
International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.12, June 2013 

9 

Dynamical Behavior of Logistic Maps 

 
Umme Ruman 

Department of Mathematics 

Atish Dipankar University of 
Science & Technology  

Bangladesh. 

 

 Rebeka Tanij Tania 
Department of Computer 
Science & Engineering 

Atish Dipankar University of 
Science & Technology 

Bangladesh. 

 

Muhammad Abdus Sattar 
Titu 

Department of Mathematics 

Atish Dipankar University of 
Science & Technology 

Bangladesh. 

  

 

 

 

ABSTRACT 

In this paper, we study basic dynamical facts for logistic 

growth models in population dynamics and its dynamical 

behavior. Different logistic growth curves have been 

developed and more general biological logistic growth curve 

are studied. We also discuss the concept of bifurcation in the 

context of logistic growth models. 
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1. INTRODUCTION 
We ask that The real quadratic logistic growth family of 

curves  ),1()( xaxxf a   

was recognized as a very interesting and representative model 

of real dynamical systems. The simplest logistic growth maps 

are quadratic polynomial, which depends on a single 

parameter a, chaotic dynamical behavior [2] also appears in 

the system. The simple exponential growth model provide 

interesting biological model.  

2.  DYNAMICAL SYSTEMS  
The Dynamical system is the time evaluation of any systems. 

( , , )X G 
 is called dynamical systems if it satisfy the 

following conditions: 

a) X  be a non-empty set. 

b) G  be a group or semi-group. 

c) XGX :   satisfying  

             

1 2 1 2 1 2( ( , ), ) ( , ), ,x g g x g g g g X     
  

and  
( , )x x 

. 

 When a scientist confronts dynamical systems, the question 

that she or he asks can i predict what will happen in the future, 

can i predict how this motion will evolve in time? If you look 

at some of the examples giving of dynamical systems, it is 

clear that some of them are predictable. 

On the other hand, the weather or the stock market, those are 

examples of dynamical systems that seem to be unpredictable. 

The question now, is why are they so unpredictable?   

For example to predict the weather, you would have to know 

all elements of the weather around the globe instantaneously. 

You would have to know the barometric pressure, the wind 

speed and direction everywhere in the globe in order to 

predict what the weather will be like a week. 

rs capitalized and 6-points of white space above the 

subsubsection head. 

3. LOGISTIC GROWTH MODEL 

To overcome this deficiency in the mathematical model, 

Verhulst in 1838 proposed an infinite growth rate 

    
bpaprr  )(

 
( 0, 0, )a b b a  

                                                       
which decreases linearly as population size increases. The 

resulting growth mode 

0)( 00  ptp   where 0p  denotes the initial population 

size at time 0t  

)(' tp )1(
k

p
ap  ,   

where 
b

a
k  (say)                                     (2)                                                                     

where k  is carrying capacity of the environment.  The 

solution of (2) is given by                         

ate
p

k

k
tp





)1(1

)(

0                                                                          
Behavior of this Solution 

(i) ,)(lim ktp
t




 the population will ultimately reach its 

carrying capacity. 

(ii) The relative growth rate declines linearly with increasing 

population size and   reaches its zero minimum .kp   
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For ,0a  the growth curve, is asymptotic to the carrying 

capacity. If ,0a  the population remains constant at the 

initial value of .0p  The population size p  verses time t for 

the logistic from the solution of (2) for the following 

parameter values: 

 

Figure 3.1: Logistic growth model with (i) 
a 0.5, 0p 10, k 10 

(ii) a 0.5, 0p 15, k 10   

(iii) a 0.5, 0p 2, k 10 

So we conclude that the time period before the population 

reaches half of its limiting value is a period of accelerated 

growth and after this point, the rate of growth decreases and in 

course of it reaches zero, this being a period of diminishing 

growth. The above observations are depicted in the Figure 3.1. 

4. DYNAMICAL BEHAVIOR OF 

LOGISTIC MAP 

Consider )1()( xaxxf a  , 40  a First we find 

out the fixed point of )(xf a . 

Here, ,
1

1:,0
a

pxx a  are fixed points of f, 

where .10  ap  

Note that changing the parameter a changes the rate at which 

the asymptotic values a is reached. 

Here .2)( axaxf a  Therefore, )(xf a has only one 

fixed point 0x   iff 1a . For small growth rate 1a  

(say, )2/1a , the population always dies out no matter 

what the initial condition is.  

In this case afa ,1  has two fixed points 0x   and 

./)1( aax   Here, max .
4

)2/1()(
a

fxf   

So, ]1,0[]1,0[: f if and only if .4a   

Here af a  )0( and .2)( apf aa   Hence 0 is 

repelling fixed point for a >1 and attracting fixed point 

for 10  a . Also ap is attracting for 31  a and is 

repelling if 3a or a < 1. Here, ap is non-hyperbolic or 

neutral fixed point when 3a is non-hyperbolic or neutral 

fixed point when 3a . 

 

Figure 4.1: Logistic map for different values of a . 

Now Periodic Points of Period “2” 

For periodic points with prime period 2, we have to consider 

.)(2 xxf 
 

For ,3a 01)1(22  axaaxa has two real 

solution say 2,1q where        

 
.

2

)3)(1(1
2,1

a

aaa
q




 

We have 21)( qqf  and ,)( 12 qqf   that is, 

21 , qq are periodic points with prime period 2 for .3a  

Thus 21 , qq are attracting periodic points with prime period 2 

if and only if ,1|24||)()(| 2

1

2  aaqf a that is, 

.45.3613  a  

For ,4a  the map is chaotic on [0, 1] For 52 a , 

there is a Cantor set in [0,1] on which af is chaotic when 

.52 a



International Journal of Computer Applications (0975 – 8887)  

Volume 72– No.12, June 2013 

11 

                  

 

 Figure 4.2: Logistic map for period “2”, “3”, “4”, “5” 

5. BIFURCATION OF THE LOGISTIC 

MAP 

For ,3a  changes to repelling and a 2 cycle is born. 

The system exhibits some interesting phenomena [4], which 

cannot be observed from the continuous logistic system. 

For ,45.3613  a  the two cycle is stable the 

population may oscillate between two values forever. 

For ,544090.361 a the 2 cycle becomes 

unstable and a stable 4 cycle is born then the population may 

oscillate between four values forever. 

For ,544090.322161  a  the 4 cycle 

becomes unstable and a stable 8 cycle is born, when a  is 

slightly bigger than 3.54 then 8 than 16, 32 etc.  

In general, a stable 
k2 cycle is born at ka and becomes 

unstable at ,1ka where 

...5644.3

...54409.3

...449.3

3

4

3

2

1









a

a

a

a

          

....569946.3

...5698.3

...569692.3

...568759.3

8
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5









a

a

a

a

 

It should be clear that as n  goes large these values are 

approaching a limit  

....569946.3lim 


 n
n

aa  

It means that an  cycle for the value of a . Note that the 

successive bifurcations come faster and faster. The 

convergence is essentially geometric; the limit of large n , the 

distance between successive transitions shrinks by a constant 

factor                                    

..6692016091.4lim
1

1 










nn

nn

n aa

aa


.. 

It should be noted that ,4a which means that all iterates 

are confined. When , aa  behavior turns out to be chaos. 

For .4 aac  It is difficult to analysis this case. The 

sequence }{ nx  never settles down to a fixed point or a 

periodic point, instead the long term behavior is a periodic. 

The points that are plotted will (within the resolution of the 

picture) approximate either fixed or periodic sinks or other 

attracting sets. This figure is called the bifurcation diagram 

and shows the birth, evolution, and death of attracting sets. 

The term “bifurcation” refers to significant changes in the set 

of fixed or periodic points or other sets of dynamic interest. 
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Figure 5.1 Bifurcation diagram of 

)1()( xaxxf a 

 

Figure 5.2: Magnification of the logistic bifurcation 

diagram for 3.5 a 3.58. 

 

Figure 5.3: Magnification of the logistic bifurcation 

diagram for 3.8 a 3.9 

 

Figure 5.4: Magnification of the logistic bifurcation 

diagram for 4 a 4.01 

6. CONCLUSION 

The purpose of study in this paper is to investigate the 

dynamical behavior of one dimensional non-linear logistic 

maps which arises from population dynamics. 

The real quadratic logistic growth family of curves                                                       

)1()( xaxxfa 
 

was recognized as very interesting and representative model 

of real dynamical systems. For ,1a  )(xf a  has only one 

fixed point and ,1a )(xf a  has two fixed points. The 

fixed point 0  is a repelling fixed point for 1a  and 

attracting fixed point if  10  a  and neutral fixed point 

for .1a  for ,221a  there exists periodic points 

with prime period 3 .  

For ,3a  changes to repelling and a 2 cycle is born. The 

system exhibits some interesting phenomena, which cannot be 

observed from the continuous logistic system. 

For ,45.3613  a  the two cycle is stable the 

population may oscillate between two values forever. For 

,544090.361 a
 the 2 cycle becomes unstable 

and a stable 4 cycle is born then the population may oscillate 

between four values forever. 

For ,544090.322161  a  the 4 cycle 

becomes unstable and a stable 8 cycle is born, when a  is 

slightly bigger than 3.54 then 8 than 16, 32 etc. In general 

stable 
k2  cycle is born at ka  and becomes unstable at 

1ka .  

We show that for 4a  the set 

 | ( ) [0, 1],n

ax f x n   
 is a Cantor set [1] and 

the function :af  is chaotic 
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