
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

10

Rapid and Proactive Approach on Exploration of Bugs in

Web based Software Development

A.Ramachandran1
Assistant Professor

Dept.of . CSE
University College of
Engineering panruti

Tamil Nadu,India

T.C.Sankar2
Final year M.E CSE
University College of

Engineering Tiruchirapplli
Tamil Nadu, India

S.Ramachandran3

M.E CSE
University College of

Engineering Tiruchirapplli
Tamil Nadu, India

ABSTRACT

One of the most difficult and important software quality

assurance/testing tasks is to estimate the expected number of

bugs in a given software module or a project. Good estimation

methods are important for evaluating the project perform once

in an optimized manner and deciding which quality assurance

strategies are most appropriate and effective. The core

objective of this paper is to define a combined testing strategy

to identify the more defects and to validate the testing among

code inspection and test driven development (TDD) using

open source testing tools. Based on the test rules, evaluating

the functionalities and the testing will be done automatically

upon user acceptance. After evaluating the test cases, the

results will be populated for further development. Though

both the testing seem to give effective result in maximum

level of testing when conducted individually, the best output

by testing can be achieved through the combination of both,

TDD and code sniffer testing. Our approach plays a major

role in detecting and managing fault present in the software

development. Implementation of this methodology proves to

be cost effective and saves analyzing time. As a result this

shows the improvement in the quality of the product of the

software test finally satisfying the customers.

General Term

Software testing and bugs optimization using code inspection

and Test Driven development (TDD), Code sniffer, Code

Review, Code reading, Unit Test , Integration Test .

Keywords

Software Engineering, Software Assessment, Testing

Ontology, Code walkthrough, Software Testing, Test Driven

Development (TDD), automated Code sniffer, Refractor.

1. INTRODUCTION

With the rapid growth of more complex systems, the chance

of introduction of bugs, faults and failures increases in many

stages of software development life-cycle [2].

Testing is a scheduled process carried out by the software

development team to capture all the possible errors, missing

operations and also for a complete verification to verify

objectives and satisfy user requirement. The design of tests for

software and other engineering products can be as challenging

as the initial design to the product itself. Test Driven

Development (TDD) is a software development process to

perform a task to find in which unit test cases are

incrementally written prior to code implementation. In general

Extreme Programming developer practice Test Driven

Development (TDD) [3]. They initiate developing code by

writing a failing executable unit test that demonstrates the

existing code base that does not currently possess some

ability. Once they have a fault in unit test, they then write the

production code to make the test pass. When the test is

passing, they clean up the code, refactoring out duplication,

making the source code more readable, and improving the

design. Although results have been mixed, some research has

shown that TDD can reduce software defects by between 18

and 50 percent [11], [12], with one study showing a reduction

of up to 91 percent [13], with the added benefit of eliminating

defects at an earlier stage of development than code

inspection.

Numerous automated code sniffers help you easily to detect

different inconsistencies. In code sniffer we can find that all

inspections are grouped by their goals and sense. Every

inspection has an appropriate description. The main

contribution of this paper is the software fault classification

scheme for the end to end software system. Our classification

scheme allows us to categorize distinctly each fault according

to the specified criteria. It gives a detailed view of the risks

involved in the software. Based on these bug priorities, an

appropriate mitigation process can be implemented to ensure a

quality of the system. The results show that our approach

could effectively optimize the time and cost involved when

compared to the existing systems. The exposure inherent in

the computing system should be addressed so they can be

eliminated before exploited in production system. This

ontological software assessment process is implemented

against a real world system and it successfully identifies

major loop hole present in the system.

Prior research has clearly defined the key factors involved

with successfully implementing code inspection, such as

optimal software review rates [10-13] and inspector

training requirements [11], whereas TDD is not as clearly

defined due to its lack of maturity.

TDD is a software engineering development strategy that

requires that computerized tests be written prior to writing

functional test code in small, quick iterations [3][5].

1. Writing a (extremely) small number of

computerized unit test case(s)

2. Running the innovative unit test case(s) to ensure

they do not pass

3. Implementing code which should allow the

innovative test cases to pass

4. Re-running the unit test cases to ensure software

system passing with the new code

5. Refractor the code to be simple and fit with the

overall design.

mailto:ramautpc@gmail.com1%0ET.C.Sankar2
mailto:ramautpc@gmail.com1%0ET.C.Sankar2

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

11

6. Periodically re-running all the test cases in the

source code base to ensure that the new source code does not

break any previously-running test cases.

Test driven development forces the developer to think about

the acceptance criteria for a module, allowing the intelligence

to even consider boundary cases and validations. Test driven

development also allows faking inputs/outputs, letting the

developer focus on the real business logic and most

importantly, writing test cases beforehand reduces bugs in the

system.

11..22 CCooddee SSnniiffffeerr

A constructive review of a fellow developer’s code required a

sign-off from another team member before a developer is

permitted to check in changes or new code [4].

Mechanics of code reviews

Who: Original developer and reviewer, sometimes together in

person, sometimes offline.

What: Reviewer gives suggestions for improvement on a

logical and/or structural level, to conform to previously

agreed upon set of quality standards.

Feedback leads to refactoring, followed by a second code

review. Eventually reviewer approves code.

When: The code author has finished a coherent system change

that is otherwise ready for check in the changes should be

made, change shouldn't be too large or too small.

Change should be done before committing the code to the

repository or incorporating it into the new build.

Code reviews are a very common industry practice.

Inspection: A more formalized code review with:

Several reviewers looking at the same piece of code, A

specific checklist of kinds of flaws to look for possibly

focusing on flaws that have been seen previously and focusing

on high-risk areas such as security, and specific expected

outcomes (e.g. report, list of defects)

Walkthrough: Informal discussion of code between author

and a single reviewer

Code reading: Reviewers look at code by themselves

(possibly with no actual meeting)

Automated Code sniffer is a software engineering

development strategy that tokenizes source code (files) to

detect violations of a defined coding standard. It is an

essential development process that ensures whether the

software code remains clean and consistent. It can also help

prevent some common semantic errors made by developers.

With the rapid growth of more complex systems, the chance

of introduction of bugs, faults and failures increases in many

stages of software development life-cycle [2].

Testing is a scheduled process carried out by the software

development team to capture all the possible errors, missing

operations and also for a complete verification to verify

objectives and satisfy user requirement. The design of tests for

software and other engineering products can be as challenging

as the initial design to the product itself. Test Driven

Development (TDD) is a software development process to

perform a task to find in which unit test cases are

incrementally written prior to code implementation. In general

Extreme Programming developer practice Test Driven

Development (TDD) [3]. They initiate developing code by

writing a failing executable unit test that demonstrates the

existing code base that does not currently possess some

ability. Once they have a fault in unit test, they then write the

production code to make the test pass. When the test is

passing, they clean up the code, refactoring out duplication,

making the source code more readable, and improving the

design. Although results have been mixed, some research has

shown that TDD can reduce software defects by between 18

and 50 percent [11], [12], with one study showing a reduction

of up to 91 percent [13], with the added benefit of eliminating

defects at an earlier stage of development than code

inspection.

Numerous automated code sniffers help you easily to detect

different inconsistencies. In code sniffer we can find that all

inspections are grouped by their goals and sense. Every

inspection has an appropriate description. The main

contribution of this paper is the software fault classification

scheme for the end to end software system. Our classification

scheme allows us to categorize distinctly each fault according

to the specified criteria. It gives a detailed view of the risks

involved in the software. Based on these bug priorities, an

appropriate mitigation process can be implemented to ensure a

quality of the system. The results show that our approach

could effectively optimize the time and cost involved when

compared to the existing systems. The exposure inherent in

the computing system should be addressed so they can be

eliminated before exploited in production system. This

ontological software assessment process is implemented

against a real world system and it successfully identifies

major loop hole present in the system.

Prior research has clearly defined the key factors involved

with successfully implementing code inspection, such as

optimal software review rates [9-12] and inspector

training requirements [8], whereas TDD is not as clearly

defined due to its lack of maturity.

TDD is a software engineering development strategy that

requires that computerized tests be written prior to writing

functional test code in small, quick iterations [3][5].

7. Writing a (extremely) small number of

computerized unit test case(s)

8. Running the innovative unit test case(s) to ensure

they do not pass

9. Implementing code which should allow the

innovative test cases to pass

10. Re-running the unit test cases to ensure software

system passing with the new code

11. Refractor the code to be simple and fit with the

overall design.

12. Periodically re-running all the test cases in the

source code base to ensure that the new source code does not

break any previously-running test cases.

Test driven development forces the developer to think about

the acceptance criteria for a module, allowing the intelligence

to even consider boundary cases and validations. Test driven

development also allows faking inputs/outputs, letting the

developer focus on the real business logic and most

importantly, writing test cases beforehand reduces bugs in the

system.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

12

11..22 CCooddee SSnniiffffeerr

A constructive review of a fellow developer’s code required a

sign-off from another team member before a developer is

permitted to check in changes or new code [4].

Mechanics of code reviews

Who: Original developer and reviewer, sometimes together in

person, sometimes offline.

What: Reviewer gives suggestions for improvement on a

logical and/or structural level, to conform to previously

agreed upon set of quality standards.

Feedback leads to refactoring, followed by a second code

review. Eventually reviewer approves code.

When: The code author has finished a coherent system change

that is otherwise ready for check in the changes should be

made, change shouldn't be too large or too small.

Change should be done before committing the code to the

repository or incorporating it into the new build.

Code reviews are a very common industry practice.

Inspection: A more formalized code review with:

Several reviewers looking at the same piece of code, A

specific checklist of kinds of flaws to look for possibly

focusing on flaws that have been seen previously and focusing

on high-risk areas such as security, and specific expected

outcomes (e.g. report, list of defects)

Walkthrough: Informal discussion of code between author

and a single reviewer

Code reading: Reviewers look at code by themselves

(possibly with no actual meeting)

Automated Code sniffer is a software engineering

development strategy that tokenizes source code (files) to

detect violations of a defined coding standard. It is an

essential development process that ensures whether the

software code remains clean and consistent. It can also help

prevent some common semantic errors made by developers.

2. BACKGROUND AND RELATED

WORK

Recently, researchers have started to conduct studies on the

effectiveness of the Test-driven Development Practice, Code

sniffer and other testing strategies that are often adopted by

the software development.

2.1 Unit Testing

We adopt white box testing when using this testing technique.

This testing was carried out on individual components of the

software that were designed. Each individual module was

tested using this technique during the coding phase. Every

component was checked to make sure that they adhere strictly

to the specifications spelt out in the data flow diagram and

ensure that they perform the purpose intended for them [6].

All the names of the variables are scrutinized to make sure

that they are truly reflected of the element they represent. All

the looping mechanisms were verified to ensure that they

were as decided. Beside these, we trace through the code

manually to capture syntax errors and logical errors.

2.2 Integration Testing

After finishing the unit testing process, next is the integration

testing process. In this testing process we put our focus on

identifying the interfaces between components and their

functionality as dictated by the DFD diagram. The bottom up

incremental approach was adopted during this testing. Low

level modules are integrated and combined as a cluster before

testing [7]. Porter et al. [8, 9] performed experiments

comparing Ad Hoc Reading, Checklist-Based Reading, and

Scenario-Based Reading for software requirements

inspections using both student and professional inspectors.

The black box testing technique was employed here. The

interfaces between the components were tested first. This

allowed identifying any wrong linkage or parameters passing

early in the development process as it just can be passed in a

set of data and checked if the result returned is an accepted

one.

2.3 Validation Testing

Software testing and validation is achieved through a series of

black box tests that demonstrate conformity with

requirements. A test procedure defines specific test cases that

will be used to demonstrate conformity with requirements.

Both, the plan and the procedure are designed to ensure that

all functional requirements are achieved, documentation is

correct and other requirements are met. After each validation

test case has been conducted, one of the two possible

conditions exists. A deviation from specification is uncovered

and a deficiency list is created.

The deviation or error discovered at this stage in project can

rarely be corrected prior to scheduled completion. It is

necessary to negotiate with the customer to establish a method

for resolving deficiencies.

2.4 System Testing

System testing is a series of different tests whose primary

purpose is to fully exercise the computer-based system.

Although each test has a different purpose, all the work

should verify that all system elements have been properly

integrated and perform allocated functions. System testing

also ensures that the project works well in the environment. It

traps the errors and allows convenient processing of errors

without coming out of the program abruptly. Recovery testing

is done in such a way that failure is forced to a software

system and checked whether the recovery is proper and

accurate. The performance of the system is highly effective.

Software testing is a critical element of software quality

assurance and represents ultimate review of specification,

design and coding. Test case design focuses on a set of

technique for the creation of test cases that meet overall

testing objectives. Planning and testing of a programming

system involve formulating a set of test cases, which are

similar to the real data that the system is intended to

manipulate. Test cases consist of input specifications, a

description of the system functions exercised by the input and

a statement of the extended output. Though testing involves

producing cases to ensure that the program responds, as

expected, to both valid and invalid inputs, that the program

perform to specification and that it does not corrupt other

programs or data in the system.

In principle, testing of a program must be extensive. Every

statement in the program should be exercised and every

possible path combination through the program should be

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

13

Write Unit Test

de

Implementing code which
should allow the innovative

test cases to pass

Running the unit test
case(s) to Ensure they

do not pass
Re-running the unit test cases

to ensure software system
passing with the new code

Test

FAIL PASS

Bug fixing

FAIL

Test

PASS

Run the Test Case

Test
FAIL

Refractor the code to be
simple and fit with the overall

design

PASS

executed at least once. Thus, it is necessary to select a subset

of the possible test cases and conjecture that this subset will

adequately test the program.

2.5 Component level testing:

To perform testing at the components level with Process

server and Performance server which are integrated with work

flow engine by checking the clustered environment, staging

and production environment.

LLooaadd TTeesstt SScceennaarriiooss::

To customize load testing scenarios using different test cases,

load levels, load distributions etc and to distribute concurrent

users across remote server machines to simulate extreme loads

and/or test from different locations.

Application in Clustered Environment:

To check the application in clustered environment if working

against the same shared runtime data and same user logins and

requests simultaneously from multiple browsers to note the

amount of concurrent access to data will lead to potential data

corruption.

Methodology Overview

Data-driven testing is the creation of interacting test scripts

together with their related data that results in a framework

used for the methodology.

Modularity-driven testing is the test script modularity

framework that requires the creation of small, independent

scripts that represent modules, sections, and functions of the

application-under-test.

Keyword-driven testing also known as table-driven testing or

action-word testing, is a software testing methodology for

automated testing that separates the test creation process into

two distinct stages: a Planning Stage, and an Implementation

Stage.

The hybrid is the Test_Automation_Framework this is what

most frameworks evolve into overtime and multiple projects.

The most successful automation frameworks generally

accommodate both Keyword-driven testing as well as Data-

driven testing.

2.6 General Test automation Expectations

Automation frame work should handle following testing

activities:

1) Perform the Load, stress testing with least or no

manual intervention.

2) Should be able to perform regression testing.

3) Should have low maintenance cost.

4) Should generate comprehensive Bug analysis report.

5) Should have easy test results interpretation.

6) Should be able to adopt new changes without much

effort.

3. IMPLEMENTATION

With the rapid growth of more complex systems, the chance

of introduction of faults and failures increases in many stages

of software development life-cycle [8].

TDD (Test Driven Development) model is common practice

of most of the company which involve with the long time

projects. It helps to keep the fixed behavior of functions over

the development stage. The functions are implemented after

implementing experiment methods for that function. After

implementing the function, run the tests and if any test is

fault, again modify the function. This process repeats until the

all tests are passing.

Test method is a function which checks whether the specific

behavior of a function is correct. Any function can have at

least two test methods of which one can be a success test and

one a failure test. In long time projects like open source

projects, the functions are frequently modified by the

developers during a long time. If the modified function is not

given the previous behavior of that function, the output for

other places will be going wrong. It can be cause to failures.

By writing tests this problem can be reduced. Before and after

modifying the test cases, by running the tests, developer can

be verify the function behave correctly. As well by going

through the test cases helps even understand what actually

function does.

3.1 SStteeppss iinn TTeesstt--DDrriivveenn DDeevveellooppmmeenntt

The test-driven development process consists of the steps

shown in Fig. 1

Fig.1. Test driven development process flow.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

14

The steps can be summarized as follows:

1. Create the test code. Use a computerized test

framework to generate the test code. The test code drives the

development of functionality.

2. Write/Modify the functional code. Write the

functional code for the application block so that it can pass all

test cases from the test code. The first iteration involves

developing new functionality, and subsequent iterations

involve modifying the functionality based on the failed test

cases.

3. Create additional tests. Develop additional tests for

testing of the functional code.

4. Test the functional code. Test the functional code based

on the test cases developed in Step 3 and Step 1. Repeat steps

2 through 4 until the code is able to pass all of the test cases.

5. Refactor the code. Modify the code so that there is no

dead code or duplication. The code should adhere to best

practices for maintainability, performance, and security.

3.2 PPHHPP CCooddee SSnniiffffeerr is a PHP5 script that tokenizes

and "sniffs" PHP, JavaScript and CSS files to detect violations

of a defined coding standard. It is an essential development

tool that ensures code remains clean and consistent. It can also

help prevent some common semantic errors made by

developers

The most common tasks that are covered by the static code

analysis are:

1. Locating dead code.

2. Improving code structure and maintainability.

3. Conforming to coding guidelines and standards.

4. Conforming to specifications.

Code sniffer interface defines two methods that must be

implemented; register () and process ().

The register () method allows a sniff to subscribe to one or

more token types that it wants to process. Once Code Sniffer

encounters one of those tokens, it calls the process () method

with the Code Sniffer File object (a representation of the

current file being checked) and the position in the stack where

the token was found. We are interested in single line

comments. The token_get_all () method that Code Sniffer

uses to acquire the tokens within a file distinguishes doc

comments and normal comments as two separate token types.

4. RESULT AND DISCUSSION

The purpose of this study is to compare the fault rate,

identified by both the methodology TDD and Code sniffer. As

per our analysis both has advantages and disadvantages. The

combined use of code sniffer and TDD is more effective than

either method alone.

4.1 Test Driven Development.

A PHPUNIT test is a method of evaluating the Bugs of a

computer system by simulating a test case. The process

involves an active analysis of the system for any weaknesses,

technical flaws.

The study included the Stockpile class lets us safely withdraw

any amount of money, returning an error code in case the $

amount withdrawn exceeds our availability.

Phpunit test checks every function of Stockpile class. A test

suite is normal PHP class inherited from PHPUnit_TestCase

containing test functions, identified by a leading 'test' in the

function name.

In the test function an expected value has to be compared with

the result of the function to test. The result of this compare

must delegate to a function of the assert*()-family, which

decides if a function passes or fails the test.

The contract for the Stockpile class requires methods to get

and set the Stockpile balance, as well as methods to deposit

and withdraw money. It also specifies that the following two

conditions must be ensured:

The Stockpile initial balance must be zero, the Stockpile

balance cannot become negative.

The Stockpile class before we write the code for the class

itself. We use the contract conditions as the basis for the tests

and name the test methods accordingly, as shown in Fig.2.

The PHPUnit command-terminal test runner can be

invoked through the PHPunit script. The following

code shows how to run tests with the PHPUnit command-line

test runner.

Fig.2. Tests for the Stockpile class using TDD

For each experiment run, the PHPUnit terminal tool prints one

character to indicate augmentation.

. => Printed when the test succeeds.

F => Printed when an assertion fails while running the test

method.

E => Printed when an error occurs while running the test

method.

S => Printed when the test has been skipped.

I => Printed when the test is marked as being incomplete or

not yet implemented.

Our experiment result shows that there is one success and two

assertions are fails and also indicate the line number of bugs.

The Stockpiletest.php is the name of the file. 17 is the line

number in question, and it is clear that this is an error. The

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

15

brief message here is quite helpful because it says exactly

what was wrong. It is explain about the interface files error,

The Stockpile.php is the name of the interface file. 23 is the

line number in question, and it is clear that this is an error in

the interface.

In the Test-Driven approach, the code needed to make the

tests pass. However this methodology is still in its initial

stages of development, as it suffers from faults and bugs

that prevent the users from trusting it.

4.2 Code Sniffing and Code Review

Although the primary purpose for conducting code reviews

throughout the SDLC life cycle is to recognize software

defects in the code, the reviews can also be used to enforce

coding standards in a uniform manner. Loyalty to a coding

standard can only be sufficient when followed throughout the

software project from inception to completion. Built-in coding

assistance, phpcs provides code style check through

integration with the PHP Code and its output is a list of flaws

found, with an error message and line number supplied. The

study also included the same Stockpile class, as shown in

Fig.3.

Fig.3. Tests for the Stockpile class using Code Sniff.

4.3 Comparison of TDD and Code Sniffer

testing result

Both the methods are producing the fault report including the

Line no. In the above example Stockpile class TDD method

explored the logical error in the line no 16, 17 and 23, shown

in Fig.2 and while applying the code sniffer method to the

same Stockpile class explored the fault in different line no 1,

2, 4, 5, 9, 14 and 20 shown in Fig.3. Developer can identify

the line of code where the bug actually occurs; hence

developer can fix the bug in the same process. By applying

the collaborative approach, Both TDD and Code sniff we

obtained the more effective testing result, shown in Table 1.

4.4 Combined analysis report (End to End

testing using TDD and Code Sniff)

End-to-end testing is a methodology used to test whether the

flow of an application is performing as designed from start to

finish. Our approach will be more economical to build and

match the requirements mentioned in the scope of the

application.

Fig.4. Combined analysis report (End to End testing using

TDD and Code Sniff)

We have analyzed the software fault and bugs categories by

TDD and Code Sniff and formed the combined analysis report

shown in Table 2. Results show that our approach could

effectively optimize the time and cost to find more number

bugs in a software application shown in Fig 4.

TABLE 1 Comparison of TDD and Code sniffer testing

result

Sl. Project/File Name

LOC
TDD
(A)

Code

Sniff

(B)

Total

Error =

(A+B)

Time
(Sec)

1 Stockpile.php 28 2 7 9 0.01

2 Stockpiletest.php 28 2 7 9 0.01

3 AbstractDataSet.php 20 3 4 7 0.01

4 AbstractTable.php 34 4 5 9 0.01

5 AbstractTableMetaData.php 44 8 10 18 0.01

6 AbstractXmlDataSet.php 66 4 3 7 0.01

7 CompositeDataSet.php 55 5 34 39 0.01

8 CsvDataSet.php 663 45 120 165 2

9 DataSetFilter.php 63 3 10 13 0.01

10 DefaultDataSet.php 10 7 44 51 0.01

11 DefaultTable.php 333 9 20 29 1

12 DefaultTableIterator.php 66 3 10 13 0.01

13 DefaultTableMetaData.php 33 4 12 16 0.01

14 FlatXmlDataSet.php 44 3 14 17 0.01

15 IDataSet.php 41 10 19 29 0.01

16 IPersistable.php 344 33 56 89 1

17 ISpec.php 455 44 78 122 1

18 ITable.php 55 12 14 26 0.01

19 ITableIterator.php 189 56 56 112 0.01

20 ITableMetaData.php 12 2 10 12 0.01

21 Persistors 55 8 17 25 0.01

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

16

5. SUMMARY AND CONCLUSIONS

In this research paper we have discussed the characteristics of

Testing and compared the software defect rate. Existing

methodologies spend more time and cost to find the Software

faults. Implementation of automated testing is done with two

methods of software defect reduction: Test-drive development

(TDD) and code sniffer. Earlier research has indicated that

TDD is effective at reducing defects [1]. Yet, their report

stands or seems to be incomplete without code sniffer method

on detecting the software semantics error.

Accordingly, we are considering both the methods with their

advantages and disadvantages to optimize a better solution. So

per this analysis, we could sniff out that the combined use of

code sniffer and TDD is more effective than either method

alone. Hence, we could conclude that by combining the

methods, we can optimize time & cost, such that the

Bugs/Software fault can be eliminated before exploited in the

software deployment in the Go live or production server.

6. ACKNOWLEDGMENTS

The authors are grateful to use of their software testing and

code coverage tool. They also thank the study Participants and

the inspectors for their time and effort, for inspect to the

experiments.

 7. REFERENCES

[1] Jerod W. Wilkerson, Jay F. Nunamaker Jr., and Rick

Mercer, Comparing the Defect Reduction Benefits of

Code Inspection and Test-Driven Development, IEEE

transactions on software engineering, Vol. 38, No. 3,

2012.

[2] B. Marick, The craft of software testing, Prentice

Hall.1995.

[3] P.M. Johnson, “An Instrumented Approach to Improving

Software Quality through Formal Technical Review,”

Proc. 16th Int’l Conf. Software Eng., pp. 113-22, 1994.

[4] Efficient Object-Oriented Integration and Regression

Testing Yves Le Traon, Thierry Jéron, Jean-Marc

Jézéquel, and Pierre Morel.

[5] A.A. Porter and L.G. Votta, “An Experiment to Assess

Different Defect Detection Methods for Software

Requirements Inspections,” Proc. 16th Int’l Conf.

Software Eng., pp. 103-12, 1994.

[6] A.A. Porter, L.G. Votta Jr, and V.R. Basili, “Comparing

Detection Methods for Software Requirements

Inspections: A Replicated Experiment,” IEEE Trans.

Software Eng., vol. 21, no. 6, pp. 563-575, June 1995.

[7] M.E. Fagan, “Advances in Software Inspections,”

IEEE Trans. Software Eng., vol. 12, no. 7, pp. 744-

51, July 1986.

[8] T.Gilb and D. Graham, Software

Inspection. Addison-Wesley, 1993.

[9] W.S. Humphrey, A Discipline for Software Eng.,

ser. the SEI Series in Software Engineering.

Addison-Wesley Publishing Company, 1995.

[10] W.S. Humphrey, Managing the Software Process,

ser. The SEI Series in Software Engineering.

Addison-Wesley Publishing Company, 1989.

[11] B. George and L. Williams, “A Structured

Experiment of Test-Driven Development,”

Information and Software Technology, vol. 46, no. 5, pp.

337-342, 2004.

[12] E.M. Maximilien and L. Williams, “Assessing Test-

Driven Development at IBM,” Proc. 25th Int’l Conf.

Software Eng., pp. 564-9, 2003.

[13] N. Nagappan, M. E. Maximilien, T. Bhat, and L.

Williams, “Realizing Quality Improvement through Test

Driven Development: Results and Experiences of

Four Industrial Teams,” Empirical Software Eng.,

vol. 13, no. 3, pp. 289-302, 2008.

8. AUTHORS’ PROFILES

First Author: Ramachandran A received the B.E

Computer Science and Engineering from Madurai Kamaraj

University, M.E Computer Science and Engineering from

Annamalai University, M.B.A from Alagappa University and

currently pursuing Ph.D. in Computer Science and

Engineering from Anna University Chennai. He was a lecturer

in Srinivasa Institute of Engineering and Technology and

Assistant Professor in JJ College of Engineering and

Technology. He was senior Software Engineer in Mainframe

technology in Satyam Computer Services and worked several

projects for Fortune 500 companies. He is currently an

Assistant Professor of Computer Science and Engineering at

Anna University of Technology Tiruchirappalli, His current

field of interest is elicitation techniques for software

requirement specification and database and operating system

vulnerabilities. He is a life member of the ISTE.

Second Author: SankarT.C received B.Sc Physics from

Ramakrishna Mission Vivekananda College, Madras

University, M.C.A form Madras University, M.Phil from

Madurai Kamaraj University and currently pursuing M.E. in

Computer Science and Engineering from University College

of Engineering BIT,Trichy (Anna University Chennai). He

was a Assistant Professor and Head of the Department

Computer Application in Vel Tech Engineering College

Chennai and Assistant Professor in SAMS College of

Engineering and Technology. He is currently an Assistant

Professor of Computer Science and Engineering at Apollo

Engineering College, His current field of interest is bug

optimization techniques for software testing and data mining.

Third Author: Ramachandran S received his B.E/ME

Computer Science and Engineering from Anna University

Chennai. His current interests elicitation techniques for S/W

requirement specification, Database Tuning and MANET.

IJCATM : www.ijcaonline.org

