
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

24

A Tasks Allocation Model with Fuzzy Execution and Fuzzy

Inter-Tasks Communication Times in a Distributed Computing

System

Harendra Kumar

Department of Mathematics and

Statistics

Gurkula Kangari University,

Hardwar-249404, Uttarakhand

(INDIA)

m

M. P. Singh
Department of Mathematics and

Statistics

Gurkula Kangari University,

Hardwar-249404, Uttarakhand

(INDIA)

Pradeep Kumar Yadav
Central Building Research Institute

Roorkee-247667, Uttarakhand (INDIA)

ABSTRACT
Distributed computing system [DCS] offer the potential for

improved performance and resource sharing. To make the best

use of the computational power available it is essential to

assign the tasks to that processor whose characteristics are

most appropriate for the execution. In this paper we have

investigated a tasks allocation problem with fuzzy execution

times 𝑒 𝑖,𝑗 and fuzzy inter tasks communication times 𝑐 𝑖,𝑗

which is more realistic and general in nature. Times 𝑒 𝑖,𝑗 and

𝑐 𝑖,𝑗 have been considered to be triangular and trapezoidal

numbers. The fuzzy tasks allocation problem is defuzzified

and converted into crisp ones using fuzzy number ranking

method. A mathematical model has been developed to

determine the optimal allocation of the tasks for the crisp

problem that minimizes the total cost of the program. The

allocation plan that minimizes the total cost for the new crisp

problem also minimizes the total time for the original fuzzy

tasks allocation. Numerical examples show that the model

presented in this paper offers an effective tool for handling the

fuzzy tasks allocation problem

Keywords: Distributed computing system; Fuzzy

execution times; Fuzzy inter tasks communication times;

Triangular and trapezoidal numbers; Crisp value.

* Corresponding Author

1. INTRODUCTION
Although computer speed has been increased by several

orders of magnitude in recent decades, the demand for

computing capacity increase at an even faster pace. The

required processing power of many applications that are

lengthy and repetive in nature cannot be achieved with a

single processor. One approach to this problem is to use DCS.

DCS provide faster computation by facilitating parallel

execution of tasks of a program. Program partitioning into the

tasks and their allocations are two major steps in designing of

distributing processing systems. If these steps are not done

properly, an increase in the number of processor in the system

may actually result in the decrease of the total throughput due

to the saturation effect that arises from excessive inter-

processor communication. The excessive inter-processor

communication is always most costly and least reliable factor

in the loosely coupled DCS. Therefore an efficient task

allocation strategy is required for the proper utilization of

computational resources and minimization of inter-processor

communication that arises when the interacting tasks reside on

different processor.

It is often the case that a certain processor has very few tasks

to handle at a given time, while another processor has many.

It is desirable to spread the total workload of the DCS over all

of its nodes. Load balancing policies may be either static or

dynamic. Static load balancing policies use only the statistical

information of the system in making the load balancing

decisions. On the other hand, dynamic load balancing policies

attempt to dynamically balance the workload reflecting the

current system state and are therefore thought to be able to

further improve the system performance.

An allocation policy can be static or dynamic, depending upon

the time at which the allocation decisions are made. Many

approaches have been reported for solving the Static tasks

assignment problem in a DCS. The major thrust of research

for evaluating the optimal tasks allocation is centered on

providing solution that are scalable to large scale DCS.

Several approaches [1-6] to the static tasks assignment have

been identified in the past with the main concern on the

performance measures such as minimizing the total sum of

execution and communication time, response time of the

system, maximization of the system reliability. Sarje et al. [7]

presented a method for static allocation of modules to

processors, with the constraints of minimizing inter-processor

communication cost and load balancing. Tripathi et al. [8-9]

developed a genetic approach for allocating the tasks to the

processors. Bokhari [10] analyzed the problem of dynamic

assignment in a two-processor system which permits

relocation of tasks from one processor to other at certain

points during the execution of the program. Such relocation

incurs a predefined relocation cost that contributes to the total

cost of running the program and code-conversion overheads.

Also it is shown that an optimal dynamic assignment

corresponds to a “dynamic” partition imposed by a minimum

weight cut in an extended graph. Yadav et al. [11] in 2008

developed a mathematical model for multiple processors with

dynamic re-assignment. Nagarajan et al. [12] in 2010, has

developed a model for solving a fuzzy assignment problem

using Robust’s ranking method. The cost has been considered

trapezoidal and triangular numbers. The paper [13] deals a

heuristic task allocation model which performs the proper

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

25

allocation of task to most suitable processor to get an optimal

solution. A fuzzy membership functions is developed for

making the clusters of tasks with the constraints to maximize

the throughput and minimize the parallel execution time of the

system. A tasks allocation model is developed by [14] for the

optimization of reliability and cost in DCS. Sabeghi et al. [15]

proposed a fuzzy approach to multiprocessor real-time

scheduling in which the scheduling parameters are treated as

fuzzy variables.

In this paper we are proposing a new mathematical approach

for assigning a set of “m’’ tasks of a program to a set of “n”

processors using fuzzy execution times and fuzzy inter tasks

communication times with the objective of minimizing the

total processing time of the system. The rest of the paper is

organized as follows: Task allocation problem and definitions

used in the paper are defined in section 2. The assumptions

used while preparing the model are discussed in section 3.

Tasks allocation model is addressed in section 4. The

implementation of the model is presented in section 5 and

finally section 6 gives the conclusions of this model.

2. PROBLEM STATENENT AND

DEFINITIONS

An allocation of tasks to processors is defined by a function,

A from the set T of tasks to the set P of processors such that:

 A: T→P, where A (i) =j if task ti is assigned to

processor pj , 1≤i≤m,1≤j≤n.

Each processor has local memory only and do not share any

global memory. The fuzzy execution times (FET), 𝑒 𝑖,𝑗 of the

tasks on the processors is taken in the form of matrix named

as fuzzy execution time matrix (FETM), 𝐹𝐸𝑇𝑀 = 𝑒 𝑖,𝑗 of

order m x n. The fuzzy inter-tasks communication times

(FITCT), 𝑐 𝑖,𝑗 is taken in the form of a symmetric matrix

named as fuzzy inter task communication time matrix

(FITCM), 𝐹𝐼𝑇𝐶𝑇𝑀 = 𝑐 𝑖,𝑗 of order m. In this paper times

𝑒 𝑖,𝑗 and 𝑐 𝑖,𝑗 have been considered to be triangular and

trapezoidal numbers. The objective of the problem is to find

an assignment for a set T = {t1, t2….tm} of m tasks to a set P =

{p1,p2,….pn} of n processors in such a way that the response

time of the system is minimum.

2.1 Fuzzy Execution Time
The fuzzy execution time 𝑒 𝑖,𝑗 is the amount of the work to be

performed by the executing task ti on the processor pj. For an

allocation A, the overall fuzzy execution time and fuzzy

execution time for each processor are calculated by using

equations (1) and (2) respectively as:

, ()

1

() i A i

i m

FET A e
 

   (1)

, ()

1

()

j

j i A i

i m
i TS

PFET A e
 


  
 (2)

 where TSj= {i: A(i) =j, j=1, 2…n}

2.2 Fuzzy Inter Task Communication Time
The fuzzy inter task communication time 𝑐 𝑖,𝑗 is incurred due

to the data units exchanged between the tasks ti and tj if they

are on different processors during the process of execution.

For an allocation A, the overall fuzzy inter-task

communication times and fuzzy inter-task communication

time for each processor are calculated by using equations (3)

and (4) respectively as:

(), ()

1
1
() ()

() A i A j

i m
i j m
A i A j

FITCT A c
 
  



  
 (3)

j (), ()

1
1
() ()

() A i A k

i m
i j m
A i j A k

PFITCT A c
 
  

 

  
 (4)

2.3 Response Time of the System
The response time [RT] is a function of the amount of

computation to be performed by each processor and the

communication time. This function is defined by considering

the processor with the heaviest aggregate computation and

communication loads of the processors. The fuzzy response

time of the system for the allocation is defined as:

1
() max{ () () }j j

j n
FRT A PFET A PFITCT A

 
  (5)

3. ASSUMPTIONS
Several following assumptions have been made to keep the

algorithm reasonable in size while designing the algorithm:

A(1): The program is assumed to be the collection of “m”

tasks, which are to be executed on a set of “n”

processors that have different processing capabilities.

A task may be a portion of an executable code or a

data file.

A(2): The number of tasks to be allocated is more than the

number of processors, as normally is the case in the

real life distributed computing environment. It is

assumed that the fuzzy execution time of each task

on each processor is known.

A(3): Once a task has completed its execution on a processor,

the processor stores the output data of the task in its

local memory, if the data is needed by some another

task which being computed on the same processor, it

reads the data from the local memory.

A(4): The communication system of the processors is

collision free, thus no messages are lost and all

messages are sent in a finite amount of time. We

assume a contention free communication for the

processors.

A(5): A processor can simultaneously execute a task and

communicate with another processor. The overhead

incurred by this is negligible, so for all practical

purposes overhead will be considered as zero. Using

this fact, the algorithm tries to allocate the heavily

communicating tasks to the same processor.

Whenever a group of tasks is assigned to the same

processor, the FITCT between them is zero.

4. TASKS ALLOCATION MODEL

The tasks allocation model that we are presenting in this paper

completed in four major steps as illustrated in Figure 1,

namely Inputs of the tasks programme, defuzzification of the

inputs times into crisps values, tasks clustering and allocation

of the clusters to the processors. During the tasks clustering

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

26

process, the numeric crisps 𝑐𝑖,𝑗 values are transformed into

their corresponding linguistics variables.

Figure 1: Structure of the Tasks Allocation Model

Step 1: Inputs

 Inputs are as:

(a): A program of m tasks{t1, t2….tm}.

(b): A set P = {p1,p2,….pn} of n processors.

(c): Fuzzy execution times 𝑒 𝑖,𝑗 and fuzzy inter tasks

communication times 𝑐 𝑖,𝑗 which are either in

triangular or trapezoidal form. Write Fuzzy

execution times 𝑒 𝑖,𝑗 and fuzzy inter tasks

communication times 𝑐 𝑖,𝑗 these times are given in

the form of matrices
,[]i je and

,[]i jc respectively.

Step 2: Defuzzification

The input times 𝑒 𝑖,𝑗 and 𝑐 𝑖,𝑗 are converted into crisp ones. This

step is called defuzzified. In the present paper we are using

Robust’s ranking method for the defuzzification of the fuzzy

costs. If (𝑎𝛼
𝐿 , 𝑎𝛼

𝑈) is a α- cut for a triangular/ trapezoidal fuzzy

times (either 𝑒 𝑖,𝑗 or 𝑐 𝑖,𝑗) then its corresponding defuzzified

crips value is calculated by the following equation as:

 
1

, ,

0

1
() ,

2

L U

i j i je R e a a d     (6)

 
1

, ,

0

1
() ,

2

L U

i j i jc R c a a d     (7)

Defuzzified fuzzy execution times 𝑒 𝑖,𝑗 and fuzzy inter tasks

communication times 𝑐 𝑖,𝑗 are stored in the form of matrices

,i je  
and

,i jc  
 respectively.

Step 3: Tasks Clustering

The excessive inter-processor communication is always most

costly and least reliable factor in the loosely coupled

distributing computing system. Therefore, an efficient task

allocation strategy is required for minimization of inter-

processor communication that arises when the interacting

tasks reside on different processors. The basic idea of forming

the tasks cluster is to assign the heavily communicated tasks

on the same processor to reduce the communication times. In

the present model we are using the concept of linguistic

variables for making clusters of the tasks which are very

useful in dealing with a complex situation. The membership

values between each pair of communicating tasks are

calculated using the defuzzified crisp indices 𝑐𝑖,𝑗 by the

following membership function as:

 𝜇𝑇 𝑐𝑖,𝑗 =
𝑐𝑖 ,𝑗

𝐶
 (8)

where

 𝐶 = 𝑚𝑎𝑥 𝑐𝑖,𝑗 : 𝑖 = 1,2, … . . 𝑚 , 𝑗 = 1,2, …… . 𝑚

For the sake of convenience and considering the human way

of perceiving differences we are selecting five types of

linguistic variables {Very Low Communicating Task [VLCT],

Low Communicating Task [LCT], Average Communicating

Task [ACT], Highly Communicating Task [HCT], Highly

Communicating Task [HCT], Very Highly Communicating

Task [VHCT]} to grade the high and low communicating

pairs of tasks.. Tasks pairs are graded into five categories on

the basis of their membership values as shown in Table 1.

Table 1: Grading of tasks pair

Membership

Values

Linguistic Variables

[0, 0.2) Very Low Communicating Tasks [VLCT]

[0.2, 0.4) Low Communicating Tasks [LCT]

[0.4, .6) Average Communicating Tasks [ACT]

[0.6, 0.8) Highly Communicating Tasks [HCT]

[0.8, 1] Very Highly Communicating Tasks[VHCT]

To make the one to one correspondence between tasks

clusters and processors the number of tasks clusters should be

equal to the number of processors. These clusters will be fixed

throughout their execution. The overall efficiency of a

computation of the DCS can be improved to an acceptable

level by simply balancing the load among the processors.

Increasing the overall efficiency will typically reduce the

response time of the computation. If the new cluster, resulting

from combining two clusters becomes too large, it would be

impossible to obtain a load-balancing scheduling. We are

making restriction on the maximum number of tasks in a

cluster by










n

m
tC

 for defining the size of the resulting

clusters. To make the clusters of the tasks we will use the

following algorithm:

Algorithm (A):

1. Compute the membership values between each pair of

communicating tasks using equation 8.

2. Grade the tasks pair into five categories in terms of

linguistic variables according to Table 1.

3. Calculate 𝑡𝑐 .

4. Define tasks pair priorities order for making the

cluster as:

VHCT→ HCT→ ACT → LCT → VLCT

5. Consider each task 𝑡𝑖 as a distinct cluster as:

 Cluster_C(i) ← 𝑡𝑖 , 𝑖 = 1,2, …… . 𝑚

6. While (number of tasks clusters are not equal to number

of processors) do

begin

Select the pair of tasks clusters (say Cluster_C(p)

and Cluster_C(q)) with higher priorities // (Starting

from VHCT)

Calculate

𝑁𝑇 𝑝. 𝑞 = 𝑛𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 Cluster_C(p) +
 𝑛𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 Cluster_C(q)

 If

 𝑁𝑇{𝑝, 𝑞} ≤ 𝑡𝐶
 then

(a) fuse tasks clusters Cluster_C(p) with

Cluster_C(q) i.e.

 Cluster_C(p) ← Cluster_C(p) ∪ Cluster_C(q)

(b) delete the tasks cluster Cluster_C(q)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

27

else

go to step 6(c).

(c) Select the next tasks cluster pair with next higher

priorities for their fusion

end while

7. End

Step 4: Cluster Allocation
The main objective of the clusters allocation is to minimize

the response time of the distributed program by properly

mapping the tasks to the processors. Here we are using

Hungarian method [17] for mapping of the tasks clusters to

the processors clusters which is a well known method for

assignment. The mapping of the tasks clusters to the

processors clusters takes place according to the following

algorithm:

Algorithm (B):

1. Modify the crisp indices 𝑒𝑖,𝑗 in the matrix 𝑒𝑖,𝑗 by

fusing the tasks according to the algorithm (A)

2. Find the assignment of the tasks cluster to the processors

using Hungarian Method.

3. Make the same assignment of the tasks clusters in to the

original of matrix 𝑒 𝑖,𝑗 .

4. Calculate FET(A), PFET(A)j ,FITCT(A), PFITCT(A)j,

and FRT(A).

5. End.

5. ILLUSTRATED EXAMPLES

Two examples have been illustrated below using the above

method.

Example1: Let us consider a fuzzy DCS consisting a set

T= {t1, t2, t3, t4, t5} of “m=5” executable tasks and a set

P= {P1, P2, P3} of “n=3” processors. The execution time of

each task on processors has been taken in the form of matrix

𝐹𝐸𝑇𝑀 = 𝑒 𝑖,𝑗 of order m x n whose elements are fuzzy

triangular numbers as given in Table 2 and also depicted as

tasks execution graph in Figure 2. Inter tasks communication

time between the tasks has been taken in the form of matrix

𝐹𝐼𝑇𝐶𝑇𝑀 = 𝑐 𝑖,𝑗 of order m whose elements are also fuzzy

triangular numbers as given in Table 3 and also shown in

Figure 3 as inter tasks communication graph.

Table 2: Fuzzy Execution Time Matrix

 P1 P2 P3

t1 (5,10,20) (5,10,15) (10,15,20)

t2 (10,15,20) (10,20,30) (10,15,25)

t3 (10,20,30) (10,15,25) (10,15,20)

t4 (5,10,20) (10,15,20) (5,10,15)

t5 (5,10,15) (5,10,20) (5,15,20)

Figure 2: Task Execution Graph

Figure 3: Inter Tasks Communication Graph

Using Robust’s ranking indices, fuzzy DRTS is transformed

into a crisp DRTS problem. The membership function of the

triangular fuzzy number 𝑒 1,1 = (5,10,20) is:

𝜇 x =

x − 5

5
, 5 ≤ x ≤ 10

1, x = 10
20 − x

10
, 10 ≤ x ≤ 20

0, otherwise

The α-cut of the fuzzy triangular number (5, 10, 20) is:

(𝑎𝛼
𝐿 , 𝑎𝛼

𝑈) = (5𝛼 + 5, 20 − 10𝛼)

Now applying the Robust’s ranking method we get:

𝑅 𝑒 1,1 = 𝑒1,1 =
1

2
 (25 − 5

1

0

𝛼)𝑑𝛼 = 11.25

Applying the same procedure, crisp indices 𝑒𝑖,𝑗 for the fuzzy

execution times 𝑒 𝑖,𝑗 are calculated and shown in the table 4.

Table 4: Crisp indices 𝒆𝒊,𝒋 for the fuzzy execution times 𝒆 𝒊,𝒋

 P1 P2 P3

t1 11.25 10 15

t2 15 20 16.25

t3 20 16.25 15

t4 11.25 15 10

t5 10 11.25 13.75

Crisp indices 𝑐𝑖,𝑗 for the fuzzy inter tasks communication

times 𝑐 𝑖,𝑗 are calculated using the Robust’s ranking method

and are shown in the table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

28

Table 3: Fuzzy Inter Task Communication Time Matrix

 t1 t2 t3 t4 t5

 t1 (0,0,0) (20,30,40) (10,20,30) (40,45.50) (5,10,20)

 t2 (20,30,40) (0,0,0) (40,50,60) (10,20,30) (30,40,50)

 t3 (10,20,30) (40,50,60) (0,0,0) (10,15,25) (10,20,30)

 t4 (40,45,50) (10,20,30) (10,15,25) (0,0,0) (15,25,30)

 t5 (5,10,20) (30,40,50) (10,20,30) (15,25,30) (0,0,0)

Table 5: Crisp indices 𝒄𝒊,𝒋 for the fuzzy inter tasks communication times 𝒄 𝒊,𝒋

 t1 t2 t3 t4 t5

t1 0 30 20 45 11.25

t2 30 0 50 20 40

t3 20 50 0 16.25 20

t4 45 20 16.25 0 23.75

t5 11.25 40 20 23.75 0

Table 6: Corresponding membership values

 t1 t2 t3 t4 t5

 t1 0.00 0.60 0.40 0.90 0.23

 t2 0.60 0.00 1.00 0.40 0.80

 t3 0.40 1.00 0.00 0.33 0.40

 t4 0.90 0.40 0.33 0.00 0.48

 t5 0.23 0.80 0.40 0.48 0.00

Table 7: Grading of Communicating Tasks Pairs

 t1 t2 t3 t4 t5

 t1 - HCT ACT VHCT LCT

 t2 HCT - VHCT ACT VHCT

 t3 ACT VHCT - LCT ACT

 t4 VHCT ACT LCT - ACT

 t5 LCT VHCT ACT ACT -

Table 8: Optimal Result of the Example1

Processor

Tasks

Assigned

PFET(A)j

(1)

PFITCT(A)j

(2)

(1)+(2) FRT(A)

P1 t1, t4 (10,20,40) (70,120,175) (80,140,215)

(110,175,250) P2 t5 (5,10,20) (60,95,130) (65,105,150)

P3 t2, t3 (20,30,45) (90,145,205) (110,175,250)

Table 9: Fuzzy Execution Time Matrix

 P1 P2 P3 P4

t1 (2,4,6,10) (8,10,12,14) (5,8,10,12) (10,15,17,20)

t2 (6,9,11,14) (2,4,6,8) (8,10,12,15) (6,8,10,12)

t3 (15,20,23,25) (8,11,14,16) (4,7,9,13) (15,17,19,21)

t4 (2,3,5,9) (4,6,9,12) (3,4,6,9) (8,10,12,16)

t5 (7,10,13,15) (6,10,12,16) (5,7,10,12) (1,3,5,8)

t6 (8,10,12,16) (10,12,13,15) (6,9,11,15) (6,8,11,13)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

29

Table 10: Fuzzy Inter Task Communication Time Matrix

 t1 t2 t3 t4 t5 t6

t1 (0,0,0,0) (4,6,10,12) (0,2,4,7) (10,12,15,17) (12,14,15,17) (0,0,0,0)

t2 (4,6,10,12) (0,0,0,0) (2,4,7,10) (5,7,12,15) (4,6,9,11) (4,5,7,9)

t3 (0,2,4,7) (2,4,7,10) (0,0,0,0) (10,12,14,16) (16,17,18,20) (2,5,9,11)

t4 (10,12,15,17) (5,7,12,15) (10,12,14,16) (0,0,0,0) (2,4,6,10) (0,0,0,0)

t5 (12,14,15,17) (4,6,9,11) (16,17,18,20) (2,4,6,10) (0,0,0,0) (10,12,15,17)

t6 (0,0,0,0) (4,5,7,9) (2,5,9,11) (0,0,0,0) (10,12,15,17) (0,0,0,0)

Table 11: Crisp indices 𝒆𝒊,𝒋 for the fuzzy execution times 𝒆 𝒊,𝒋

 P1 P2 P3 P4

t1 5.5 11 8.75 15.5

t2 10 5 11.25 9

t3 20.75 12.25 8.25 18

t4 4.75 7.75 5.5 11.5

t5 11.25 9 8.5 4.25

t6 11.5 12.5 10.25 9.5

Table 12: Crisp indices 𝒄𝒊,𝒋 for the fuzzy inter tasks communication times 𝒄 𝒊,𝒋

Table 13: Corresponding membership values

Table 14: Grading of Communicating Tasks Pairs

Table 15: Optimal Result of the Example2

Processor

Tasks

Assigned

PFET(A)j

(1)

PFITCT(A)j

(2)

(1)+(2) FRT(A)

P1 t1, t5 (9,14,19,25) (46,59,77,94) (55,73,96,119)

(55,73,96,119)

P2 t2 (2,4,6,8) (19,28,45,57) (21,32,51,65)

P3 t4, t3 (7,11,15,22) (37,51,71,90) (44,62,86,112)

P4 t6 (6,8,11,13) (16,22,31,37) (22,30,42,50)

 t1 t2 t3 t4 t5 t6

t1 0 8 2.75 13.5 14.5 0

t2 8 0 5.75 9.75 7.5 6.25

t3 2.75 5.75 0 13 17.75 6.75

t4 13.5 9.75 13 0 5.5 0

t5 14.5 7.5 17.75 5.5 0 13.5

t6 0 6.25 6.75 0 13.5 0

 t1 t2 t3 t4 t5 t6

t1 0.00 0.45 0.15 0.76 0.82 0.00

t2 0.45 0.00 0.32 0.55 0.42 0.35

t3 0.15 0.32 0.00 0.73 1.00 0.38

t4 0.76 0.55 0.73 0.00 0.31 0.00

t5 0.82 0.42 1.00 0.31 0.00 0.76

t6 0.00 0.35 0.38 0.00 0.76 0.00

 t1 t2 t3 t4 t5 t6

t1 - ACT VLCT HCT VHCT VLCT

t2 ACT - LCT ACT ACT LCT

t3 VLCT LCT - HCT VHCT LCT

t4 HCT ACT HCT - LCT VLCT

t5 VHCT ACT VHCT LCT - HCT

t6 VLCT LCT LCT VLCT HCT -

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

30

The Step3 of the method is applied for these tasks. Table 6 is

showing membership values between each pair of

communicating tasks and Table 7 is showing grading of

communicating tasks pairs.

According to the algorithm (A), the following tasks clusters

have been formed:

Cluster_C(1): {t1, t4}

Cluster_C(2): {t2, t3}

Cluster_C(3): {t5}

On applying the Step 4 of the present model we get the

following optimal assignment as:

Cluster_C(1)→P1

Cluster_C(2)→P3

Cluster_C(3)→P2

Table 8 and Figure 4 are showing the optimal assignment of

tasks to the processors. Tasks t1, t4 executes on processor P1,

task t5 executes on processor P2 and tasks t2, t3 executes on

processor P3. The fuzzy response time of the tasks programme

is (110,175,250) units. The FET (A) and FITCT (A) for the

tasks program are (35, 60,105) and (110,145,205) units

respectively.

Figure 4: Optimal Assignment Graph

Example 2: Let us consider a fuzzy DRTS consisting a set T=

{t1, t2, t3, t4, t5, t6} of “m=6” executable tasks and a set P= {P1,

P2, P3, P4} of “n=4” processors. The execution time of each

task on processors has been taken in the form of matrix

𝐹𝐸𝑇𝑀 = 𝑒 𝑖,𝑗 of order m x n whose elements are fuzzy

trapezoidal numbers as in Table 9 also depicted in Figure 5 as

tasks execution graph. Inter tasks communication time

between the tasks has been taken in the form of matrix

𝐹𝐼𝑇𝐶𝑇𝑀 = 𝑐 𝑖,𝑗 of order m whose elements are also fuzzy

trapezoidal numbers as given in Table 10 and also shown by

Figure 6 as inter tasks communication graph.

Figure 5: Task Execution Graph

Figure 6: Inter Tasks Communication Graph

The crisp indices 𝑒𝑖,𝑗 for the fuzzy execution times 𝑒 𝑖,𝑗 are

calculated and shown in the Table 11. Similarly, crisp indices

𝑐𝑖,𝑗 for the fuzzy inter tasks communication times 𝑐 𝑖,𝑗 are and

are shown in the Table 12.

Applying the Step3 of the method, the membership values

between each pair of communicating tasks and their

corresponding grading are calculated which are given in the

Tables 13 & 14 respectively.

According to the algorithm (A), the following tasks clusters

have been formed:

Cluster_C(1): {t1, t5}

Cluster_C(2): {t4, t3}

Cluster_C(3): {t2}

Cluster_C(4): {t6}

On applying the Step 4 of the present model we get the

following optimal assignment as:

Cluster_C(1)→P1

Cluster_C(2)→P3

Cluster_C(3)→P2

Cluster_C(4)→P4

Table 15 and Figure 7 are showing the optimal assignment of

tasks to the processors. Tasks t1, t5 executes on processor P1,

task t2 executes on processor P2, tasks t4, t3 executes on

processor P3 and task t6 executes on processor P4. The fuzzy

response time of the tasks program is (55,73,96,119) units.

The FET (A) and FITCT (A) for the tasks program are (24,

37, 51, 68) and (50, 72,106,135) units respectively

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

31

Figure 7: Optimal Assignment Graph

6. CONCLUSION
In this paper we have introduce a new fuzzy tasks allocation

problem and its solution procedure. The problem has been

formulated and depicted by a mathematical model. Fuzzy

execution times 𝑒 𝑖,𝑗 and fuzzy inter tasks communication

times 𝑐 𝑖,𝑗 has been used while developing the model which are

more realistic and general in nature. The numeric crisps 𝑐𝑖,𝑗

values are transformed into linguistics variables by generating

a new membership function 𝜇𝑇 = 𝑐𝑖,𝑗 for making the cluster

of the tasks. Many examples have been tested and it is found

that the model is simple in use and has the potential to

minimize the response time of the system by properly

balancing the load on each processor. The present model can

also be used in solving tasks allocation problems with fuzzy

times having mix type (triangular or trapezoidal), Bell shaped

or Gaussian types of membership function. The present model

is very useful in telephone networks, cellular network,

computer games, image processing, cryptography, industrial

process monitoring, simulation of VLSI circuits, sonar and

radar surveillance, signal processing, simulation of nuclear

reactor, power plants, airplanes, banking system etc.

Although the model presented in this paper is efficient but still

do not cover the full range of situations which would exist. A

number of opportunities exist for future work. In future we

can improve the model by using fuzzy logic approach for

allocating the tasks clusters to the processors. The next

important key issue in DCS is dynamic scheduling of the tasks

program. In the present we have focused only on static load

balancing policies, dynamic load balancing policies are yet to

be considered.

REFERENCES
[1] R.Y Richard, E.Y.S Lee, M. Tsuchiya, A Task

Allocation Model for Distributed Computer System ,

IEEE Trans. on Computer, Vol.C-31, 1982, pp.41-47.

[2] J.B Sinclayer, Optimal Assignment in Broadcast

Network, IEEE Trans. on Computer, Vol.37 (5), 1988,

pp.521-351.

[3] T.L. Casavent, J. G. Kuhl, A Taxonomy of Scheduling in

General Purpose Distributed Computing System, IEEE

Transactions on Software Engineering, Vol. 14, 1988,

pp. 141-154.

[4] H.G. Rotithor, Taxonomy of Dynamic Task Scheduling

in Distributed Computing Systems, IEEE Proc.

Computer Digit Tech., Vol. 14, 1994, pp. 1-10.

[5] A.A. Elsade, B.E. Wells, A Heuristic Model for Task

Allocation in Heterogeneous Distributed Computing

System, International Journal of Computers and Their

Applications, Vol.6 (1), March 1999.

[6] M.P. Singh, H. Kumar, P.K. Yadav, Scheduling of

Communicating modules of Periodic Tasks in

Distributed Real-Time Environment, International

Journal of Applied Mathematics & Engineering

Sciences, Vol.2, No.2, 2008, pp.193-200.

[7] G. Sagar, A.K. Sarje, Task Allocation Model for

Distributed System, Int. J. System Science, Vol. 22,

1991, pp. 1671-1678.

[8] A.K..Tripathi, D.P. Vidyarthi,.,. A.N. Mantri, A Genetic

Task Allocation Algorithm for Distributed Computing

System Incorporating Problem Specific Knowledge,

International J. of High Speed Computing, Vol.8,

No.4,1996, pp. 363-370.

[9] D.P. Vidyarthi, A.K. Tripathi, Maximizing Reliability of

Distributed Computing Systems with Task Allocation

using Simple Genetic Algorithm, J. of Systems

Architecture, Vol. 47,2001, pp. 549-554.

[10] S.H. Bokhari,, Dual Processor Scheduling with Dynamic

Re-Assignment, IEEE Trans. On Software Engineering,

Vol.SE-5, 1979, pp. 341-349.

[11] P.K. Yadav, M.P. Singh, H. Kumar, Scheduling

Algorithm: Tasks Scheduling Algorithm for Multiple

Processors with Dynamic Reassignment, Journal of

Computer Systems, Networks and Communications,

Article ID-578180, 2008, pp.1-9.

[12] R Nagarajan, A. Solairaju, A.,Computing Improved

Fuzzy Optimal Hungarian Assignment Problems with

Fuzzy Costs under Robust Ranking Techniques,

International Journal of Computer Applications , Vol. 6,

No.4, 2010, pp.6-13.

[13] P.K..Yadav, P. Pradhan, P.P. Singh, A Fuzzy Clustering

Method to Minimize the Inter Task Communication

Effect for Optimal Utilization of Processor’s Capacity in

Distributed Real Time Systems, Proceedings of the

International Conference on Soft Computing for Problem

Solving (SocProS 2011) (Advances in Intelligent and

Soft Computing: Published by Springer) Vol.130, 2012,

pp 159-168.

[14] P.K. Yadav, M.P. Singh, K. Sharma., Tasks Allocation

Model for Reliability and Cost Optimization in

Distributed Computing System, International Journal Of

Modeling, Simulation, and Scientific Computing, Vol.2,

No.2, 2011, pp.131-149.

[15] M. Sabeghi, H. Deldari, V. Salmani, M. Bahekmat, A

Fuzzy Algorithm for Real-Time Scheduling of Soft

Periodic Tasks on Multiprocessor System, Procedding of

IADIS International Conference Applied Computing,

2006, pp.467-471.

[16] L.A. Zadeh, Fuzzy Sets versus Probability, Proc. IEEE,

Vol.68, March1980, pp.421-421.

[17] Gillett, Introduction to Operations Research: A computer

Oriented Algorithmic Approach, McGraw-Hill, New

York,1984.

IJCATM : www.ijcaonline.org

