
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.14, May 2013

34

Implementation of Bit-Vector Algorithm for Approximate

String Matching on Rhodopsin Protein Sequence

Yessica Nataliani

Department of Information Systems
Satya Wacana Christian University

Salatiga, Indonesia, 50711

Theophilus Wellem
Department of Information Systems
Satya Wacana Christian University

Salatiga, Indonesia, 50711

ABSTRACT

Approximate string matching has been used in many

applications such as, text retrieval, spell checker and DNA

sequence matching in computational biology. In this paper,

we implemented bit-vector algorithm using MATLAB for

approximate string matching on Rhodopsin protein sequence

of class Aves. Our experiments on real data of Rhodopsin

protein sequences demonstrate that the algorithm can work as

expected. The experiment results shows that the Rhodopsin

protein sequence of the species in same genus is more

approximately match each other compared to the species from

different genus in the same family, Furthermore, for the

species from different genus in the same family, its Rhodopsin

protein sequence is more approximately match each other

compared to the species from different family in the same

order.

General Terms

Algorithm, Implementation, Experimentation

Keywords

Bit-vector, DNA, Rhodopsin, string matching

1. INTRODUCTION
Approximate string matching has been used in many

applications such as, text retrieval, spell checker and DNA

sequence matching in computational biology. DNA sequences

can be regarded as strings over the alphabet A, C, G, T.

Searching a pattern or patterns in DNA sequences can be done

using approximate string matching techniques.

Several algorithms have been proposed for searching patterns

in DNA sequences. Cheng et al. [1] developed an algorithm

for approximate string matching in DNA sequences. They

proposed an indexing structure that can improve the searching

efficiency of suffix array, and also a parallel computing

technique for indexing and searching DNA sequences in PC

clusters. Liu et al. [2] proposed FAAST (fast algorithm for

approximate string matching) for solving the k-mismatch

problem of the approximate string matching and tested the

algorithm using simulated dataset and real ribosomal

fungal/bacterial DNA sequences from NCBI DNA sequence

database. Basic Local Alignment Search Tool (BLAST)

developed by Altschul et al. [3] is a popular tool used by

researchers for comparing a pattern in a DNA sequence with a

database of DNA sequences. FASTA [4] is also a tool for

DNA and protein sequence alignment. It uses heuristic

algorithm to do the searching.

In this paper, we implemented the bit-vector algorithm

described in [5] for approximate string matching on

Rhodopsin protein sequence of class Aves. Rhodopsin is a

pigment in photoreceptor cells of retina. This pigment is

responsible for the perception of light (light-absorber) [6].

The objective of this research is to find out whether a

Rhodopsin protein sequence from a species is approximately

match to the Rhodopsin protein sequence of other species

from the same and different genus, family and order.

The remainder of this paper is organized as follows. In

Section 2, we provide the background of approximate string

matching. Section 3 discusses the bit-vector algorithm and

related work, and Section 4 explains the implementation of

bit-vector algorithm and testing method used. Results of the

experiments and discussion are presented in Section 5.

Finally, we conclude our work in Section 6.

2. APPROXIMATE STRING

MATCHING
Generally, string matching techniques can be divided into: 1)

exact string matching and 2) approximate string matching.

The exact string matching problem is to find all occurrences

of a given pattern P in a string T, while the approximate string

matching tries to find substrings in the string T that are within

a predefined distance (called edit distance) from the given

pattern P [7].

There are two variants of approximate string matching

problem, k-mismatch problem and k-difference problem. We

focus on the k-difference problem in this paper. Given a

pattern P = p1 p2 … pm with length m, a string T = t1 t2 … tn

with length n, and a positive integer threshold k 0, the k-

difference problem is to find all substrings of T ending at tj (or

all positions j in T), whose edit distance, d(T, P), to P is at

most k (i.e., d k). The edit distance (Levenshtein distance

[8]), d between two strings is defined as the minimum number

of edits (insertion, deletion, and substitution/replacement of a

single character) needed to make the two strings equal [7]. For

example, we have a string x = abca and a pattern y = abba to

be matched in x. In this case, d(x, y) is equal to 1 since we

need one substitution in y (replace its third character with 'c')

in order to make x equal to y. Using the same method, we can

easily compute that d(abca, cca) = 2.

There are several well-known techniques for approximate

string matching, for example, dynamic programming [9, 10]

and bit-vector algorithm [5]. Using the classic dynamic

programming approach [9], the solution to the approximate

string matching problem is computed using an (m+1) (n+1)

dynamic programming (DP) matrix, C[0..m, 0..n] in which

each element C[i, j] is the minimum edit distance between

pattern p1 p2 … pi and any substring of T (ending at tj). After

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.14, May 2013

35

the computation process, all locations j such that C[m, j] k

are the solutions to the problem. For example, we want to find

the pattern bbba in the text bacabbbbac with d 2 (i.e., k = 2,

less than 2 differences), Figure 1 shows the DP matrix. As

shown in the figure, we can find 7 locations (shaded in the last

row) in the string that approximately match to the pattern. The

computation can be done in O(mn) time and O(m) space [11,

5]. Later, Ukkonen [10] improved this classic dynamic

programming approach, and reduced its running time to O(kn)

time. More complete survey on approximate string matching

can be found in [12] and [10].

3. BIT-VECTOR ALGORITHM
Myers [5] proposed a bit-vector algorithm for approximate

string matching. The idea of this algorithm is to process the

DP matrix using bit-parallelism. To parallelize the DP matrix,

the differences (deltas) between consecutive rows and

columns of the DP matrix, C[i, j] are used (instead of their

absolute values) to encode the DP matrix using bit-vectors

[13]. Let

hi, j = C[i, j] – C[i, j–1] {–1, 0, +1}

vi, j = C[i, j] – C[i–1, j] {–1, 0, +1}

di, j = C[i, j] – C[i–1, j–1] {0, +1}

where hi,j, vi,j, and di,j are the horizontal adjacency

property, vertical adjacency property, and diagonal property,

respectively. These delta vectors are encoded as bit-vectors

using the following Boolean variables,

VPi, j = (vi, j = +1)

VNi, j = (vi, j = –1)

HPi, j = (hi, j = +1)

HNi, j = (vi, j = –1)

D0i, j = (di, j = 0)

Then we have these equivalences,

HNi, j VPi, j–1 AND D0i, j

VNi, j HPi–1, j AND D0i, j

HPi, j VNi, j–1 OR NOT (VPi, j–1 OR D0i, j)

VPi, j HNi–1, j OR NOT (HPi–1, j OR D0i, j)

D0i, j (pi = tj) OR VNi, j–1 OR HNi–1, j

where

(1) HNi, j is the horizontal negative delta vector.

(2) VNi, j is the vertical negative delta vector.

(3) HPi, j is the horizontal positive delta vector.

(4) VPi, j is the vertical positive delta vector.

(5) D0i, j is the diagonal zero delta vector.

(6) (i, j) denotes row i and column j.

(7) p denotes the pattern.

(8) t denotes the text string.

The bit-vector algorithm for approximate string matching

consists of 2 stages: 1) preprocessing and 2) searching,

scoring and output. Let is the alphabet and B[c] | c is

a bit-vector. The preprocessing stage does the computation of

bit-vectors. These two stages are shown in Algorithm 1 and

Algorithm 2. We refer the reader to [5], [7] and [13] for the

details of the algorithm.

Algorithm 1 Preprocessing

for c do

B[c] = 0m

end for

for j 1 to m do

B[pj] = B[pj] | 0
m–j10j–1

end for

VP = 1m

VN = 0m

score = m

Algorithm 2 Searching, scoring and output

for pos 1 to n do

X = B[tpos] | VN

D0 = ((VP + (X & VP)) VP) | X

HN = VP & D0

HP = VN | ~ (VP | D0)

X = HP << 1

VN = X & D0

VP = (HN << 1) | ~ (X | D0)

{Scoring and output:}

if (HP & 10m–1) 0m then

score+ = 1

else

if (HN & 10m–1) 0m then

score– = 1

end if

else

if (HP & 10m–1) = 0m then

score = score

end if

end if

if score k then

print(pos)

end if

end for

4. IMPLEMENTATION AND TESTING
We implemented the bit-vector algorithm described in Section

3 using MATLAB. The algorithm requires 3 inputs: the string

(T), pattern (P), and threshold/maximum difference constant

(k). The string is the Rhodopsin protein sequence of a species

and the pattern is the Rhodopsin protein sequence from one

other species. After reading the inputs, the pattern is then

extracted to get the all different characters of the pattern.

Here, we get the A, C, G, and T characters. Therefore, we get

the alphabet = {A, C, G, T}. The bit-vector B[c] is then

created according to preprocessing stage described in previous

section. The flowchart of the algorithm implementation is

shown in Figure 2.

Fig 1: DP matrix example

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.14, May 2013

36

The species data and Rhodopsin sequence data are taken from

Universal Protein Resource (UniProt) Consortium website

[14] and DNA Data Bank of Japan (DDBJ) website [15],

respectively. The species samples are taken from class Aves,

superorder Neognathae, and order Galliformes. Of the 244

species taken, there were 25 species which have Rhodopsin

protein. Some of the species are as follows: Crax alector

(black curassow), Aepypodius arfakianus (wattled

brushturkey), Megapodius eremita (Melanesian scrubfowl),

Gallus gallus (red junglefowl), and Colinus cristatus (crested

bobwhite). These 25 species are from 19 genera, one

subfamily of Phasianidae (Perdicinae), and five families

(Cracidae, Megapodiidae, Numididae, Odontophoridae and

Phasianidae). The complete list of family, genus, and species

used in the experiments is shown in Table 1.

In our experiments, we compared the Rhodopsin protein

sequence from a species to other species within the same and

different genera, families, and orders. Each species'

Rhodopsin protein sequence is compared to the other 24

species. Therefore, there are 600 comparisons for all species.

The result then is categorized by species that belong to the

same genus, the same family, and the same order.

Table 1. List of family, genus and species

Family Genus Species

Cracidae Crax Crax alector

Megapodiidae Aepypodius Aepypodius arfakianus

 Alectura Alectura lathami

 Eulipoa Eulipoa wallacei

 Leipoa Leipoa ocellata

 Macrocephalon Macrocephalon maleo

 Megapodius Megapodius eremita

 Megapodius freycinet

 Megapodius layardi

 Megapodius pritchardii

 Megapodius reinwardt

 Megapodius tenimberensis

 Talegalla Talegalla fuscirostris

Numididae Numida Numida meleagris

Odontophoridae Colinus Colinus cristatus

Phasianidae - Gallus gallus

 Alectoris Alectoris chukar

 Coturnix Coturnix coturnix

 Perdix Perdix perdix

 Rollulus Rollulus roulroul

 Gallus Gallus gallus

 Pavo Pavo cristatus

 Dendragapus Dendragapus obscurus

 Lagopus Lagopus lagopus

 Tetrastes Tetrastes bonasia

Example of the matching process is shown in Figure 3. The

top part of the figure shows the Rhodopsin sequence of two

species from the same genus (Megapodius freycinet and

Megapodius layardi from genus Megapodius). In this example

we took only a part of the Rhodopsin protein sequence for the

sake of clarity. We used k = 0 in this example. It means that

the string is compared to the pattern with maximum difference

= 0. The result shows that we have one match substring (the

position is indicated with the uppercase letter). The bottom

part is the matching process of two species from the same

family with k = 2. In this case, we also have one match. As

shown in the figure, the number of differences is 2 (the

positions in the figure are underlined). All the experiments

were executed on 1.66GHz Intel Core 2 Duo CPU, 1 GB

RAM.

5. RESULTS AND DISCUSSION
As stated earlier, the purpose of this research is to find out

whether a Rhodopsin protein sequence from a species is

approximately match to the Rhodopsin protein sequence of

other species from the same and different genus, family and

order. The experiment results showed that comparing all six

species from the genus Megapodius (total = 30 comparisons)

using k = 0, except for Megapodius eremita, resulted in one

match. In case of Megapodius eremita compared to the other

five species using k = 0 to k = 15, there were no match. Only

if k = 16, we can have one match. For k > 16, the number of

match substring is more than one. The average of k for all

comparisons is 2.67.

Comparing all the species (12 species) from different genera

in family Megapodiidae (total = 132 comparisons), if Alectura

lathami is compared to the other 11 species, there are 9

comparisons that need at least k = 22 in order to get matched

substring. The average of k for all comparisons is 5.99.

Fig 2: Application flowchart

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.14, May 2013

37

For the comparison of all 25 species from different genera and

different families in same order (Galliformes), there are total

of 600 comparisons. From these comparisons, we found that

there is one comparison (Lagopus lagopus compared to Pavo

cristatus) that need at least k = 26 to get matched substring.

The average of k for all comparisons is 11.72. Some results of

the experiments are shown in Table 2.

From the experiment results, it is found that species from the

same genus and family have a smaller average of k compared

to the species from different genus in the same family. Also,

species from different genus in same family have smaller

average of k compared to species from genus in different

families.

6. CONCLUSION
This paper presented the implementation of bit-vector

algorithm for approximate string matching on Rhodopsin

protein sequence from the species of class Aves. The

experiment results showed that, in order Galliformes, the

Rhodopsin protein sequence from the species in same genus

(Megapodius, family Megapodiidae) is approximately match

each other with k = 0 and k = 16. For species from other

genera in same family, the Rhodopsin protein sequences

approximately match with 0 k 22. Furthermore, the

Rhodopsin protein sequence of species from different family

in same order is approximately match each other with 0 k

26.

7. REFERENCES
[1] Lok-Lam Cheng, David W. Cheung, and Siu-Ming Yiu.

Approximate string matching in {DNA} sequences. In

Proceedings of the Eight International Conference on

Database Systems for Advanced Applications,

{DASFAA} '03, pages 303–310, Washington, DC,

USA, 2003. IEEE Computer Society.

[2] Zheng Liu, Xin Chen, James Borneman, and Tao Jiang.

A Fast Algorithm for Approximate String Matching on

Gene Sequences. 2005.

[3] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene

W. Myers, and David J. Lipman. Basic local alignment

search tool. Journal of Molecular Biology, 215(3):403–

410, October 1990.

[4] D J Lipman and W R Pearson. Rapid and sensitive

protein similarity searches. Science (New York, N.Y.),

227(4693):1435–1441, March 1985.

[5] Gene Myers. A fast bit-vector algorithm for approximate

string matching based on dynamic programming. Journal

of the ACM, 46(3):395–415, May 1999.

[6] B.J. Litmann and D.C. Mitchell. Rhodopsin structure and

function. In A.G. Lee, editor, Rhodopsin and G-Protein

Linked Receptors Vol.2, Part A, pages 1–32. JAI Press,

1996.

[7] Heikki Hyyro. Explaining and extending the bit-parallel

approximate string matching algorithm of Myers.

Technical report, Dept. of Computer and Information

Sciences, University of Tampere, Finland, 2001.

[8] V. I. Levenshtein. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics

Doklady, 10:707–710, 1966.

[9] Peter H Sellers. The theory and computation of

evolutionary distances: Pattern recognition. Journal of

Algorithms, 1(4):359–373, December 1980.

[10] Esko Ukkonen. Algorithms for approximate string

matching. Information Control, 64(1-3):100–118, March

1985.

[11] Petteri Jokinen, Jorma Tarhio, and Esko Ukkonen. A

comparison of approximate string matching algorithms.

Software - Practice and Experience, 26(12):1439–1458,

December 1996.

[12] Gonzalo Navarro. A guided tour to approximate string

matching. ACM Computing Survey, 33(1):31–88, March

2001.

[13] D. Huson. Bit-Vector-based Approximate String

Matching. http://ab.inf.uni-

tuebingen.de/teaching/ws04/seqana/script/bitvector.pdf,

2004.

[14] Universal Protein Resource (UniProt) Consortium

website}. http://www.uniprot.org/taxonomy.

[15] DNA Data Bank of Japan (DDBJ) website.

http://www.ddbj.nig.ac.jp.

Fig 3: Example of matching process

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.14, May 2013

38

Table 2. Ezample of experiment result

Species (String) Species (Pattern) k # match Position in string

Megapodius freycinet Megapodius layardi 0 1 52

 1 3 51, 52, 53

 2 5 50, 51, 52, 53, 54

 3 7 49, 50, 51, 52, 53, 54, 55

Megapodius freycinet Megapodius eremita 0-15 0 -

 16 1 36

 17 3 35, 36, 37

Aepypodius arfakianus Alectura lathami 0-21 0 -

 22 10 111, 112, 113, 151, 152, 153, 154, 737, 738, 739

Pavo cristatus Alectoris chukar 0-1 0 -

 2 1 52

 3 3 51, 52, 53

 4 5 50, 51, 52, 53, 54

Dendragapus obscurus Colinus cristatus 0-19 0 -

 20 2 349, 350

 21 8 141, 142, 156, 158, 348, 349, 350, 351

IJCATM : www.ijcaonline.org

