
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

16

Parameterized Unit Testing Tool for
.Net Framework

Doaa Sami
Computer Science,

Misr University

Cairo, Egypt

Hala abdel-Galil,Ph.D

Computer Science,
Helwan University

Cairo, Egypt.

Prof.Mostafa Sami
Computer Science
Helwan University

Cairo, Egypt.

ABSTRACT
Unit testing has been widely recognized as an important and

valuable means of improving software reliability, as it exposes

bugs early in the software development life cycle. However,

manual unit testing is often tedious and insufficient. Testing

tools can be used to enable economical use of resources by

reducing manual effort [11]. Recently the use of parameters in

unit testing has emerged as a very promising and effective

methodology to allow the separation of two testing concerns

or tasks: the specification of external, black-box behavior (i.e.,

assertions or specifications) by developers and the generation

and selection of internal, white-box test inputs (i.e., high-

code-covering test inputs) by tools [4, 12]. The Unit Testing

Tool produced in this research is based on a parameterized

test method that takes parameters, calls the code under test,

and states assertions.

Keywords

Testing, unit testing, parameterized unit testing

1. INTRODUCTION

The essence of software testing is the comparison of the actual

execution of a piece of software against that piece of

software’s expected behaviour. As such, any attempt at

automating the whole process of unit testing involves the

mechanical generation of test cases that will exercise the

software unit, the execution of these test cases, and an

automated mechanism for determining whether the software

behaved as expected [2]. However, to be of any practical use

to the software development professional, he must also be

able to measure the thoroughness of the automatically

generated test suite [5, 12].

A unit test is simply a method without parameters that

performs a sequence of method calls that exercise the code

under test and asserts properties of the code expected

behaviour. Unit tests are a key component of software

engineering [8]. The Extreme Programming discipline, for

instance, leverages them to permit easy code changes. Being

of such importance, many companies now provide tools,

frameworks, and services around unit tests and each tool

dedicated to only programs written in a special programming

language [3, 7, 11].

So this paper presenting a parameterized unit testing tool that

has the Standard unit testing features such as test, fixture,

setup, teardown, ignore, expected exception, etc, Easy to use

graphical user interface, Recipes for combining several test

assemblies into one test suite, Search capabilities across tests,

output, and statistics, Statistics per test to create performance

base line, Categories to group tests for execution, Works with

any .NET language (C#, VB.NET, Managed C++, etc.)

2. THE PARAMETERIZED TESTS IN

THE TOOL

Parameterized testing is sometimes also referred to as data-

driven testing. The Unit Tool supports parameterization of

tests in several ways:

 Simple Parameterization of a single test.

 Parameterization using a static method or property.

 Parameterization using an XML file .

 Parameterization using a database table.

Which option will be chosen depends on the

circumstances. The order in which they are listed here starts

with the simplest case and ends with the most powerful

scenario. Parameterization can be used to test algorithms,

APIs, and similar items. All types for parameterization are

currently located in the parameterized Unit Testing Tool.

http://www.csunit.org/manual/v2/parameterizedTests.html#SimpleParameterization
http://www.csunit.org/manual/v2/parameterizedTests.html#ParameterizationWithMethod
http://www.csunit.org/manual/v2/parameterizedTests.html#ParameterizationWithXmlFile
http://www.csunit.org/manual/v2/parameterizedTests.html#ParameterizationWithDb

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

17

Fig .1: Connections between traditional and parameterized unit tests.

2.1 Simple Parameterization
Most tests can be written without the need of parameterizing

them [9]. In some cases however, the user would like to be

able to test an algorithm that takes a number of inputs and

produces some number of outputs so there is a connection

between the traditional test and parameterized test as fig. 1:

As a very simple example, let's use the calculation of a

discount as a percentage of the invoice amount:

This simple case is certainly not very thrilling, but gets the

idea. Without parameterization the user would have to write

four tests, one for each invoice amount.

Instead, it would be nice to refactor the obvious duplication

within the tests and write a far simpler test. Parameterized

tests allow the user to do exactly that.

With parameterization, the user adds parameters to a test and

tells The Unit testing Tool where to read the parameter values

from. To support this, by the attribute DataRow, this takes any

number of parameters. The user can use the DataRowAttribute

to decorate parameterized tests. Each attribute corresponds to

a single execution of the test.

In essence the user has to give the test parameters and tell the

parameterized Unit Testing Tool where to get the parameter

values from. So introducing the attribute DataRow, this takes

any number of parameters. The user can use the

DataRowAttribute to decorate parameterized tests [1].

2.2 Specifying an ExpectedException
What if for some data rows the user would expect an

exception to be thrown? Well, The Unit Testing Tool supports

this as well, through a named property to the DataRow

attribute, ExpectedException.

Note: more than one data row can have an expected exception.

Also, the expected exception can be different for each of those

data rows.

2.3 Parameterization with Static Method or

Property
The DataRow approach is useful if the user only want to use a

set of parameters once. However, in some cases the user may

want to use the same set of data for more than one test. In this

case the user can use the DataSourceAttribute and specify a

type as a parameter for the attribute. That type is used as the

data provider for the parameterization. It needs to implement a

static method or a static property that returns an array of data

rows [10].

This test requires a class with the name Fixture with Static

DataProvider to be implemented elsewhere.

At runtime, the parameterized Unit Testing Tool will search

the data provider class for a static method that returns an array

of DataRow objects. It will invoke the first one it can find and

use the returned array of DataRow objects as the parameter

sets for the parameterized test method.

 Note: the data provider class and the test fixture containing

the test can be the same.

Again, if the user expects an exception to be thrown for one or

more of the data rows, the user can assign the expected

exception type to the named property ExpectedException of

the DataRow attribute. This can be seen on the third data row

above.

2.4 Parameterization with XML-File
Suppose that the user would like the parameters to be read

from an XML file. The user can do this with the DataSource

attribute as well [5].

And again, the user also needs to account for the possibility

that one or more of the data rows expects an exception.

Note: as with the other ways of specifying an expected

exception, the user can specify any type. This includes

exceptions that the user has implemented.

2.5 Parameterization using a Database Table
The fourth option to provide sets of parameter values to a

parameterized test is specifying a .NET data provider, a

connection string, and a database table name.

This is just a standard connection string which the

parameterized Unit Testing Tool passes on to the managed

ADO.NET data provider. The first parameter is the Invariant

Name of the .NET data provider. The factory for the data

provider must be registered in the machine.config file. By

default .NET has factories registered for SQL, Oracle, OLE

DB, and ODBC.

During runtime the parameterized Unit Testing Tool executes

the test once for each data row and reports separately on the

outcome [1].

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

18

 Note: accessing a database, if local, is an expensive

operation. Some databases work in-memory thus at least

avoiding the cross-process and/or cross-machine

communication. Whether the user chooses a database table as

a feed for his parameterized test requires careful

considerations and trade-offs.

3. CATEGORIES

The Unit Testing Tool supports categorization of tests.

Basically this means the user can assign categories to tests and

test fixtures, and then use the categorization for instance for

selecting tests.

If the user doesn't need this feature right now he can

safely ignore it. This is one of the design principles The Tool

try to follow wherever possible.

If the user assigns one or more category to a test or a test

fixture, the user should be aware of the following rules:

1. If a test has no categories assigned then the default

setup/teardown method will be executed. The default

setup/teardown method is the one that has no categories

assigned to it. If no such default setup/teardown method

exists, no setup/teardown will get executed.

2. If a test has one or more categories assigned then

the setup/teardown for that category or those categories

will be executed. If a categorized setup/teardown method

doesn't exist, the default method will be executed if it

exists.

3. If more than one default setup/teardown method

exists, or if more than one categorized setup/teardown

method for the same category exists, this is considered to

be an error and the test(s) will fail. This test is performed

per test fixture. The latter means that in a hierarchy of

test fixtures a base class can have a setup/teardown

method and a derived class can have a setup/teardown

method, either default or categorized.

4. If a test fixture is derived from a base class that is

itself a test fixture, setup/teardown methods from the

base class will not be considered for the derived test

fixture. Also, even if a method in the base class is

declared virtual and marked as SetUp/TearDown, it will

not be considered by The Unit Testing Tool's runtime. If

the user need to execute setup/teardown code in the base

class, the user need to call the base class method from the

code, e.g. base.MySpecialSetupMethod ().
Once the user has defined categories for the tests he can then

select categories in the graphical user interface. When the user

then save his settings as a recipe, the category selection will

be save along with it. After that the user can supply the recipe

to UnitCmd, e.g. for inclusion in his automated build. The

category selector is part of The Unit Testing Tool's runtime

environment regardless of the front end.

At the end comparing the unit testing tool with other famous

open source testing frameworks as in table [1].

Table 1. Comparison of testing frameworks.

Feature

Unit

Testing

Tool

TestNG Jtest

Test classes

extend

framework

class or

implement

interface

yes no yes

Test method

discovery Reflection

Annotations

,

Javadoc

Reflection

Test setup

methods
Naming

conventions

Annotations

,

Javadoc

Naming

conventio

ns

Test case

selection

Program

code,

XML,via

GUI

XML and

annotations,

Javadoc

Via GUI

Test and

configuratio

n method

parameters

Via GUI

XML and

annotations,

Javadoc

Via GUI

Automatic

test case

generation

yes no yes

Support for

generating

stub and

mock objects

With

MockObject

s or

EasyMock

libraries

With

MockObject

s or

EasyMock

libraries

yes

4. CONCLUSIONS

This paper presenting the concept of parameterized unit tests,

a generalization of established closed unit tests.

Parameterization allows the separation of two concerns: The

specification of the behaviour of the system, and the test cases

to cover a particular implementation.

The tool introduced in this paper is a parameterized unit

testing framework for the .NET Framework. It is designed to

work with any .NET compliant language. It has specifically

been tested with C#, Visual Basic .NET, Managed C++, and

J#.

The Tool follows the concepts of other parameterized unit

testing frameworks in the XUnit family [1, 6]. Along with the

standard features, the tool offers abilities that are uncommon

in other parameterized unit testing frameworks for .NET:

 Categories to group included, excluded tests

 ExpectedException working with concrete instances

rather than type only

 A tab for simple performance base lining

 A very rich set of assertions, continuously expanded

 Rich set of attributes for implementing tests

 Parameterized testing, data-driven testing

 Search abilities, saving time when test suites have

thousands of tests.

http://www.csunit.org/2.6/Copy%20of%202.4/testFixture.html
http://www.csunit.org/2.6/Copy%20of%202.4/recipes.html
http://www.csunit.org/2.6/Copy%20of%202.4/selectors.html
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/Managed_Extensions_for_C%2B%2B
http://en.wikipedia.org/wiki/J_Sharp
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/XUnit

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

19

5. REFERENCES
[1] Tillmann, N.; de Halleux, J.; Tao Xie, Parameterized unit

testing: theory and practice, Software Engineering,

ACM/IEEE 32nd International Conference, Volume: 2,

Page(s): 483 - 484, 2-8 May 2010.

[2] Narendra Kumar Rao, B.;Rama Mohan Reddy, A. ;

Ravi, K. , Level dependencies of individual entities in

random unit testing of structured code, Electronics

Computer Technology (ICECT), 2011 3rd International

Conference, Volume: 6, Page(s): 223 - 226 , 8-10 April

2011.

[3] Runeson, P., A survey of unit testing practices, IEEE

Journals & Magazines, Volume: 23, Issue: 4, Page(s): 22

- 29, July-Aug. 2006.

[4] Williams, L.; Kudrjavets, G.; Nagappan, N., On the

Effectiveness of Unit Test Automation at Microsoft,

Software Reliability Engineering, ISSRE '09. 20th

International Symposium, Digital Object Identifier:

10.1109/ISSRE.2009.32, Page(s): 81 – 89, 2009.

[5] Cheng-hui Huang, A semi-automatic generator for unit

testing code files based on JUnit, Systems, Man and

Cybernetics, 2005 IEEE International Conference,

Page(s) 140 - 145 Vol., 10-12 Oct. 2005.

[6] Tao Xie; Taneja, K.; Kale, S.; Marinov, D., Towards a

Framework for Differential Unit Testing of Object-

Oriented Programs, Automation of Software Test, 2007.

AST '07. Second International Workshop, 20-26 May

2007.

[7] Gupta, A., Jalote, P., Test Inspected Unit or Inspect Unit

Tested Code? , Empirical Software Engineering and

Measurement, 2007. ESEM 2007. First International

Symposium, Page(s): 51 – 60, 20-21 Sept. 2007.

[8] Bin Xu, Towards Efficient Collaborative Component-

Based Software Unit Testing via Extend E-CARGO

Model-Based Activity Dependence Identification,

Intelligent Ubiquitous Computing and Education,

International Symposium, Page(s): 172 – 175, 15-16 May

2009.

[9] Vegas, S.; Juristo, N.; Basili, V.R., Maturing Software

Engineering Knowledge through Classifications: A Case

Study on Unit Testing Techniques, Software

Engineering, IEEE Transactions, Volume: 35, Issue: 4,

Page(s): 551 – 565, Digital Object Identifier:

10.1109/TSE.2009.13,2009.

[10] Na Zhang;Xiaoan Bao; ZuohuaDing,Unit Testing: Static

Analysis and Dynamic Analysis, Computer Sciences and

Convergence Information Technology, 2009. ICCIT '09.

Fourth International Conference, Page(s): 232 – 237, 24-

26 Nov. 2009.

[11] Liangliang Kong; Zhaolin Yin, the Extension of the Unit

Testing Tool Junit for Special Testings, Computer and

Computational Sciences, IMSCCS '06. First International

Multi-Symposiums, Volume: 2, Page(s): 410 – 415, 20-

24 June 2006.

[12] Mouy, P.; Marre, B.; Williams, N.; Le Gall, P.,

Generation of All-Paths Unit Test with Function Calls ,

Software Testing, Verification, and Validation, 2008 1st

International Conference, Digital Object Identifier:

10.1109/ICST.2008.35, Page(s): 32 – 41, 2008.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org.cyber.usask.ca/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=4775907&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DUnit+Testing
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=4775907&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DUnit+Testing
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=4775907&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DUnit+Testing
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=4775907&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DUnit+Testing
http://ieeexplore.ieee.org.cyber.usask.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaoan%20Bao.QT.&newsearch=partialPref

