
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

1

Performance Improvement of BMH and BMHS using PDJ

(Possible Double Jump) and MValue (Match Value)

Akhtar Rasool

Department of Computer Science Engineering

Maulana Azad National Institute of Technology,

Bhopal-462051, India

Nilay Khare

Department of Computer Science Engineering

Maulana Azad National Institute of Technology,

Bhopal-462051, India

ABSTRACT

BM (Boyer-Moore) string matching algorithm and its enhanced

versions like BMH and BMHS are a standard benchmark for

single pattern string matching. Based on BMH and BMHS

algorithms we have developed improved algorithms

EBMH(Enhanced BMH)and EBMHS(Enhanced BMHS). These

algorithms uses the newly introduced PDJ (possible double

jump) and MValue(Match Value) concepts. While searching

these concepts helps to provide longer jump of characters. The

algorithm EBMH emphasize on BMH algorithm with the

inclusion of PDJ and MValue and the algorithm EBMHS

emphasize on BMHS algorithm with the inclusion of PDJ and

MValue. Through these algorithm the number of comparison of

characters between text and pattern are reduced to a significant

amount. In this paper PDJ, MValue, EBMH and EBMHS are

described and analyzed. Experimental results show that in the

algorithms searching time is reduced as compared to BM, BMH,

and BMHS. The algorithms are analyzed on the basis of time

requirement in best, worst and average case.

General Terms

String Matching Algorithms, Boyer-Moore.

 Keywords

String Matching; BM; BMH; BMHS; Improved BMHS; PDJ;

MValue; EBMH; EBMHS.

1. INTRODUCTION

String matching is to find the specific pattern string in the large

text string . String matching plays an important role in many

algorithms of computer science such as in intrusion detection

algorithms, plagiarism detection algorithms, bioinformatics,

digital forensics, text mining and video retrieval etc.[1,2,3,4]

Boyer Moore & its variant compare the characters from right to

left in the pattern. In BM algorithm the concept of good-suffix

and bad character is used to calculate jump for skipping of

characters in case of mismatch. In BMH algorithm a character

of text corresponding to last character of pattern is used to

calculate jump[5,6,7,10,11]. The BMHS algorithm uses next-to-

last character for calculating jump as a bad character rule. There

are many algorithms which uses a combination of both for

calculation of jump. In BMHS2 algorithm last character and

next-to-last character are used for calculation of jump. In

improved BMHS algorithm next-to-last and next-to-next-to-last

character calculates jump as a bad character

rule[12,13,14,15,16]. In this paper EBMH (Enhanced BMH) and

EBMHS (Enhanced BMHS) algorithms are described. These

algorithms uses newly introduced concept PDJ (Possible double

jump) and MValue (Match Value).

2. BM STRING MATCHING ALGORITHM

AND ITS IMPROVEMENT AS BMH AND

BMHS

2.1 BM Algorithm

 The BM algorithm scans the characters of the pattern from right

to left. In case of a mismatch (or a complete match of the whole

pattern) it uses two pre-computed functions, Good suffix and

Bad character to shift the matching window to the right. The

window is shifted to right by maximum of these two values .[5,8]

Fig 1.Example BM: 6 Shifts and 12 Comparisons

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

2

2.2 BMH Algorithm

In BMH algorithm only bad character is consider to calculate

shift or jump. Here the position of mismatch is not important.

The shift is determined by the character in text string which is

aligned to the last character of the pattern string[6,9].

Fig 2.Example BMH: 6 Shifts and 12 Comparisons

2.3 BMHS Algorithm: In BMHS Algorithm Next-to-Last

character of text corresponding to patterns last character is

considered for calculation of shift using bad Character[10,11].

BMHS example is given below

Fig 3.Example BMHS: 8 Shifts and 16 Comparisons

3. PDJ(Possible Double Jump) AND

MValue(Match Value)

3.1 PDJ : In PDJ two jumps are calculated. First jump is

calculated in the same manner as in BMH. The next jump is

calculated using the next-to-last bad character value of the

character obtained as a result of first jump. For example consider

the text “ABCEDFRWXY” and the pattern “TEXT”. In the

figure 4 below there is a mismatch between E and T, therefore

the shift calculated using E is 2. Than the shift on F is 4.

Aggregative the shift calculated using two characters E and F is

6.which is the concept of PDJ.

Fig. 4: PDJ Logic

3.2 MValue

MValue is the position of last character of pattern from right

other than last position. If last character is not found again in the

pattern than it is equal to the pattern length. MValue concept is

used when mismatch occurs in between or fully matched. The

double jump is calculated without additional processing of shifts

as compared to BMH, as we know that the last character is

matched in this condition. MValue is calculated once and used in

the condition of a in-between mismatch or fully matched

whenever required to obtain double jump in single calculation.

We have Text: ABCTDFRWXYZ and Pattern: TEXT In this

mismatch is occur in between so calculate shift using a character

which is three character apart from last character of pattern

because for "TEXT" MValue is 3. In figure 5 we explain PDJ

Logic using MValue.

Fig. 5: PDJ Logic using Mvalue

4. IMPROVED ALGORITHM: EBMH

The algorithm is improvement of BMH algorithm using PDJ and

MValue. The main concept of algorithm is to reduce the number

of comparisons by calculating possible double jump in one shift

with the help of bad character of BMH algorithm. EBMH

algorithm contains two phases preprocessing phase and

searching phase.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

3

4.1 Preprocessing Phase

Calculate last-bad-character, next-to-last bad character and

MValue of the pattern. For example suppose Text String:

“PATTERNMATCHTOFINDTEMPTEXT” and Pattern String:

“TEXT”. Than values after preprocessing phase is

Table 1: Last-bad character

Table 2: Next-to-last bad character

 MValue = 3

4.2 Searching Phase

Matching logic is divided in to two parts. First mismatch at last

or second mismatch in-between or fully match condition. In the

first matching logic while comparing from the last character if

there is a mismatch at last character, we calculate first jump

value corresponding to last character by bad character. The next

jump is calculated using the next-to-last bad character value of

the character obtained as a result of first jump. Than the

matching window is shifted to right by the sum of these two

values. This will provides double shifting value if possibility is

there. In the second matching logic if mismatch occurs in-

between or fully matched the jump is calculated using a

character which is MValue apart from last character of pattern.

The window is now shifted to right by the sum of MValue and

calculated jump by MValue.

EBMH algorithm matching logic:

If(Mismatch at the last character in pattern)

{ j= corresponding character in text with respond to last

character of the pattern.

 jump1 = Last-Bad-Character[j];

 jump2 = Next-to-Last-Bad-Character[character at

"current mismatch location+jump1"];

 Total Shift = jump1+jump2;

}

Else{ // case of in-between mismatch or fully matched case

 jump1 = MValue of Pattern;

 jump2 = Next-to-Last-Bad-Character[character at

"current mismatch location+jump1"];

 Total Shift = jump1+jump2;

}

Fig 6.Example EBMH: 3 Shifts and 9 Comparisons

Here Compare P [3] =T with S [3] =T. A match is found,

therefore we compare P [2] =X with S [2] =T. A mismatch is

encountered, therefore jump value is calculated using a character

which is MValue distant from last character that is „N‟. For N we

calculate jump using Next-to-last bad character table which 4.

Therefore PDJ is 3+4 = 7. After shifting by 7, „C‟ of text string is

aligned with last character of pattern that is „T‟. Compare P [3]

=T with S [10] =C. A mismatch is encountered therefore first

jump value corresponding to „C‟ is 4 and second jump value

using „F‟ is 4, therefore final jump is 4+4=8. After shifting by 8,

„T‟ of text string is aligned with last character of pattern that is

„T‟. Comparing P [3] =T with S [18] =T. A match is reported,

therefore compare P[2]=X with S[17]=D. A mismatch is found.

Therefore jump value is calculated using a character which is

MValue distant from last character that „P‟. For „P‟ we calculate

jump using Next-to-last bad character table which 4. Therefore

PDJ is 3+4 = 7. After shifting by 7, „T‟ of text string is aligned

with last character of pattern that is „T‟. Comparing P [3] =T

with S [25] =T. Matches repeatedly occur till the beginning of

the window, reporting the occurrence of pattern in the text. In

Figure 6 example of EBMH is shown.

5. IMPROVED ALGORITHM: EBMHS

The EBMHS is further improvement of EBMHS using the

concept of BMHS algorithm. EBMHS is the same as EBMH

except that in the condition of mismatch at last character, it uses

next-to-last character instead of last character for calculation of

jump as in BMHS algorithm. If the shift value is 1, then we shift

by that value otherwise calculate second jump using the jump

value obtained from first jump and then the final shift is

calculated by sum of these two values. This algorithm performs

better than EBMH when Next-to-last character is not found in

pattern but last character is present in pattern.

EBMHS Algorithm Matching logic:

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

4

If(Mismatch at the last character in pattern)

{

 j= next character to the corresponding character in text with

respond to last character of the pattern.

 shift =1+Next-to-Lastbadcharacter[j];

If (shift ==1)

{

 Total Shift = 1;

}

Else {

 Total Shift= Shift + Next-to-Last-Bad-

Character[character at "current mismatch location +

Shift"];

 }

}

Else{// case of in-between mismatch or fully matched case

 jump1 = MValue of Pattern

 jump2 = Next-to-Last-Bad-Character[character at

"current mismatch location+jump1"];

 Total Shift = jump1+jump2;

}

Fig 7. Example EBMHS: 3 Shifts and 8 Comparisons

6. ANALYSIS AND EXPERIMENTAL RESULTS

6.1 Analysis Based on Example

 For the above example number of shifts and comparisons of

different algorithms are shown in table 8. BM and BMH require

6 shifts and 12 comparisons, BMHS require 8 shifts and 16

comparison. EBMH requires 3 shift 9 comparisons. EBMHS

requires 3 shifts and 8 comparisons.

Table 3: Experimental Results

6.2 Analysis of Time Complexity

Suppose we have text set Qt, Qt ={x0x1x2.......xn-1}, where n is

number of distinct character in text.

And pattern set Qp,Qp = {y0,y1,y2..........Ym-1}, where m is number

of distinct character in pattern.

EBMH: Best Case I: Conditions for best case are always

mismatch at last character, PDJ= 2 Pattern Length. In this best

case the characters of the pattern and characters of the text are

drawn from two disjoint sets. Here Qt ᴖ Qp=NULL, So at each

iteration a jump of twice of pattern length is achieved. Therefore

in this best case algorithm has complexity of O (n/2m +CPDJ)

Where, CPDJ is a constant of overhead of calculating PDJ.

Best Case II: Conditions for second best case are mismatch at

second last character, MValue = pattern length and PDJ = 2

Pattern Length. For this best case only one character of pattern at

each iteration matches with text character, which is last character

of pattern. Here Qt ᴖ Qp = singleton set .So at each iteration

double jump is achieved. Therefore this algorithm has

complexity O (n / 2m),Here CPDJ = 0, because of the use of

MValue, PDJ is achieved in single calculation.

Average Case: Conditions for average case are mismatch other

than last and second last character, MValue lies between 1 and

pattern length and PDJ second is less than pattern length. Here Qt ᴖ

Qp= finite set, means it is condition of mismatch in between,

therefore at each iteration a jump of (MValue + PDJsecond) is

achieved. The algorithm has average case complexity of O

(n/average jump), where average jump is k∑i=1(MValuei + PDJi)

/ k, where k is number of total jumps.

Worst Case: Conditions for worst case are mismatch at first

character, MValue = 1 and PDJ second = 0. Here all character of

pattern matches except the character present in beginning of

window. Qt ᴖ Qp=Qp So at each iteration only single jump is

achieved. The algorithm has worst case complexity of O (nm).

EBMHS: Best Case I: Conditions for best case are mismatch at

last character and PDJ = 2 pattern length. Here, we use BMHS

for first jump in PDJ and that in best case is pattern length +1.

Therefore at each iteration a jump of one more than twice of

pattern length is achieved. The algorithm has best case time

complexity of O(n/2m+1 + CPDJ). Where, CPDJ is a constant of

overhead of calculating PDJ.

Best Case II: Conditions for best case are mismatch at second

last character, MValue = pattern length and PDJ = 2 Pattern

Length. complexity of EBMHS is same as EBMH in this case,

which is O (n / 2m).

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

5

Average Case: Complexity of EBMHS is same as EBMH in

average case, which is O (n/average jump), where average jump

is k∑i=1(MValuei + PDJi) / k, where k is number of total jumps.

Worst Case: Complexity of EBMHS is same as EBMH in worst

case, which is O (nm).

6.3 Analysis Based on Experiment

Experimental Environment: Processor: i7, RAM: 8 GB, OS:

windows 7,Language: visual C++ runs on visual studios 2008.

Experimental Data: 50 different text files of size 767 MB (80,

52, 83,893 bytes) approximately, having large number of

occurrences of pattern and pattern of length 10.

Experiment: Based on the experiment performed on above text

and pattern using BM, BMH, BMHS, EBMH and EBMHS, the

results are shown in table 4.

Table 4: Experimental Results

Graphical analysis for number of comparison performed by

different algorithms and searching time taken by different

algorithm is shown in figure 8 and figure 9 below.

Fig.8: graph of number of comparison performed by

different algorithms

Fig.9: Graph of searching time taken by different algorithm

6.4 Experimental comparison of complexity

of Proposed Algorithms

Here we take experimental results for best case, average case and

worst case conditions of EBMH and EBMHS.

Experimental Data: Experiments are performed on text and

pattern file for four different conditions of performance as best

case I, best case II, average case and worst case. The size of each

of all four cases text files to be search is 251 MB and pattern

length of all pattern are 10.

Experimental Results: Experimental results of all four cases for

EBMH and EBMHS are shown in table 10 below.

Table 5: Experimental Results

Graphical analysis of four cases for EBMH and EBMHS are

shown in figure 10.

Fig. 10: graph of Comparison of different complexity case

using experiment

7.CONCLUSION

BMG and BMHS provide better performance in string matching.

Experimental results and mathematical analysis shows that

EBMH performs better than BM, BMH and BMHS as number of

comparison performed and search time both are less. Another

improved algorithm EBMHS is also better than BM, BMH and

BMHS and performs almost similar to EBMH. The performance

improvement is the consequence of the use of PDJ and MValue

concept. MValue makes PDJ more efficient in case of mismatch

in-between or fully matched. Using MValue and PDJ

performance of BMH and BMHS algorithm has been drastically

improved.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.1, May 2013

6

8.REFERENCES
[1] Pei-fei Wu, “The Research and Amelioration of Pattern-

matching Algorithm in Intrusion Detection System”, In the

proc. IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), June 2012, pp.

1712-1715.

[2] Qingduan Meng, Xiaoling Zhang, Dongwei Lv, “Research

on Detection Speed Improvement of Snort”, In the proc.

Internet Technology and Applications, Aug. 2010, pp. 1-5.

[3] Lin, Pi-yuan, Shaopeng Liu, Lixia Zhang, Peijie Huang,

“Compressed Pattern Matching in DNA Sequences Using

Multithreaded Technology”, In the proc. 3rd International

Conference on Bioinformatics and Biomedical Engineering

,ICBBE 2009, June 2009, pp. 1-4.

[4] Pei-fei Wu, “The Research and Amelioration of Pattern-

matching Algorithm in Intrusion Detection System” , In the

proc. 9th International Conference on Embedded Software

and Systems (HPCC-ICESS), June 2012, pp. 1712-1715

[5] Jingbo Yuan, Jinsong Yang, Shunli Ding, “An Improved

Pattern Matching Algorithm Based on BMHS”, In the proc.

11th International Conference on Distributed Computing

and Applications to Business, Engineering & Science

(DCABES), Oct. 2012, pp. 441-445.

[6] Yuting Han, Guoai Xu, “Improved algorithm of pattern

matching based on BMHS”, In proc. IEEE International

Conference on Information Theory and Information

Security (ICITIS), Dec. 2010, pp 238-241.

[7] Liu Zhen, Xu Su, Zhang Jue,“Improved Algorithm of

Pattern Matching for Intrusion Detection” , In proc.

International Conference on Multimedia Information

Networking and Security, Nov. 2009, pp. 446-449.

[8] Yuting Han, Guoai Xu, ”Improved Algorithm of Pattern

Matching based on BMHS”, In proc. IEEE International

Conference on Information Theory and Information

Security (ICITIS), Dec. 2010, pp. 238-241.

[9] Lin quan Xie, Xiao ming Liu, Guangxue Yue, “Improved

Pattern Matching Algorithm of BMHS”, In proc.

International Conference on Information Science and

Engineering (ISISE), Dec. 2010, pp. 616-619.

[10] R. S. Boyer, and J. S. Moore, “A Fast String Searching

Algorithm”, Communications of the ACM, 1977,

20(10):762-772.

[11] R. N. Horspool, “Practical Fast Searching in Strings”,

Software Practice and Experience, 1980, 10(6):501-506.

[12] Yuan, Lingling, “An improved algorithm for boyer-moore

string matching in chinese information processing”, In proc.

International Conference on Computer Science and Service

System (CSSS), June 2011, pp. 182-184.

[13] Xiong, Zhengda, “A Composite Boyer-Moore Algorithm

for the String Matching Problem ”, In proc. International

Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT), Dec. 2010, pp.

492-496.

[14] Qingduan Meng, Xiaoling Zhang, Dongwei Lv, “Improved

AC_BMH Algorithm for String Matching”, In the proc.

Internet Technology and Applications, Aug. 2010, pp. 1-5.

[15] Yong-qiang, Zhu, “Two Enhanced BM Algorithm in Pattern

Matching”, In proc Conference on Digital Media and

Digital Content Management (DMDCM) , May 2011, pp.

341-346.

IJCATM : www.ijcaonline.org

