << 1) | ~ (X | D0) 

{Scoring and output:} 

if (HP & 10m–1)  0m then  

score+ = 1 

else  

if (HN & 10m–1)  0m then  

score– = 1 

end if 

else  

if (HP & 10m–1) = 0m then  

score = score 

end if 

end if 

if score  k then  

print(pos) 

end if 

end for 

 

4. IMPLEMENTATION AND TESTING 
We implemented the bit-vector algorithm described in Section 

3 using MATLAB. The algorithm requires 3 inputs: the string 

(T), pattern (P), and threshold/maximum difference constant 

(k). The string is the Rhodopsin protein sequence of a species 

and the pattern is the Rhodopsin protein sequence from one 

other species. After reading the inputs, the pattern is then 

extracted to get the all different characters of the pattern. 

Here, we get the A, C, G, and T characters. Therefore, we get 

the alphabet  = {A, C, G, T}. The bit-vector B[c] is then 

created according to preprocessing stage described in previous 

section. The flowchart of the algorithm implementation is 

shown in Figure 2. 

Fig 1: DP matrix example 
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The species data and Rhodopsin sequence data are taken from 

Universal Protein Resource (UniProt) Consortium website 

[14] and DNA Data Bank of Japan (DDBJ) website [15], 

respectively. The species samples are taken from class Aves, 

superorder Neognathae, and order Galliformes. Of the 244 

species taken, there were 25 species which have Rhodopsin 

protein. Some of the species are as follows: Crax alector 

(black curassow), Aepypodius arfakianus (wattled 

brushturkey), Megapodius eremita (Melanesian scrubfowl), 

Gallus gallus (red junglefowl), and Colinus cristatus (crested 

bobwhite). These 25 species are from 19 genera, one 

subfamily of Phasianidae (Perdicinae), and five families 

(Cracidae, Megapodiidae, Numididae, Odontophoridae and 

Phasianidae). The complete list of family, genus, and species 

used in the experiments is shown in Table 1.  

In our experiments, we compared the Rhodopsin protein 

sequence from a species to other species within the same and 

different genera, families, and orders. Each species' 

Rhodopsin protein sequence is compared to the other 24 

species. Therefore, there are 600 comparisons for all species. 

The result then is categorized by species that belong to the 

same genus, the same family, and the same order.  

Table 1. List of family, genus and species 

Family Genus Species 

Cracidae Crax Crax alector 

Megapodiidae Aepypodius Aepypodius arfakianus 

 Alectura Alectura lathami 

 Eulipoa Eulipoa wallacei 

 Leipoa Leipoa ocellata 

 Macrocephalon Macrocephalon maleo 

 Megapodius Megapodius eremita 

  Megapodius freycinet 

  Megapodius layardi 

  Megapodius pritchardii 

  Megapodius reinwardt 

  Megapodius tenimberensis 

 Talegalla Talegalla fuscirostris 

Numididae Numida Numida meleagris 

Odontophoridae Colinus Colinus cristatus 

Phasianidae - Gallus gallus 

 Alectoris Alectoris chukar 

 Coturnix Coturnix coturnix 

 Perdix Perdix perdix 

 Rollulus Rollulus roulroul 

 Gallus Gallus gallus 

 Pavo Pavo cristatus 

 Dendragapus Dendragapus obscurus 

 Lagopus Lagopus lagopus 

 Tetrastes Tetrastes bonasia 

 

Example of the matching process is shown in Figure 3. The 

top part of the figure shows the Rhodopsin sequence of two 

species from the same genus (Megapodius freycinet and 

Megapodius layardi from genus Megapodius). In this example 

we took only a part of the Rhodopsin protein sequence for the 

sake of clarity. We used k = 0 in this example. It means that 

the string is compared to the pattern with maximum difference 

= 0. The result shows that we have one match substring (the 

position is indicated with the uppercase letter). The bottom 

part is the matching process of two species from the same 

family with k = 2. In this case, we also have one match. As 

shown in the figure, the number of differences is 2 (the 

positions in the figure are underlined). All the experiments 

were executed on 1.66GHz Intel Core 2 Duo CPU, 1 GB 

RAM. 

5. RESULTS AND DISCUSSION 
As stated earlier, the purpose of this research is to find out 

whether a Rhodopsin protein sequence from a species is 

approximately match to the Rhodopsin protein sequence of 

other species from the same and different genus, family and 

order. The experiment results showed that comparing all six 

species from the genus Megapodius (total = 30 comparisons) 

using k = 0, except for Megapodius eremita, resulted in one 

match. In case of Megapodius eremita compared to the other 

five species using k = 0 to k = 15, there were no match. Only 

if k = 16, we can have one match. For k > 16, the number of 

match substring is more than one. The average of k for all 

comparisons is 2.67. 

Comparing all the species (12 species) from different genera 

in family Megapodiidae (total = 132 comparisons), if Alectura 

lathami is compared to the other 11 species, there are 9 

comparisons that need at least k = 22 in order to get matched 

substring. The average of k for all comparisons is 5.99. 

Fig 2: Application flowchart 
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For the comparison of all 25 species from different genera and 

different families in same order (Galliformes), there are total 

of 600 comparisons. From these comparisons, we found that 

there is one comparison (Lagopus lagopus compared to Pavo 

cristatus) that need at least k = 26 to get matched substring. 

The average of k for all comparisons is 11.72. Some results of 

the experiments are shown in Table 2.   

From the experiment results, it is found that species from the 

same genus and family have a smaller average of k compared 

to the species from different genus in the same family. Also, 

species from different genus in same family have smaller 

average of k compared to species from genus in different 

families. 

6. CONCLUSION 
This paper presented the implementation of bit-vector 

algorithm for approximate string matching on Rhodopsin 

protein sequence from the species of class Aves. The 

experiment results showed that, in order Galliformes, the 

Rhodopsin protein sequence from the species in same genus 

(Megapodius, family Megapodiidae) is approximately match 

each other with k = 0 and k = 16. For species from other 

genera in same family, the Rhodopsin protein sequences 

approximately match with 0  k  22. Furthermore, the 

Rhodopsin protein sequence of species from different family 

in same order is approximately match each other with 0  k  

26.  
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Fig 3: Example of matching process 
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Table 2. Ezample of experiment result 

Species (String) Species (Pattern) k # match Position in string 

Megapodius freycinet Megapodius layardi 0 1 52 

  1 3 51, 52, 53 

  2 5 50, 51, 52, 53, 54 

  3 7 49, 50, 51, 52, 53, 54, 55 

Megapodius freycinet Megapodius eremita 0-15 0 - 

  16 1 36 

  17 3 35, 36, 37 

Aepypodius arfakianus Alectura lathami 0-21 0 - 

  22 10 111, 112, 113, 151, 152, 153, 154, 737, 738, 739 

Pavo cristatus Alectoris chukar 0-1 0 - 

  2 1 52 

  3 3 51, 52, 53 

  4 5 50, 51, 52, 53, 54 

Dendragapus obscurus Colinus cristatus 0-19 0 - 

  20 2 349, 350 

  21 8 141, 142, 156, 158, 348, 349, 350, 351 
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