
International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

Task Scheduling of a Distributed Computing Software
in the Presence of Faults

Kamal Sheel Mishra
Department of Computer Engineering

Indian Institute of Technology
Banaras Hindu University, Varanasi, India

Anil Kumar Tripathi
Department of Computer Engineering

Indian Institute of Technology
Banaras Hindu University, Varanasi, India

ABSTRACT
Performance estimation of a distributed software is a challeng-
ing problem. A distributed software runs on multiple processing
nodes interconnected in some fashion. In such a situation computa-
tional load of a software is distributed onto the processing nodes
of the given system. Such a system makes use of an appropri-
ate task scheduling algorithm for obtaining a good performance.
The program used in this work emulates a distributed system .
An emulator gives the result like an actual system. The emula-
tor is of a fully connected distributed system in which any two
processors can directly communicate. The objective of this exper-
iment is to identify the task scheduling algorithm that also per-
forms well in the presence of communication fault delay occured
because of network failure or computation fault delay occured
because of no response from processors in a distributed system.

General Terms:
Distributed system, Task scheduling

Keywords:
Clustering, distributed computing, homogeneous systems,
scheduling, task allocation.

1. INTRODUCTION
Distributed computing software is factually a job that consists of
multiple tasks and the performance of the software heavily de-
pends on allocation of these tasks of the DCS (Distributed Com-
puting Software) onto the multiple processing nodes that need to
be employed for achieving concurrency for the purpose of en-
suring the possible reduction in the turnaround time of a DCS as
compared to its corresponding execution on a single processing
node in sequential manner.
A DCS can be modeled as a job represented as a task graph show-
ing the execution time of task, communication requirements
among the task and some possible precedence constraints and re-
lationships that need to be honored while executing these tasks of
a DCS job concurrently. Similarly the multiple processing node
distributed computing infrastructure can also be modeled as a
processor graph where nodes (vertices) of the graph represent
processing nodes along with their attributes showing capabili-
ties, and the links represent the connectivity between some two
nodes and communication speed /latency(delay) between the two
nodes.
A good performance of a DCS job can be ensured if the tasks are
appropriately mapped onto processing nodes of the distributed
computing system minimizing inter task communication over-

head considering the delays involved between the nodes and en-
suring fast computation on the processing nodes.
Such a mapping of task has been studied in literature as a task
scheduling problem in distributed computing systems.Many task
allocation algorithms have been proposed during the last two
decades. This program emulates a distributed system . An em-
ulator gives the result very much similar to an actual system.
The emulator is of a fully connected distributed system in which
any two processors can directly communicate. Here homoge-
nious nodes have been considered. The main objective of this
experiment is to find out the task scheduling algorithm that best
performs in the presence of communication fault delay or com-
putation fault delay as well as to identify the algorithm that per-
forms worst in the presence of above faults. For experiment pur-
pose we have taken only six Task Scheduling Algoriths out of
many.Further, Communication fault delay may be constant or
random. Similarly Computation fault delay may be constant or
random. The above faults are evaluated under following three pa-
rameters: (i) Normalized schedule length, (ii) Average number of
processors used and (iii) Average running time. Using above pa-
rameters we identify the algorithms that performs best as well as
worst in the presence of faults in the distributed system.
This paper is organised as follows. Section 2 outlines the com-
putation and communication fault delay which may be present
in the distributed environments. Section 3 discusses the different
task scheduling algorithms used for performance evaluation. In
this paper we are considering only six task scheduling algorithms
for experiment purpose. In section 4 different performance eval-
uation parameters used are disscussed. Section 5 shows the re-
lated work done in this area. Section 6 shows the experimental
setup used in this work. Section 7 shows the performance results
for constant fault delays. Section 8 gives the performance results
for random fault delay. Section 9 summarizes the performance
results as well as the future work to be done. Lastly section 10
gives the list of different references used in writing this paper.

2. COMPUTATION AND COMMUNICATION
FAULT DELAY IN DISTRIBUTED
ENVIRONMENTS

2.1 Computation fault delay
Computation fault delay may occur in a distributed system due
to hardware failure or machine not responding or a processor is
not ready.

2.2 Communication fault delay
Communication fault delay may occur because of network fail-
ure or congession of network or link failure.

1

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

2.3 Computation and Communication fault delay
it is possible that both communication and computation fault de-
lay may occur simultaneously in the system because of hardware
or network failure.

3. TASK SCHEDULING ALGORITHMS USED
FOR PERFORMANCE EVALUATION

We considered six task sheduling algorithms for performance
evaluation[1].
1. CPPS algorithm: The Cluster pair priority scheduling algo-
rithm is a cluster dependent function of tasks.
2. DCCL algorithm: The Dynamic computation communication
load schedule algorithm is based on a computation and commu-
nication time of the module and current allocation.
3. DSC algorithm: The Dominant sequence clustering algorithm
is based on the critical path of the graph.
4. EZ algorithm: Edge zeroing algorithm is used to minimize the
communication delay. based on edge weight it select clusters for
merging []
5. LC algorithm: The linear clustering algorithm is used to create
clusters in a parallel system. It merges nodes iteratively to form
a single clusster based on critical path.
6. RDCC algorithm: The Randomized computation communica-
tion load scheduling algorithm is the dynamic priority version of
randomized computation and communication load algorithm.

4. PERFORMANCE EVALUATION
PARAMETERS USED

1 NSL : Normalized schedule length[1] is the schedule lenght
over the sum of computation cost on the critical path of the task
graph.

NSL = SL/
∑
v∈CP

w(v) (1)

where SL is the schedule length and w(v) is the computation
cost. 2 Average number of processor used: It is the average of
the number of pocessors used in computation of the task graph.
3 Average running time: It is the average of running time used
in computing the task in the presence of computation fault, com-
munication fault or both (computation and communication fault)
delay.

5. RELATED WORK
Alexey lastovetsky[2] focused on using parallel computing tech-
nologies to accelerate the testing of a complex distributed soft-
ware system.Cyril Briquet[3] supported on evaluating the perfor-
mance of scheduling algorithms. Performance is evaluated ex-
perimentally or through simulation. Giovanni Denaro[4] worked
on early performance testing of distributed software applica-
tion.Jmes D herbsleb[5] worked on the extent of delay in a dis-
tributed software development organization and explore possi-
ble mechanism for this delay. Raul Ceretta Nunes [6] focuses
on modeling communication delays in distributed software sys-
tems using time series. Yizheng Yao [7] presented a frame-
work for testing distributed software components. Roger Fergu-
son [8] presented a chaining approach for automated software
test data generation for distributed software. Carl K. Chang [9]
presented a specification based testing method for distributed
software.kwok[10] worked on benchmarking and comparison
of the task graph scheduling algorithms. kequin[11] focuses on
scheduling parallel tasks on multiprocessor computers with ef-
ficient power management. Stankovic[12] worked on evaluation
of a flexible task scheduling algorithm for distributed hard real
time systems. Tondre[13] presented a technical computation and
communication delay in distributed system. Nunes[14] worked

on modeling communication delays in distributed systems using
time series.

6. EXPERIMENTAL SETUP
EVALUATE-TIME(T, cluster)
01 time← 0
02 eventq ← empty
03 icount← 0
04 dcount← 0
05 for k ← 1 to |V |
06 do status(k)← idle
07 readyq(k)← empty
08 backlink(k)← 0
09 for k ← 1 to |V |
10 do for each (k,m) ∈ E
11 do backlink(m)← backlink(m) + 1
12 for k ← 1 to |V |
13 do if backlink(k) = 0
14 then INSERT-QUEUE(cluster(k), k)
15 for k ← 1 to |V |
16 do if backlink(k) = 0
17 then if status(cluster(k)) = idle
18 then l←DELETE-QUEUE(cluster(k))
19 INSERT-HEAP(l, l, time+ml)
20 status(cluster(l))← busy
21 icount← icount+ 1
22 while true
23 do (i, j, t)← DELETE-HEAP()
24 dcount← dcount+ 1
25 time← t
26 if (icount = (|V |+ |E|)) and (dcount = (|V |+ |E|))
27 then break
28 if i = j
29 then status(cluster(i))← idle
30 for each (i,m) ∈ E
31 do if cluster(i) 6= cluster(m)
32 then INSERT-HEAP(i,m, time+ wim)
33 else INSERT-HEAP(i,m, time)
34 icount← icount+ 1
35 l← DELETE-QUEUE(cluster(i))
36 if l 6= error
37 then INSERT-HEAP(l, l,ml)
38 icount← icount+ 1
39 status(cluster(l))← busy
40 else backlink(j)← backlink(j)− 1
41 if backlink(j) = 0
42 then INSERT-QUEUE(cluster(j), j)
43 if status(cluster(j)) = idle
44 then l←DELETE-QUEUE(cluster(j))
45 if l 6= error
46 then Insert-Heap(l, l, time+ml)
47 icount← icount+ 1
48 status(alloc(l))← busy
49 return time
EVALUATE-TIME (SIMULATOR) calculates the time taken by a
given clustering (Mishra et al. [15]). Line 01 initializes time
to 0. Event queue model is used to calculate this time. In this
model, we simulate the computations and communications of
modules on n machines Wk(1 ≤ k ≤ n). There are two types of
events: computation completion event, and communication com-
pletion event. Each event is denoted by a 3-tuple (i, j, t). Com-
putation completion event of a module Mi is denoted as (i, i, t),
where t is the time at which Mi finishes its computation. Com-
munication completion event of a communication from a module
Mi to another module Mj is denoted as (i, j, t), where t is the
time at which the communication is completed. As time passes,
events are added to, and deleted from the event queue eventq,
that is a min-heap based on the value of t. In line 02, we initial-

2

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

ize eventq to empty. icount measures the number of events that
are inserted into eventq. dcount measures the number of events
that are deleted from eventq. There are a total of |V | events that
are computation completeion events corresponding to each mod-
ule, and a total of |E| events that are communication completion
events corresponding to each edge in the task graph. Therefore,
a total of (|V | + |E|) events are inserted to, and deleted from
eventq. In lines 03 and 04, icount and dcount are initialized to
0.
status : V → {idle, busy} is a function that represents the
status of the machines Wk(1 ≤ k ≤ n). status(k) = idle,
if and only if the machine Wk is not executing any module.
status(k) = busy, if and only if the machine Wk is execut-
ing a module that is allocated to it. In line 06, status of each
machine is initialized to idle.
Each machine Wk(1 ≤ k ≤ n) has a queue of modules
readyq(k) associated with it, that are ready to run. A module
is ready to run, if it has completed all of its communication com-
pletion events. In line 07, readyq is initialized to empty for each
machine.
backlink : V → Z+ is a function that counts the number of
waiting communication completion events for each module. In
line 08, backlink is initialized to 0 for each module. In lines 09
to 11, backlink is initialized to the number of incoming edges
for each module. A module is ready to run, if its backlink value
is 0.
In lines 12 to 14, all ready to run modules are inserted into
readyq of the machine to which they are allocated, using the
function INSERT-QUEUE. In lines 15 to 21, for all machines that
are having ready to run modules, their first ready to run module is
deleted from readyq, using the function DELETE-QUEUE. Then
its computation completion event is inserted into eventq, using
the function INSERT-HEAP. For getting the computation com-
pletion time, we simply add the execution time of the module to
the current time. status of the machine is set to busy, indicat-
ing that it is executing a module. icount is updated to count the
number of events inserted into eventq.
The while loop from lines 22 to 48 is repeated until all the
(|V |+ |E|) events are added to, and deleted from readyq (lines
26 to 27). In lines 23 to 25, the first event on eventq is deleted
using DELETE-HEAP. dcount is updated to count the number of
events deleted from eventq. time is set to the completion time
of the event. Now we have two possibilities for the deleted event.
It can be a computation completion event, or a communication
completion event.
Lines 28 to 39 handle the case of a computation completion
event. In line 29, the status of the machine on which the mod-
ule was executing, is set to idle. In lines 30 to 34, the commu-
nication completion events corresponding to each outgoing edge
from the module are added to eventq, and icount is updated.
The event completion time is set to the current time, if the two
modules along the edge are allocated to the same cluster (line
33). If the modules belong to different clusters, then the event
completion time is set to the current time added with the edge
weight (line 32). In lines 35 to 39, another ready to run mod-
ule (if one exists) is deleted from the readyq of the machine.
Its computation completion event is added to eventq, icount is
updated, and the status of the machine is set to busy.
Lines 40 to 48 handle the case of a communication comple-
tion event. In line 40, the backlink of the destination module
(of communication) is decremented. In lines 41 to 42, if the
backlink value is zero, then this module has become ready to
run, and is added to the readyq of the machine to which it is
allocated. In lines 43 to 48, if this machine is idle, then the first
ready to run module (if one exists) is deleted from its readyq.
Its computation completion event is added to eventq, icount is
updated, and the status of the machine is set to busy. The final
value of time is returned in line 49.

Lines 01 to 04 has complexity O(1). Lines 05 to 08 has
complexity O(|V |). Lines 09 to 11 has complexity O(|V | +
|E|). INSERT-QUEUE has complexity O(1). Therefore, lines 12
to 14 has complexity O(|V |). DELETE-QUEUE has complex-
ity O(1). INSERT-HEAP and DELETE-HEAP have complexity
O(log(|V | + |E|)) (Cormen et al. [16], Horowitz and Sahni
[17], Langsam et al. [18]). Therefore, lines 15 to 21 has com-
plexity O(|V |log(|V | + |E|)). In the while loop from lines
22 to 48, there are |V | computation completion events, all in-
serting a total of |E| communication completion events into
eventq, giving a complexity of O(|E|log(|V | + |E|)). There
are |E| communication completion events, all inserting a total of
|V | computation completion events into eventq, giving a com-
plexity of O(|V |log(|V | + |E|)). Also a total of (|V | + |E|)
events are deleted from eventq, giving a complexity of O((|V |+
|E|)log(|V | + |E|)). Line 49 has complexity O(1). Therefore,
EVALUATE-TIME has complexity O((|V |+|E|)log(|V |+|E|)).

7. PERFORMANCE RESULTS FOR CONSTANT
FAULT DELAY

Fig. 1. Average NSL vs average communication fault delay for
constant communication fault delay. The average percentage

variation order of NSL is:
EZ < DCCL < RDCC < CPPS < DSC < LC.

Figure 1 shows the average NSL vs average communication
fault delay for constant communication fault delay. Average per-
centage variation of NSL for CPPS ranges from 0.000000 to
39.339941 with an average of 21.689623. Average percentage
variation of NSL for DCCL ranges from
0.000000 to 15.701477 with an average of 12.238085. Average
percentage variation of NSL for DSC ranges from 0.000000 to
59.248132 with an average of 30.824493. Average percentage
variation of NSL for EZ ranges from 0.000000 to 13.166381
with an average of 9.015570. Average percentage variation of
NSL for LC ranges from 0.000000 to 178.140955 with an av-
erage of 82.813149. Average percentage variation of NSL for
RDCC ranges from 0.000000 to 22.822389 with an average of
13.321739. The average percentage variation order of NSL is:
EZ < DCCL < RDCC < CPPS < DSC < LC.
Figure 2 shows the average number of processors used vs av-
erage communication fault delay for constant communication
fault delay. Average percentage variation of number of proces-
sors used by CPPS ranges from -77.336198 to 0.000000 with
an average of -53.925398. Average percentage variation of num-
ber of processors used by DCCL ranges from -58.125000 to
0.000000 with an average of -42.613636. Average percentage
variation of number of processors used by DSC ranges from -
57.110609 to 0.000000 with an average of -37.081880. Average

3

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

Fig. 2. Average number of processors used vs average
communication fault delay for constant communication fault delay.

The average percentage variation order of average number of
processors used is:

CPPS < DCCL < EZ < DSC < RDCC < LC.

percentage variation of number of processors used by EZ ranges
from -53.551913 to 0.000000 with an average of -39.095877.
Average percentage variation of number of processors used by
LC ranges from -2.888889 to 0.000000 with an average of -
2.181818. Average percentage variation of number of processors
used by RDCC ranges from -22.404372 to 0.000000 with an av-
erage of -14.356682. The average percentage variation order of
average number of processors used is: CPPS < DCCL <
EZ < DSC < RDCC < LC.

Fig. 3. Average running time (in seconds) vs average
communication fault delay for constant communication fault delay.
The average percentage variation order of average running time (in

seconds) is: EZ < CPPS < DCCL < RDCC < DSC < LC.

Figure 3 shows the average running time (in seconds) vs average
communication fault delay for constant communication fault de-
lay. Average percentage variation of execution time for CPPS
ranges from -83.545980 seconds to 0.000000 seconds with an
average of -61.296417 seconds. Average percentage variation of
execution time for DCCL ranges from -48.230505 seconds to
0.000000 seconds with an average of -32.104530 seconds. Av-
erage percentage variation of execution time for DSC ranges
from -7.494572 seconds to 23.195832 seconds with an average
of 7.153515 seconds. Average percentage variation of execution
time for EZ ranges from -84.616829 seconds to 0.000000 sec-
onds with an average of -69.172067 seconds. Average percentage
variation of execution time for LC ranges from 0.000000 seconds

to 104.359697 seconds with an average of 45.954169 seconds.
Average percentage variation of execution time for RDCC ranges
from 0.000000 seconds to 3.283782 seconds with an average of
1.987271 seconds. The average percentage variation order of av-
erage running time (in seconds) is: EZ < CPPS < DCCL <
RDCC < DSC < LC.

Fig. 4. Average NSL vs average computation fault delay for
constant computation fault delay. The average percentage variation

order of average NSL is:
EZ < LC < DCCL < DSC < RDCC < CPPS.

Figure 4 shows the average NSL vs average computation fault
delay for constant computation fault delay. Average percentage
variation of NSL for CPPS ranges from -56.728965 to 0.000000
with an average of -47.964772. Average percentage variation of
NSL for DCCL ranges from -57.803176 to 0.000000 with an av-
erage of -48.398015. Average percentage variation of NSL for
DSC ranges from -57.064704 to 0.000000 with an average of -
48.295160. Average percentage variation of NSL for EZ ranges
from -61.778948 to 0.000000 with an average of -51.208754.
Average percentage variation of NSL for LC ranges from -
58.625609 to 0.000000 with an average of -49.596531. Average
percentage variation of NSL for RDCC ranges from -57.411905
to 0.000000 with an average of -48.201589. The average percent-
age variation order of average NSL is: EZ < LC < DCCL <
DSC < RDCC < CPPS.

Fig. 5. Average number of processors used vs average computation
fault delay for constant computation fault delay. The average

percentage variation order of average number of processors used is:
LC < DSC < CPPS < RDCC < DCCL < EZ.

4

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

Figure 5 shows the average number of processors used vs aver-
age computation fault delay for constant computation fault de-
lay. Average percentage variation of number of processors used
by CPPS ranges from 0.000000 to 7.303974 with an average of
5.502392. Average percentage variation of number of processors
used by DCCL ranges from 0.000000 to 18.750000 with an av-
erage of 13.238636. Average percentage variation of number of
processors used by DSC ranges from 0.000000 to 5.944319 with
an average of 4.979821. Average percentage variation of number
of processors used by EZ ranges from 0.000000 to 42.622951
with an average of 32.637854. Average percentage variation of
number of processors used by LC ranges from -2.888889 to
0.000000 with an average of -2.181818. Average percentage
variation of number of processors used by RDCC ranges from
0.000000 to 11.827957 with an average of 6.647116. The aver-
age percentage variation order of average number of processors
used is: LC < DSC < CPPS < RDCC < DCCL < EZ.

Fig. 6. Average running time (in seconds) vs average computation
fault delay for constant computation fault delay. The average

percentage variation order of running time (in seconds) is:
RDCC < CPPS < DCCL < DSC < LC < EZ.

Figure 6 shows the average running time (in seconds) vs aver-
age computation fault delay for constant computation fault de-
lay. Average percentage variation of execution time for CPPS
ranges from 0.000000 seconds to 7.643489 seconds with an aver-
age of 5.144307 seconds. Average percentage variation of execu-
tion time for DCCL ranges from 0.000000 seconds to 9.347126
seconds with an average of 5.281630 seconds. Average percent-
age variation of execution time for DSC ranges from -11.770253
seconds to 31.426996 seconds with an average of 11.020723
seconds. Average percentage variation of execution time for EZ
ranges from 0.000000 seconds to 138.690877 seconds with an
average of 99.486318 seconds. Average percentage variation
of execution time for LC ranges from -18.176091 seconds to
83.926603 seconds with an average of 25.908160 seconds. Av-
erage percentage variation of execution time for RDCC ranges
from -7.079550 seconds to 0.000000 seconds with an average
of -5.005273 seconds. The average percentage variation order of
running time (in seconds) is: RDCC < CPPS < DCCL <
DSC < LC < EZ.
Figure 7 shows the average NSL vs average computation com-
munication fault delay for constant computation communica-
tion fault delay. Average percentage variation of NSL for CPPS
ranges from -47.284423 to 0.000000 with an average of -
40.515767. Average percentage variation of NSL for DCCL
ranges from -46.723321 to 0.000000 with an average of -
39.927285. Average percentage variation of NSL for DSC ranges
from -48.131674 to 0.000000 with an average of -41.121503.

Fig. 7. Average NSL vs average computation communication fault
delay for constant computation communication fault delay. The

average percentage variation order of NSL is:
DSC < RDCC < CPPS < LC < DCCL < EZ.

Average percentage variation of NSL for EZ ranges from -
46.297128 to 0.000000 with an average of -39.482014. Aver-
age percentage variation of NSL for LC ranges from -46.719418
to 0.000000 with an average of -40.091101. Average percentage
variation of NSL for RDCC ranges from -47.565465 to 0.000000
with an average of -40.565215. The average percentage varia-
tion order of NSL is: DSC < RDCC < CPPS < LC <
DCCL < EZ.

Fig. 8. Average number of processors used vs average computation
communication fault delay for constant computation

communication fault delay. The average percentage variation order
of number of processors used is:

CPPS < EZ < LC < DCCL < RDCC < DSC.

Figure 8 shows the average number of processors used vs aver-
age computation communication fault delay for constant compu-
tation communication fault delay. Average percentage variation
of number of processors used by CPPS ranges from -13.748657
to 0.000000 with an average of -11.244019. Average percent-
age variation of number of processors used by DCCL ranges
from -3.125000 to 0.000000 with an average of -1.875000. Av-
erage percentage variation of number of processors used by
DSC ranges from -1.279157 to 0.000000 with an average of -
0.985019. Average percentage variation of number of processors
used by EZ ranges from -8.743169 to 0.000000 with an average
of -6.905117. Average percentage variation of number of proces-
sors used by LC ranges from -2.444444 to 0.000000 with an av-
erage of -2.202020. Average percentage variation of number of

5

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

processors used by RDCC ranges from -3.743316 to 0.000000
with an average of -1.798736. The average percentage variation
order of number of processors used is: CPPS < EZ < LC <
DCCL < RDCC < DSC.

Fig. 9. Average running time (in seconds) vs average computation
communication fault delay for constant computation

communication fault delay. The average percentage variation order
of running time (in seconds) is:

EZ < CPPS < DCCL < RDCC < LC < DSC.

Figure 9 shows the average running time (in seconds) vs aver-
age computation communication fault delay for constant compu-
tation communication fault delay. Average percentage variation
of execution time for CPPS ranges from -17.768162 seconds to
0.000000 seconds with an average of -13.567021 seconds. Av-
erage percentage variation of execution time for DCCL ranges
from -8.409209 seconds to 0.000000 seconds with an average of
-6.374468 seconds. Average percentage variation of execution
time for DSC ranges from 0.000000 seconds to 45.693766 sec-
onds with an average of 23.202806 seconds. Average percentage
variation of execution time for EZ ranges from -22.443343 sec-
onds to 0.000000 seconds with an average of -17.522852 sec-
onds. Average percentage variation of execution time for LC
ranges from -5.702218 seconds to 53.187698 seconds with an
average of 16.200082 seconds. Average percentage variation of
execution time for RDCC ranges from -4.436490 seconds to
0.000000 seconds with an average of -3.309152 seconds. The
average percentage variation order of running time (in seconds)
is: EZ < CPPS < DCCL < RDCC < LC < DSC.

8. PERFORMANCE RESULTS FOR RANDOM
FAULT DELAY

Figure 10 shows the average NSL vs average communication
fault delay for random communication fault delay. Average per-
centage variation of NSL for CPPS ranges from -57.657146 to
0.000000 with an average of -47.261227. Average percentage
variation of NSL for DCCL ranges from -58.716447 to 0.000000
with an average of -47.870314. Average percentage variation of
NSL for DSC ranges from -57.993719 to 0.000000 with an av-
erage of -47.624933. Average percentage variation of NSL for
EZ ranges from -62.491137 to 0.000000 with an average of -
50.513271. Average percentage variation of NSL for LC ranges
from -59.573872 to 0.000000 with an average of -48.991292.
Average percentage variation of NSL for RDCC ranges from
-58.371457 to 0.000000 with an average of -47.470166. The
average percentage variation order of NSL is: EZ < LC <
DCCL < DSC < RDCC < CPPS.
Figure 11 shows the average number of processors used vs aver-
age communication fault delay for random communication fault

Fig. 10. Average NSL vs average communication fault delay for
random communication fault delay. The average percentage

variation order of NSL is:
EZ < LC < DCCL < DSC < RDCC < CPPS.

Fig. 11. Average number of processors used vs average
communication fault delay for random communication fault delay.
The average percentage variation order of number of processors

used is: LC < DSC < CPPS < RDCC < DCCL < EZ.

delay. Average percentage variation of number of processors
used by CPPS ranges from 0.000000 to 8.592911 with an av-
erage of 5.556098. Average percentage variation of number of
processors used by DCCL ranges from 0.000000 to 16.250000
with an average of 13.295455. Average percentage variation
of number of processors used by DSC ranges from 0.000000
to 6.772009 with an average of 5.171352. Average percent-
age variation of number of processors used by EZ ranges from
0.000000 to 49.726776 with an average of 35.022355. Average
percentage variation of number of processors used by LC ranges
from -4.000000 to 0.000000 with an average of -1.434343. Av-
erage percentage variation of number of processors used by
RDCC ranges from 0.000000 to 10.752688 with an average of
7.429130.The average percentage variation order of number of
processors used is: LC < DSC < CPPS < RDCC <
DCCL < EZ.
Figure 12 shows the average running time (in seconds) vs av-
erage communication fault delay for random communication
fault delay. Average percentage variation of execution time for
CPPS ranges from 0.000000 seconds to 13.424358 seconds with
an average of 9.490876 seconds. Average percentage variation
of execution time for DCCL ranges from 0.000000 seconds to
6.794227 seconds with an average of 5.014444 seconds. Aver-
age percentage variation of execution time for DSC ranges from

6

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

Fig. 12. Average running time (in seconds) vs average
communication fault delay for random communication fault delay.

The average percentage variation order of running time (in
seconds) is: RDCC < DCCL < CPPS < DSC < LC < EZ.

-1.464375 seconds to 58.513965 seconds with an average of
27.081776 seconds. Average percentage variation of execution
time for EZ ranges from 0.000000 seconds to 141.977298 sec-
onds with an average of 100.551805 seconds. Average percent-
age variation of execution time for LC ranges from -1.270763
seconds to 137.433058 seconds with an average of 44.802660
seconds. Average percentage variation of execution time for
RDCC ranges from -6.555553 seconds to 0.000000 seconds with
an average of -4.966295 seconds. The average percentage varia-
tion order of running time (in seconds) is: RDCC < DCCL <
CPPS < DSC < LC < EZ.

Fig. 13. Average NSL vs average computation fault delay for
random computation fault delay. The average percentage variation

order of NSL is:
EZ < LC < DCCL < DSC < RDCC < CPPS.

Figure 13 shows the average NSL vs average computation fault
delay for random computation fault delay. Average percentage
variation of NSL for CPPS ranges from -55.454729 to 0.000000
with an average of -46.252097. Average percentage variation of
NSL for DCCL ranges from -56.456555 to 0.000000 with an av-
erage of -47.014353. Average percentage variation of NSL for
DSC ranges from -55.813059 to 0.000000 with an average of -
46.628080. Average percentage variation of NSL for EZ ranges
from -59.497232 to 0.000000 with an average of -49.695130.
Average percentage variation of NSL for LC ranges from -
57.369522 to 0.000000 with an average of -48.036695. Average
percentage variation of NSL for RDCC ranges from -55.916115

to 0.000000 with an average of -46.586764. The average per-
centage variation order of NSL is: EZ < LC < DCCL <
DSC < RDCC < CPPS.

Fig. 14. Average numbeer of processors used vs average
computation fault delay for random computation fault delay. The

average percentage variation order of number of processors used is:
LC < DSC < CPPS < RDCC < DCCL < EZ.

Figure 14 shows the average numbeer of processors used vs av-
erage computation fault delay for random computation fault de-
lay. Average percentage variation of number of processors used
by CPPS ranges from 0.000000 to 7.035446 with an average of
5.438922. Average percentage variation of number of processors
used by DCCL ranges from 0.000000 to 18.750000 with an av-
erage of 13.295455. Average percentage variation of number of
processors used by DSC ranges from 0.000000 to 6.245297 with
an average of 4.897736. Average percentage variation of number
of processors used by EZ ranges from 0.000000 to 49.180328
with an average of 34.923000. Average percentage variation of
number of processors used by LC ranges from -2.666667 to
0.444444 with an average of -1.070707. Average percentage
variation of number of processors used by RDCC ranges from
0.000000 to 10.695187 with an average of 6.757414. The aver-
age percentage variation order of number of processors used is:
LC < DSC < CPPS < RDCC < DCCL < EZ.

Fig. 15. Average running time (in seconds) vs average computation
fault delay for random computation fault delay. The average
percentage variation order of running time (in seconds) is:

RDCC < DSC < LC < DCCL < CPPS < EZ.

Figure 15 shows the average running time (in seconds) vs aver-
age computation fault delay for random computation fault delay.

7

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

Average percentage variation of execution time for CPPS ranges
from 0.000000 seconds to 14.814304 seconds with an average
of 9.175700 seconds. Average percentage variation of execution
time for DCCL ranges from 0.000000 seconds to 8.216433 sec-
onds with an average of 5.047240 seconds. Average percentage
variation of execution time for DSC ranges from -21.159173 sec-
onds to 22.797506 seconds with an average of -2.713131 sec-
onds. Average percentage variation of execution time for EZ
ranges from 0.000000 seconds to 139.845090 seconds with an
average of 98.640647 seconds. Average percentage variation
of execution time for LC ranges from -38.532273 seconds to
49.750831 seconds with an average of 0.479462 seconds. Av-
erage percentage variation of execution time for RDCC ranges
from -7.767776 seconds to 0.000000 seconds with an average
of -5.753271 seconds. The average percentage variation order
of running time (in seconds) is: RDCC < DSC < LC <
DCCL < CPPS < EZ.

Fig. 16. Average NSL vs average computation communication
fault delay for random computation communication fault delay.

The average percentage variation order of NSL is:
EZ < LC < DCCL < DSC < RDCC < CPPS.

Figure 16 shows the average NSL vs average computation
communication fault delay for random computation commu-
nication fault delay. Average percentage variation of NSL for
CPPS ranges from -57.344482 to 0.000000 with an average of
-47.993664. Average percentage variation of NSL for DCCL
ranges from -58.097523 to 0.000000 with an average of -
48.496198. Average percentage variation of NSL for DSC ranges
from -57.701895 to 0.000000 with an average of -48.339627.
Average percentage variation of NSL for EZ ranges from -
62.333172 to 0.000000 with an average of -51.220358. Aver-
age percentage variation of NSL for LC ranges from -59.291658
to 0.000000 with an average of -49.722045. Average percentage
variation of NSL for RDCC ranges from -57.842815 to 0.000000
with an average of -48.072150. The average percentage variation
order of NSL is: EZ < LC < DCCL < DSC < RDCC <
CPPS.
Figure 17 shows the average number of processors used vs aver-
age computation communication fault delay for random compu-
tation communication fault delay. Average percentage variation
of number of processors used by CPPS ranges from 0.000000
to 7.089151 with an average of 5.385216. Average percentage
variation of number of processors used by DCCL ranges from
0.000000 to 18.125000 with an average of 12.670455. Aver-
age percentage variation of number of processors used by DSC
ranges from 0.000000 to 7.072987 with an average of 5.260278.
Average percentage variation of number of processors used by
EZ ranges from 0.000000 to 46.448087 with an average of

Fig. 17. Average number of processors used vs average
computation communication fault delay for random computation

communication fault delay. The average percentage variation order
of number of processors used is:

LC < DSC < CPPS < RDCC < DCCL < EZ.

33.184302. Average percentage variation of number of proces-
sors used by LC ranges from -3.555556 to 0.000000 with an av-
erage of -1.878788. Average percentage variation of number of
processors used by RDCC ranges from 0.000000 to 11.891892
with an average of 8.157248. The average percentage varia-
tion order of number of processors used is: LC < DSC <
CPPS < RDCC < DCCL < EZ.

Fig. 18. Average running time (in seconds) vs average computation
communication fault delay for random computation

communication fault delay. The average percentage variation order
of running time (in seconds) is:

RDCC < DCCL < CPPS < DSC < LC < EZ.

Figure 18 shows the average running time (in seconds) vs aver-
age computation communication fault delay for random compu-
tation communication fault delay. Average percentage variation
of execution time for CPPS ranges from 0.000000 seconds to
13.820314 seconds with an average of 9.776371 seconds. Av-
erage percentage variation of execution time for DCCL ranges
from 0.000000 seconds to 7.923574 seconds with an average
of 5.369076 seconds. Average percentage variation of execution
time for DSC ranges from 0.000000 seconds to 45.135699 sec-
onds with an average of 15.460150 seconds. Average percent-
age variation of execution time for EZ ranges from 0.000000
seconds to 138.208573 seconds with an average of 97.333918
seconds. Average percentage variation of execution time for LC
ranges from -18.562208 seconds to 75.688107 seconds with an

8

International Journal of Computer Applications (0975 - 8887)
Volume 72 - No. 13, June 2013

average of 17.828406 seconds. Average percentage variation of
execution time for RDCC ranges from -7.048315 seconds to
0.000000 seconds with an average of -5.005104 seconds. The
average percentage variation order of running time (in seconds)
is: RDCC < DCCL < CPPS < DSC < LC < EZ.

9. CONCLUSION
Experiments mentioned in this paper were performed to iden-
tify the task scheduling algorithms that also performs well in the
presence of communication fault delay or computation fault de-
lay. Six algorithms (CPPS, DCCL, DSC, EZ, LC, RDCC) were
evaluated for two types of task graphs (i) task graphs with ran-
dom fault delay and (ii) task graphs with constant fault delay.
From the above graphs and results it can be concluded that for
a constant communication delay EZ algorithm gives best result
and LC algorithm as the worst result.This may be because EZ
algorithm gives non linear clustering and LC algorithm gives
linear clustering. RDCC algorithm performs good in the case
of random delay.This may be because RDCC is a randomized
algorithm. For future work other different problems like matrix
multiplication and Gaussian elimination task graphs may be con-
sidered and observed how it performs in the presence of faults.

10. REFERENCES
[1] Anil Kumar Tripathi, P.K. Mishra, Abhishek Mishra,Kamal

sheel Mishra, Benchmarking the clustering algorithms for
multiprocessor environments using dynamic priority of
modules, Elsevier Applied Mathematical Modelling 36
(2012) 6243-6263.

[2] Alexey Lastovetsky, Parallel testing of Distributed Soft-
ware, Elsevier Information and Software technology Vol 47
(2005) 657-662.

[3] Cyril Briquet, Reproducible testing of Distributed soft-
ware with middleware virtualization and simulation, ACM
(2008).

[4] Giovanni denaro, Andrea polini, Wolfgang Emmerich,
Early performance testing of distributed software applica-
tions, ACM (2004).

[5] james D. Herbsleb, Audris Mockus, An Empirical study
of speed and communication in globally distributed soft-
ware development, IEEE transactions on software enginer-
ing Vol 29 no. 6 (2003) june 481-494.

[6] raul cretta nunes, Ingrid jansch-porto, Modeling communi-
cation delays in distributed systems using time series, IEEE
transactions (2002) 268-273.

[7] Yizheng yao, Yingxu Wang, A framework for testing dis-
tributed software components, IEEE transactions (2005)
1566-1569.

[8] Roger Ferguson, Bogdan Korel, Generating test data for
distributed software using the chaining approach, Elsevier
Information and software technology Vol 38 (1996) 343-
353.

[9] Carl K. Chang, Cheng-Chung Song,Rong-Fa Wang, dis-
tributed Software Testing with Specification, IEEE 1990.

[10] Y. K. Kwok, I. Ahmad, Benchmarking and comparison of
the task graph scheduling algorithms, Journal of Parallel
and Distributed Computing 59 (1999) 381–422.

[11] Kequin Li, Scheduling parallel tasks on multiprocessor
computers with efficient power management, IEEE trans-
actions (2010) 978-1-4244-6534, New York, USA.

[12] john A. Stankovic, K. Ramamritham, S.Cheng, Evaluation
of a Flexible task scheduling algorithm for distributed hard
real time systems, IEEE Transactions on Computers Vol c-
34 , no. 12 (1985) 1130–1143.

[13] V.S. Tondre, V.M.Thakare, S.S.Sherekar, R.V. Dharaskar,
Technical computation and communication delay in dis-
tributed system, NCICT (2011) IJCA.

[14] R.C.Nunes,I.J. Porto, Modeling communication delays in
distributed systems using time series, IEEE transactions
(2002) 1060-9857/02, Brazil.

[15] P.K. Mishra, K.S. Mishra, A. Mishra, A clustering heuris-
tic for multiprocessor environments using computation and
communication loads of modules, International Journal of
Computer Science & Information Technology, 2(5):170–
182, 2010.

[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Intro-
duction to Algorithms, 2nd Edition, MIT Press, 2001.

[17] E. Horowitz, S. Sahni, Fundamentals of Computer Algo-
rithms, W. H. Freeman and Co., 1978.

[18] Y. Langsam, M.J. Augenstein, A.M. Tenenbaum, Data
Structures Using C and C++, 2nd edition, Prentice Hall,
1996.

11. AUTHOR’S PROFILE
Anil Kumar Tripathi is Professor of Computer Engineering
at Indian Institute of Technology (Banaras Hindu University),
Varanasi, India. He received his Ph.D. degree in Computer Sci-
ence from the same institute; and M.Sc. Engg. (Computer) de-
gree from Odessa National Polytechnic University, Ukraine. His
research interests include parallel and distributing computing,
and software engineering.He has to his credit more than 50 re-
search papers in International journals. He has co-authored two
research monographs: one from Springer USA and other from
John Wiley USA. Fourteen students have completed their Ph.D
under his supervision.
Kamal Sheel Mishra is M.Tech (Computer Engg.) and working
as Associate Professor and Head ,Computer Science department
in the School of Management Sciences , Varanasi, India. He is
having more than 17 years of teaching experience. His research
interests include Software Engineering, parallel and Distributed
Computing.Currently he is Pursuing Ph.D. from Department of
Computer Engineering, Indian Institute of Technology (Banaras
Hindu University),varanasi,India.

9

	Introduction
	Computation and Communication Fault Delay in Distributed Environments
	Computation fault delay
	Communication fault delay
	Computation and Communication fault delay

	task scheduling algorithms used for performance evaluation
	performance evaluation parameters used
	Related Work
	Experimental Setup
	Performance results for Constant Fault delay
	Performance results for Random fault delay
	Conclusion
	References
	Author's Profile

