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ABSTRACT 

Numerical solution for steady MHD flow of liquid metal 

through a square duct under the action of strong transverse 

magnetic field has been investigated. The walls of the duct are 

considered to be electrically insulated as well as isothermal.  

The numerical solutions for velocity and temperature 

distributions have been obtained by finite difference method. 

The solutions for different values of Hartmann number and 

Prandtl number has been analyzed and are presented 

graphically. The MHD effect on velocity field and 

temperature field has been predicted in this investigation.   
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1. INTRODUCTION 
The flow of liquid metals through ducts under transverse 

magnetic field arises in many industrial applications such as 

casting of steel, aluminum reduction etc. The liquid metal 

flow across the intense plasma confinement field arises in 

fusion engineering for tritium breeder and coolant blanket 

design. Besides these,   in number of cases, concerning 

engineering applications, flow of liquid metal across magnetic 

field may be involved. In view of current trend of industrial 

applications, the study of problems concerning liquid metal 

flow through duct under action of transverse magnetic field 

are studied with great interest by the engineers and physicists 

during last few decades. In fusion blanket design, it is 

required to understand the flow of liquid metal in channels or 

pipes under the action of very intense magnetic field. Such a 

case of duct flow is associated with sharp pressure drop 

phenomena and heat transfer and other processes. To 

understand behavior of such flow, appropriate knowledge of 

MHD relationship will be necessary. 

MHD flow problem of liquid metal through a duct under the 

action of transverse magnetic field was first considered by 

Hartmann and Lazarus [1]. They considered flow of mercury 

as a conducting fluid in pipes of different cross sections 

experimentally and in their investigations, the   influence of 

transverse field in such a flow was elucidated. Theoretical 

investigation for electrically conducting flow through pipes 

was subsequently considered by Shercliff[2, 3].In these 

investigations Shercliff, studied electrically conducting 

viscous fluids in pipes under the action of transverse magnetic 

field and improved results were obtained. Further, Shercliff 

considered the laminar motion of a conducting liquid at high 

Hartmann number in non-conducting pipes of arbitrary cross 

section under uniform transverse magnetic field. Gupta and 

Singh [4] obtained an exact solution for the case of unsteady 

MHD flow in a circular pipe having insulated wall under the 

action of a uniform magnetic field parallel to a diameter of the 

cross section. Singh and Lal [5] obtained numerical solution 

for steady MHD flow in a triangular pipe of non-conducting 

wall under the action of transverse magnetic field 

perpendicular to a side. Walker [6] studied the liquid metal 

flow in a circular pipe with a thin metal wall. Kim and Abdou 

[7] developed a numerical algorithm to provide a fully 

detailed flow field in liquid metal MHD flow with a relatively 

large Hartmann number and interaction parameter. Kunugi 

et.al.[8] developed a new computer code (KAT)with the 

capability to model laminar liquid metal flow and heat 

transfer in relatively complex geometries. L Bhuler [9] 

studied the MHD flow quantities in channels with arbitrary 

cross section and a nearly arbitrary orientation with respect to 

a strong variable magnetic field. Smolentsev [10] considered 

two mathematical models for MHD flows in a fusion reactor 

blanket where first one described fully-developed flows and 

the second governs non-uniform and non-steady flows. Barrett 

[11] determines the flow in a straight channel under a variety 

of wall conductivity conditions when a uniform magnetic field 

is imposed to the flow direction by using finite element 

methods. Celik [12] solve the MHD flow equations in a 

rectangular duct in presence of transverse external oblique 

magnetic field by Chebyshev collocation method [13].    

AlKhawaja et. al. [14] studied the flow of liquid metal in a 

square duct under the action of strong magnetic field 

perpendicular to a side of duct. 

In this paper the fluid flow as well as the heat transfer 

problem of liquid metal flow through a square duct under the 

action of strong transverse magnetic field has been 

investigated. An improved solution for flow and temperature 

fields for different values of Hartmann numbers and for 

values of Prandtl numbers within allowable range for liquid 

metal flows has been obtained. This study has an intensity to 

include heat transfer effect in such duct flows. 

2. FORMULATION OF THE PROBLEM 
In this problem we consider the steady motion of 

incompressible liquid metal through a square duct under the  
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Fig 1: Geometry of the problem 

 

 

 
action of strong transverse magnetic field applied 

perpendicular to two opposite walls of the duct. In this study 

following assumptions are considered:  

 

(i)All fluid properties are constant and independent of the 

temperature. 

 (ii)The flow and heat transfer are fully developed. 

 

Under these assumptions, the velocity, magnetic field and 

temperature will be of the form 
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The governing equations of the flow are 

Equation of Continuity: 
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Using Equation (5) in Equation (2) for this velocity and 

assuming
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Using equation (4) and (6), equation (2) reduces to 
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Equation (3) now reduces to 
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The non dimensional quantities used in this problem are 

defined as follows :

* * *

0

1
2 2

*
0 0

0

 ,    ,  ,  , 

V  , ,

a z

z

T T x B y
x B y

T L B L

V pL
V M B L

V





 


   



 
    

 
 

2
0

0  ,  , 
p

m e c r
p

CV
R V L E P

C T k


   


 



International Journal of Computer Applications (0975 – 8887)  

Volume 71– No.8, May 2013 

31 

The non-dimensional equations are 
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The boundary conditions considered are:  
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Here it is observed that Equation (11) – (13) are coupled non-

linear equations which are to be solved using prescribed 

boundary conditions. In view of complexities in seeking 

closed form solutions, numerical solutions are considered.  

These equations are expressed in finite difference scheme 

followed by Schmidit[15]. The mesh system considered 

involves grid points with uniform spacing of Δx=0.0625 and 

Δy=0.025. The resulting finite difference equation for 

Equation (11)-.(13) are given  as follows 
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Fig 2: Variation of velocity profile for different Hartmann 

Number 

 

Fig 3: Variation of temperature profile for different Prandtl 

Number 

 

 

Fig 4: Variation of temperature profile for different Hartmann 

Number  
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3. RESULT AND DISCUSSION 
In this problem liquid metal flow through a duct aligned to the 

horizontal direction is considered and accordingly buoyancy 

force is not affecting the flow. The transverse magnetic field 

reduces the frictional force out from the. boundary and flow is 

enhanced as  the intensity of external magnetic field is 

increased. But very strong transverse magnetic field produces 

Lorentz’s force J B
 

 opposing the flow and creating large 

pressure loss. Since in the present case walls of the duct are 

assumed to be electrically insulated, the development of 

induced current associated with strong transverse field cannot 

be intensified itself. In this investigation of MHD duct flow, 

Hartmann numbers of values of order 210  have been 

considered   In such environment flow opposing pressure 

drop phenomena is not prominent.   

 

The velocity distribution plotted in Fig 2 for different values 

of Hartmann number shows the effect of increased Hartmann 

number on flow field. In conditions prevails in a high –field 

tokamak reactor, MHD duct flow is associated with pressure 

drop phenomena. However, in such case “core flow 

approximation” [16] can be applied in which inertia and 

viscous terms are omitted. In such assumption, much simple 

numerical solutions are possible. Very high Hartmann flows 

are also subjected to corrections due to side layers. In  

subsequent study various aspects of very high Hartmann flow 

may be investigated. 

In this result it is observed that the boundary is narrower 

along with the increase of values of Hartmann number. In 

case calculations have shifted with higher order Hartmann 

number, Hartmann layer will be much narrower than the 

observed result in this problem. For such a case the effect the 

interaction parameter, N  the ratio of electromagnetic force 

and inertia force [17,18,19]is to be included. The  temperature 

variation in the flow condition also being plotted. Under this 

flow condition the variation of temperature field has been 

shown in plotting (2) and (3). In plot (2) variation of 

temperature field has been shown against the values of Prandtl 

number and in plotting (3) variation of temperature field has 

been shown against the values of Hartmann number. From the 

plotting given in Fig 4 it is found that along with the increase 

of Hartmann number temperature increases. Further, from 

plotting given in Fig 3 it is observed that increase in Prandtl 

numbers result in increase in temperature of the flow. Here 

the variation of Prandtl number only within the allowable 

range 0.004 to 0.03 [20] are considered. It has been noted that 

the results obtained in this numerical investigation, in essence, 

do not contradict the numerical solutions for duct flow under 

similar condition but for simpler models[12,14]. 
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