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ABSTRACT 

The task to capture and interpret information hidden inside 

high-dimensional data can be considered very complicated 

and challenging. Usually, dimension reduction technique may 

be considered as the first step to data analysis and exploration. 

The focus of this paper is on high-dimensional data dimension 

reduction using a supervised artificial neural networks 

technique known as Auto-Associative Neural Networks 

(AANN). The AANN can be considered as a powerful tool in 

data analysis and clustering with the ability to deal with linear 

and nonlinear correlation among variables. This technique is 

sometimes referred to as nonlinear principal component 

analysis (NLPCA), Encoding-Decoding networks, or 

bottleneck neural networks (BNN) due to its unique structure. 

It reduces high-dimensional data into low-dimensional data on 

its bottleneck layer which can later be used for data 

transmission, clustering and visualization. In this paper, a 

structurally flexible AANN is developed by using high level 

computer language, applied and studied on two case studies of 

Iris flowers and Italian olive oils datasets. The purpose of the 

work was to investigate the ability of AANN to reduce 

dimension of high-dimensional data on small (Iris) and large 

(Olive) datasets. The results have shown that AANN has been 

able to compress high-dimensional data into only one or two 

non-linear principal components at its bottleneck layer with 

the highest accuracy of 98.9% and 82.1% for both datasets 

respectively. AANN has also managed to perform accurately 

in both reducing dimension and clustering data by only using 

small portion of training dataset. 

General Terms 

Artificial Intelligence, Artificial Neural Networks, Data 

Clustering  

Keywords 
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1. INTRODUCTION 
Understanding and interpreting high-dimensional data is 

usually seen as very challenging and complicated. Data 

compression, dimension reduction and the visualization of 

these high-dimensional data could actually provide a 

mathematically simpler way to have a better understanding 

and meaningful interpretation of characteristics of a complex 

data set. In [1] [2], it was mentioned that dimension reduction 

has been considered as the first step to be taken in order to 

understand the significant patterns inside high-dimensional 

data. In fact, there are many techniques of dimension 

reduction that have been used previously. Principal 

Component Analysis (PCA) is commonly used to find pattern 

of high-dimensional data as described in [3]. This technique 

has been described, used, compared and evaluated in many 

research works and publications such as in  [1]  [2] [4] [5] [6]. 

However, the effectiveness of linear PCA technique is quite 

limited because it cannot deal efficiently with nonlinear 

correlated variables. For nonlinear data set problems, 

nonlinear dimension reduction or projection methods are 

generally applied. Some examples of these techniques are 

Multidimensional Scaling (MDS), Locally Linear Embedding 

(LLE), Isomap, Kernel PCA [7], Self-Organizing Maps 

(SOM) [8] [9] [10] and also Auto-Associative Neural 

Networks (AANN) [1] [2]. The latter, AANN or also known 

as Bottleneck Neural Networks (BNN) has been previously 

used for data compression or dimension reduction particularly 

in the field of information retrieval, chemical applications, 

missing data estimations and image compressions [2] [6] [11] 

[12]. But, there was still very little attention given to AANN. 

In [6], the authors mentioned that only 232 English language 

works related to AANN were cited unlike the more generic 

topic of artificial neural network which was cited 73,397 

times in the last decade. More specifically in their study on 

literatures, AANN has most frequently been applied in the 

area of information retrieval and storage (19%). Besides that, 

it has also been applied in pattern classifier and recognizer 

(18%), image recognition and image processing (13%), 

anomaly and fault detection (12%), system modeling 

(financial modeling) (12%), dimensionality reduction (8%), 

filtering (6%) and pure research where the researchers are 

pushing the limits of the architecture and experimenting with 

potentially useful variants. This study has indicated that there 

could be many potential applications to which the AANN can 

be applied and studied. However, this technique has not yet 

been largely studied or exploited in dealing with the 

challenges from high dimensional data dimension reduction 

and clustering.   

One of the challenges in dimension reduction task is on how 

to retain as much information as possible of high-dimensional 

data. More specifically for AANN it is important to know that 

much information it can retain within its inherent nonlinear 

structure (bottleneck layer) after the network is successfully 

trained. In this research, the data compression, clustering and 

visualization abilities of AANN have been and further 

investigated. The AANN mathematical model has been 

developed using high level computer language and applied on 

Iris flowers and Italian olive oils datasets. The algorithm has 

been developed using C/C++ language and a series of 

experimental works conducted using small and large sizes of 

training and testing datasets. 
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2. METHODS 

2.1 Auto-Associative Neural Networks 
The AANN has often been regarded as an alternative to PCA 

for unsupervised learning, clustering, and outlier detection 

[13]. It can also be known as Non Linear PCA (NLPCA) [1] 

or Bottleneck Neural Networks (BNN) [2]. AANN can be 

applied to the same problems as in conventional PCA such as 

dimension reduction and visualization, fault detection etc. 

AANN becomes more interesting as machine learning 

algorithm because it can deal with non-linear data problems 

more efficiently than PCA [2]. 

AANN is a feed forward network and is trained to map its 

input vectors back to the same input vector. In other words, 

AANN’s output layer is identical to its input layer. As 

described in [14], AANN is considered as a particular class of 

neural networks and can be described as circuits of highly 

interconnected units with adjustable interconnection weights. 

A conventional Artificial Neural Network (ANN) is structured 

to imitate human brain abilities of learning and memorizing. 

This technique uses similar concept with our biological neural 

system where a neuron is used as the smallest functional unit. 

The neuron receives simultaneously a number of input signals 

n. Each of these signals is associated with their respective 

weights, w. The weighted sum of signals becomes the 

argument of the activation function. The value obtained from 

this function becomes the output of the neuron. The activation 

function can be linear or non-linear function. This allows 

neuron to perform linear or nonlinear calculation operations. 

An illustration of the functional unit or neuron is shown in 

Figure 1. 

 

Figure 1: Functional unit or neuron of the network. 𝒙𝒊is n-

dimensional input and 𝒘𝒊 is an n-dimensional weight with 

𝒊 = {𝟏, . . , 𝒏}. 

The structure of AANN usually consists of several layers: 

input layer, map layer, bottleneck layer, de-map layer and 

output layer as shown in Figure 2. The map, bottleneck and 

de-map layers are its hidden layers. The input layer and output 

layer are the same, denoted with X. This structure could also 

be seen as a combination of two different networks: 

compression network and de-compression network, as 

described in [1] [2] [14]. Both of these networks “meet” at 

bottleneck layer located in the middle of AANN structure. In 

compression network, the input is known but the output is not 

known while the opposite situation occurs in de-compression 

network where the input is not known but the output is 

known. With this combination of networks, the output of 

compression network becomes the input of de-compression 

network. 

During the training of AANN, the high-dimensional data is 

firstly compressed to few potential variables at bottleneck 

layer in compression network. These variables correspond to 

the number of neurons or nodes in the bottleneck. This 

number must be smaller than the number of nodes at input or 

output layers. Then later, the output of the bottleneck is 

decompressed throughout the decompression network. The 

AANN training continues to map input vectors to their 

corresponding output vectors. Each value at input nodes is 

adjusted to be as identical as possible to its respective value at 

output nodes. Once the training is completed, the bottleneck 

nodes of AANN represent a type of nonlinear principal 

components, which are frequently more relevant than PCA for 

analyzing nonlinear or real-world datasets. 

 

Figure 2: Structure of AANN that consists of 3 nodes at 

input and output layers, 5 nodes at map and de-map 

layers and 2 nodes at bottleneck layer. 

The ability of AANN to deal with linear and nonlinear 

correlation between variables is directly related to the type of 

the transfer function (also known as activation functions) used 

in each neuron in its layers. According to [1] [14], the neurons 

in map and de-map layers must use non-linear or sigmoid 

transfer functions. This is necessary to ensure proper 

functioning of AANN in dealing with non-linear problems 

[2]. Meanwhile, the neurons in bottleneck and output layers 

could be either linear transfer functions or sigmoid transfer 

functions. In our case, the sigmoid function (continuous and 

monotonically increasing) has been used in all layers and 

neurons. This function takes input values X and scales them 

into the range between 0 and 1. It is defined as follows: 

𝜎 𝑋 =
1

1+𝑒−𝑋   (eq-1) 

The learning process of AANN starts with random 

initialization of all weights w, which link all neurons in all 

layers in the network (Figure 2). All input data values, X, are 

normalized to {0,..,1}. As a feed-forward network, the 

algorithm calculates the values at all nodes at map layer using 

the functional unit as shown in Figure 1. Considering 𝑀(𝑖 ,𝑗 ) 

function for this operation is defined as: 

𝑀(𝑖 ,𝑗 ) = 𝜎(  𝑥𝑖𝑤𝑖𝑗
𝑛𝑏𝑖𝑛𝑝𝑢𝑡
𝑖=1

𝑛𝑏𝑚𝑝
𝑗=1 )  (eq-2) 

with nbmp and nbinput are number of nodes in map and input 

layers respectively. This feed forward processes continue 

throughout bottleneck, de-map and output layers using the 

following equations:  

𝐵(𝑖 ,𝑗 ,𝑘) = 𝜎(  𝑀(𝑖 ,𝑗 )𝑤𝑗𝑘
𝑛𝑏𝑚𝑝
𝑗=1

𝑛𝑏𝑡𝑙
𝑘=1 )  (eq-3) 

𝐷(𝑖 ,𝑗 ,𝑘 ,𝑙) = 𝜎(  𝐵(𝑖,𝑗 ,𝑘)𝑤𝑘𝑙
𝑛𝑏𝑡𝑙
𝑘=1

𝑛𝑏𝑑𝑚𝑝
𝑙=1 )  (eq-4) 

𝑂(𝑖 ,𝑗 ,𝑘 ,𝑙 ,𝑚) = 𝜎(  𝐷(𝑖 ,𝑗 ,𝑘 ,𝑙)𝑤𝑙𝑚
𝑛𝑏𝑑𝑚𝑝
𝑙=1

𝑛𝑏𝑜𝑢𝑡𝑝𝑢𝑡
𝑚=1 ) (eq-5) 
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with nbtl, nbdmp and nboutput represent the number of nodes 

and 𝐵(𝑖 ,𝑗 .𝑘), 𝐷(𝑖 ,𝑗 ,𝑘 .𝑙), and 𝑂(𝑖 ,𝑗 ,𝑘 ,𝑙 ,𝑚) represent functions at 

bottleneck, de-map and output layers respectively. So, at 

iteration p, the value obtained at a certain neuron m, 𝑥𝑚 (𝑝) at 

output layer is equaled to 𝑂 𝑖 ,𝑗 ,𝑘 ,𝑙 ,𝑚 (𝑝). The input signals are 

actually propagated through network from left to right (input 

layer to output layer). On the other hand, back-propagation 

technique as described in [15] has been used for all weights 

adjustment. Once the signals arrive at all nodes m in output 

layer, the error signals are then calculated using the following 

equation: 

𝑒𝑚 = 𝑥𝑑 ,𝑚  𝑝 − 𝑥𝑚 (𝑝)  (eq-6) 

where 𝑥𝑑 ,𝑚  𝑝  is the desired output and 𝑥𝑚  𝑝  is the actual 

output of node m at iteration p. These errors are then back-

propagated from output layer back to input layer in order to 

update the network’s weights. The rule used to update weights 

between output layer and de-map layer is: 

𝑤𝑙𝑚  𝑝 + 1 = 𝑤𝑙𝑚  𝑝 + ∆𝑤𝑙𝑚 (𝑝) (eq-7) 

where l represent the nodes at de-map layer and ∆𝑤𝑙𝑚  𝑝 =
𝛼 × 𝑦𝑙(𝑝) × 𝛿𝑚 (𝑝) is weight correction  where 𝛿𝑚 (𝑝) is the 

gradient error at neuron m in the output layer at iteration p and 

𝛼 is the learning rate. When all weights 𝑤𝑖𝑗  are updated 

through back-propagation error signals, iteration p is 

considered complete. The Mean Square Error (MSE) between 

all the nodes i at input layer and all the nodes m at output 

layer is now calculated as follows: 

𝑀𝑆𝐸 =
1

𝑁
 (𝑋𝑖 − 𝑋𝑚 )2

𝑛𝑏𝑖𝑛𝑝𝑢𝑡 ;𝑛𝑏𝑜𝑢𝑡𝑝𝑢𝑡

𝑖=1;𝑚=1

 

(eq-8) 

where N represents number of input and output dimensions. 

As mentioned previously, AANN has been trained to map 

input vectors to their corresponding output vectors. The 

training is an iterative process where at each iteration; another 

input data is randomly selected from the same training dataset 

to become the input signals for the networks. The process 

continues again until certain condition of MSE value is 

respected. The lower the value of MSE, the more identical 

input-output nodes could have been obtained. In our case, the 

training was stopped when the MSE was lower than 0.001. 

Once the training is completed, the final weights obtained in 

the networks are fixed. This trained-AANN is then separated 

into two different networks: compression and decompression 

networks, as previously shown in Figure 2. The bottleneck 

layer of AANN becomes its output layer in this trained-

AANN-compression network. With this structure, AANN 

compression network can be considered as a dimension 

reduction model from high dimensional data into low 

dimensional data as shown in Figure 3. 

During testing stage, all high-dimensional input data from 

testing dataset are inserted to the trained-AANN-compression 

networks. For each of the data, the values at bottleneck nodes 

are calculated using the final weights previously obtained 

during AANN training stage.  The reduced dimension of high-

dimensional data is represented by the values at bottleneck 

nodes. These values can be clustered on one or two-

dimensional plane in order to visualize the similarities and 

differences between these data. 

 

Figure 3: The trained-AANN-compression networks. The 

final weights are obtained after the training of the whole 

AANN is completed. 

On the other hand, it can also be noticed that oppositely, the 

trained-AANN-decompression networks should have the 

ability to reverse dimension reduction process as its structure 

consists of bottleneck layer as input layer and its output is also 

AANN’s output layer. It could then conceptually decompress 

low dimensionality data into higher dimensionality data at its 

output layer. (This feature of AANNs however was not given 

any consideration in this paper). 

2.2 Evaluation of AANN Clustering 

Performance 
Using AANN, depending on the size of the bottleneck, the 

clustered data can usually be visualized on one or two-

dimensional plane. However, it is quite difficult to measure 

the performance of the clustered data whether they are 

appropriately classified or misclassified according to their 

respective classes by using only visualization. In this research, 

a method to comparatively measure the accuracy of the data 

clustering has been used. This method is based on the concept 

of closeness of data to its known class. The Iris flowers and 

Italian olive oils datasets have been divided into two parts: 

training and testing sets. Initially, all the final weights 

obtained during training were saved. These final weights have 

subsequently been used to establish the AANN compression 

and then cluster the whole input dataset one by one on one or 

two dimensional map as shown in Figure 4. 

 

Figure 4: AANN data clustering accuracy. One test data is 

considered as misclassified while others are correctly 

classified 

In principle, a particular class of testing data should have been 

clustered closer to its own class rather than other classes. In 
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our work, a correct classification, C(x), of a clustered test data 

is measured using the following equation: 

𝐶(𝑥) =  
1   𝑖𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 0                                                                                𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

(eq-9) 

Therefore, the calculation of AANN data clustering accuracy 

has been defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎
∗ 100 

(eq-10) 

where a correct classification represents a test data that has 

been correctly clustered closer to its class while 

misclassification represents otherwise. Using this data 

accuracy calculation, the higher accuracy indicates that higher 

number of test data have been clustered closer to their 

appropriate and respective classes. 

2.3 AANN Clustering Performance  
Two types of experimental works have been conducted with 

the purpose to investigate the AANN’s clustering 

performance and ability in performing the tasks of dimension 

reduction, data clustering and data visualization using various 

sizes of training and testing datasets. Two different datasets 

have been used: Iris flowers and Italian olive oils datasets. 

The Iris flower dataset has 150 samples with 4 attributes while 

the olive oil dataset has 572 samples with 9 attributes. The 

structure of the AANN used had five layers as illustrated in 

Figure 2. According to the study on NLPCA using AANN [1], 

this structure was essential to achieve optimal non-linear 

feature extraction. Two bottleneck nodes have been used, 

similar to [2], all input data were normalized into the range of 

0 and 1. In addition to that, the data clustering accuracy as 

described in 2.2 has also been applied to measure the 

performance of AANN in clustering high-dimensional data. 

Both Iris flowers and Italian olive oils datasets have been 

randomly divided into two sub datasets: training and testing 

datasets as shown in Table 1. 

Table 1: Number of data randomly selected in training 

and testing datasets of Iris flowers and Italian olive oils 

datasets 

No 
% 

training 

Iris flowers Olive oils 

Train Test Train Test 

1 93.3 140 10 533 39 

2 80.0 120 30 457 115 

3 66.7 100 50 381 191 

4 53.3 80 70 305 267 

5 40.0 60 90 228 344 

6 26.7 40 110 152 420 

7 13.3 20 130 76 496 

8 6.7 10 140 38 534 

In Table 1, eight experiments have been conducted on each 

Iris flowers and Italian olive oils datasets. The ratio of total 

number of data presented in training and testing datasets 

varied from 93.3% (training):6.7% (testing) to 6.7% 

(training):93.3% (testing). In Iris flowers dataset, it varied 

from 140:10 to 10:140 while it was from 534:38 to 38:534 in 

Italian olive oils dataset. For each type of these experimental 

works, the program was run fifteen times and the average 

values were taken. All experiments were conducted using 

Intel Core2Quad 2.5 GHz with 2.0 Gb memory. 

3. CASE STUDIES AND RESULTS 

3.1 Case Study-1: Iris Flowers Data 
In CaseStudy-1, Iris flowers dataset has 150 samples (flowers) 

and they are equally divided into three different classes: 

Setosa, Virginica and Versicolor. Each sample has four 

attributes measured in cm: length (sepal), width (sepal), length 

(petal) and width (petal). The full dataset as shown in Table 2 

can be found in [16]. The structure of AANN used consisted 

of four nodes at input and output layers, ten nodes at map and 

de-map layers, and two nodes at bottleneck layer (x and y 

coordinates). At first, the whole dataset has been used as 

training data set for AANN. Once the network is trained, the 

data are then clustered by the network onto two-dimensional 

plane as shown in Figure 5. 

Table 2: Input data matrix of 150 Iris species. Each of 

them has four attributes namely Sepal Length, Sepal 

Width, Petal Length and Petal Width. 

  Attributes  

  Sepal-

L 

Sepal-

W 

Petal-

L 

Petal-

W 

Species 

S
p

ec
ie

s/
It

em
 

𝐼1 5.1 3.5 1.4 0.2 se 

𝐼2 4.9 3.0 1.4 0.2 se 

... ... ... ... ... ... 

𝐼150  5.9 3.0 5.1 1.8 vg 

*se = setosa, vc = versicolor, vg = virginica 

In Figure 5, it can be observed that Setosa and Virginica 

flowers have been well clustered far from each other, while 

the class of Versicolor flower has been clustered between 

these two classes, and closer to Virginica class. This 

distribution of Iris flowers species was consistent with the 

natural classification of the Iris flowers dataset itself as 

described in [16]. 

 

Figure 5: The clustering of whole Iris flowers dataset 

defined by the two activation nodes at bottleneck layer in 

AANN. 
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Figure 6: The AANN clustering of 120 training data and 

30 testing data of Iris flowers. Large numbers of test data 

are well clustered closer to its own classes. 

Different proportions of randomly selected training and 

testing datasets of Iris flowers are shown in Table 1. These 

datasets have been used for the training and testing of AANN 

and its performance evaluation according to eq-9 and eq-10. 

 

Figure 7: The AANN clustering of 60 training data and 90 

testing data of Iris flowers. Large numbers of test data are 

well clustered closer to its own classes even though the 

number of training data is smaller than the number of 

testing data. 

The test datasets were clustered using AANN previously 

trained by the training datasets. The examples of Iris flowers 

data clustering using 120:30 and 60:90 training:testing 

datasets are shown in Figure 6 and Figure 7 respectively. In 

these figures, it can be observed that most of the test data have 

been clustered closer to their own classes. This indicates that 

the trained AANN has been able to cluster appropriately very 

large number of test data closer to their own classes. It can 

also be seen (in Figure 7) that AANN has been able to cluster 

majority of the test data closer to their respective classes even 

though the network was trained with smaller proportion of 

training dataset. The AANN clustering performance (Section 

2.2) was used to measure the degree of closeness of the test 

datasets with respect to their known classes. In this work, our 

data clustering accuracy rate has been measured using AANN 

with one and two bottleneck nodes as shown in Figure 8.  

In Figure 8, the data clustering accuracy performance of 

AANN has been consistently above 93.3% even though the 

number of samples in training dataset decreased from 140 to 

10. This means that the AANN has been able to learn the 

inherent characteristics of Iris flowers dataset using only small 

proportion of the total dataset for its training. Expectedly, the 

best accuracy rate obtained by AANN was 98.9% when it has 

been trained and tested by 140 and 10 data respectively and 

using two bottleneck nodes. The range of accuracy of data 

clustering using AANN with one bottleneck was 94.2% to 

97.3% while for the case of AANN with two-bottleneck 

nodes; it was from 93.3% to 98.9%. For Iris flowers 

clustering, there was not a significant different between the 

average performances of AANN with one or two bottleneck 

nodes. 

 

Figure 8: The performance of data clustering accuracy of 

AANN in clustering Iris flowers dataset according to the 

number of training and testing data used. % indicates the 

different performance of AANN with two bottleneck nodes 

compared to AANN with one bottleneck node. 

3.2 Case Study-2: Italian Olive Oils Data 
The second dataset that has been used in the Case Study-2 

was Italian olive oils dataset. As described in [2], this dataset 

contains the concentrations of eight fatty acids namely 

palmitic, palmitoleic, stearic, oleic, linoleic, eicosanoic, 

linolenic, eicosenoic. Concentrations of these fatty acids were 

measured for 572 samples of olive oils in Italy. The data was 

taken from nine different growing regions in Italy, which are 

North Apulia, Calabria, South Apulia, Sicily, Inland Sardinia, 

Coastal Sardinia, East Liguria, West Liguria and Umbria. 

Figure 9 shows the geographical locations of these samples 

taken from nine different regions in Italy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The geographical locations of Italian olive oils 

samples. 

In this case study, the structure of AANN had eight nodes at 

input and output layers, twenty nodes at map and de-map 

layers, and two nodes at bottleneck layer. As in the previous 

case study, the high dimensional data of Italian olive oils 
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dataset has also been reduced to one and two dimensional 

data represented by the number of neurons in bottleneck 

nodes. At the first step, the whole dataset has been used as 

training data set for AANN and subsequently used for 

clustering as shown in Figure 10. 

 

Figure 10: The clustering of Italian olive oils dataset 

defined by the two activation nodes at bottleneck layer in 

AANN. 

Figure 10 shows that samples taken from four South-East 

regions of Calabria, Sicily and North Apulia have formed a 

group on the right side. On the other hand, another group was 

formed on the left side that contained samples taken from the 

three North-West regions of Umbria, West Liguria, East 

Liguria and island of Sardinia (Inland and Coastal). 

Meanwhile, the largest samples that were taken from South 

Apulia were clustered at the top from left to right side above 

the two groups. Similarly as in [2], these samples were far 

from North Apulia and were closer to Inland and Coastal 

Sardinia. In the left group, these Inland and Coastal Sardinia 

samples were closer to each other and have formed a 

subgroup which were different from East Liguria, West 

Liguria and Umbria. 

The clustering performance of AANN with one and two 

bottlenecks is shown in Figure 11. It can be seen that the 

performance of AANN with two bottleneck nodes is better 

than AANN with one bottleneck node in clustering Italian 

olive oils dataset. 

 

Figure 11:The performance of data clustering accuracy of 

AANN in clustering Italian olive oils dataset according to 

the number of training and testing data used.% indicates 

the different performance of AANN with two bottleneck 

nodes compared to AANN with one bottleneck node. 

In this case-study we also used various proportions of training 

and testing datasets as presented in Table 1. Figure 11 shows 

that data clustering accuracy performances for both cases of 

one and two bottlenecks have slightly decreased when the 

proportion of data used for training is decreased. The best rate 

achieved was 82.1% by AANN with two bottleneck nodes 

using 305 training data and 267 testing data. The range of 

AANN data clustering accuracy using one bottleneck node 

was 66.4% to 73.8% while for the case of AANN with two-

bottleneck nodes; it was 71.8% to 82.1%. Through all these 

experiments of clustering Italian olive oils dataset, the average 

performance of AANN with two bottleneck nodes has been 

about 15% higher than that of AANN with one bottleneck 

node. 

4. DISCUSSION 
From the experimental results of clustering Iris flowers and 

Italian olive oils datasets, our developed AANN algorithm has 

been able to cluster large number of testing data into their 

known classes. From these results too, the grouping of the 

data clusters was found agreeable to the known and inherent 

characteristics of the datasets themselves. Iris data seems to be 

better clustered into its respective classes compared to Italian 

olive oils data. This is certainly influenced by fewer clusters 

and dimensions of Iris data. The data clustering performance 

equation has been able to measure the performance of the 

clustered data in terms of their closeness (correctness) of 

classification. Through this investigation, the AANN with one 

or two bottleneck nodes achieved data clustering accuracy of 

more than 93.3% for Iris flowers dataset with the best rate of 

98.9%. However, its performance was lower in clustering 

Italian olive oils where the best rate achieved was 82.1%. 

AANNs with one or two bottlenecks have been able to 

demonstrate that their ability to nonlinearly reduce the 

dimension of Iris and olive oil datasets, but did not remove 

inherent characteristics of each dataset allowing them to be 

classified with high levels of accuracy. It can also be 

concluded that it is going to be a bigger challenge for AANN 

to cluster datasets with very high dimensionality such as gene 

expression dataset that could have hundreds or thousands 

features. AANNs with two bottleneck nodes have been able to 

perform better when compared to AANNs with only one 

bottleneck node. With additional number of bottleneck nodes, 

AANNs should be able to improve its clustering and data 

compression ability whilst retaining most of information that 

has been compressed as shown in Italian olive oils clustering. 

The more complexity in a dataset such as higher number of 

samples, more similar samples, higher features or 

dimensionality of samples and also higher number of classes 

could all contribute to the difficulty of having good 

performance of data clustering using AANNs. 

5. CONCLUSION 
In this paper, the technique of AANN has been discussed and 

developed using high level language of C/C++, based on the 

structure, equations and rules described in Section 2. Our 

developed AANN algorithm has been used to perform 

compression, clustering and visualization of high-dimensional 

data using two datasets: Iris flowers and Italian olive oils. The 

technique of AANN data clustering accuracy has been 

successful to measure the data clustering accuracy 

performance of this algorithm. The experimental results have 

shown that AANN algorithm has been able to cluster these 

two high-dimensional data according to their respective 

classes. Finally, with this ability, it could give us an 

alternative method to explore the potentiality to enhance 

multidimensional data clustering technique by integrating it 
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with another technique such as the Self Organizing Maps with 

the purpose to cluster very complex multidimensional data 

such as gene expression data with multidimensional 

variability as described in [17].  
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