
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

11

Automated Unit Testing Tool for .Net Framework

Doaa Sami
Computer Science,

Misr University

Cairo, Egypt

Hala Abdel-Galil,Ph.D

Computer Science,

Helwan University

Cairo, Egypt.

Prof.Mostafa Sami
Computer Science

Helwan University

Cairo, Egypt.

ABSTRACT
Developers use unit testing to improve the quality of software

systems. Current development tools for unit testing help with

automating test execution, with reporting results, and with

generating test stubs. However, they offer no aid for designing

tests aimed specifically at exercising the effects of changes to

a program. This paper describes a unit testing tool that makes

writing unit tests Easier and more efficient by introducing an

open source unit testing tool for the .NET Framework. Unit

testing is tightly associated with test-driven development

(TDD), refactoring, and other practices from agile software

development approaches such as Extreme Programming or

Scrum [19, 20]. The tool provides developers with the

Standard unit testing features such as test, fixture, setup,

teardown, ignores, expected exception, etc. The tool has an

easy graphical user interface to facilitate to the user the testing

process. The tool also has a lot of advanced features like the

Recipes which make the user able to combine several test

assemblies into one test suite plus the Search capabilities

across tests, output, and statistics and also generates Statistics

per test to create performance base line and grouping tests by

categories for execution and works with any .Net language.

Keywords
Unit testing, system testing, test framework.

1. INTRODUCTION
Software quality assurance is in dire need of substantial

progress because Software programs continue to evolve

throughout their Lifetime. Maintaining such evolving

programs is one of the most expensive activities in the process

of software development.Software testing is resource-hungry,

time-consuming, labor-intensive, and is the most widespread

way of uncovering faults in software. Despite massive

investments in quality assurance, serious code defects are

routinely discovered after software has been released, and

fixing them at so late a stage carries substantial cost.

In the last few years, unit testing, which targets small, self-

contained sections of code, has been widely adopted.

Unfortunately, classical unit testing has several shortcomings,

as confirmed by a software developer with several years of

experience in industry:

Functions that change the state of a complex component are

difficult to test individually. Sometimes, it is impossible to tell

if a certain internal state is correct [15, 16].

Some tests require a complex context that is difficult to set up.

Other tests rely heavily on other modules that are still under

development.

All today software unit testing concern only one programming

language but today large projects can combine many

programming languages under one framework like visual

studio.net.

While most developers agree on the advantages of having a

solid test suite with good code coverage, most also admit the

difficulty of developing such a test suite [18].

In this paper, presenting a unit testing tool, which is aware of

the developer’s edit in a program, and thus can guide him in

writing those unit tests that effectively exercise all changed

parts of a program and their effects on program behavior and

give the user a lot of traditional and new facilities that will

help him to test in an efficient way plus it can test a software

written in any language under .NET Framework.

2. THE UNIT TESTING TOOL

This is a cost-effective and comprehensive tool used for

automatic testing. This is a better alternative to conventional

testing tools because it tests applications from a user’s

perspective, using standard programming techniques and

common languages such as C# and VB.net. It does not require

the tester to learn a scripting language, because it is written in

pure .net code. Tester can use any one of the .NET languages.

The tool is based on the JCrasher algorithm which works by

building a graph of input generation methods and traversing

this graph in order to create test-cases which is then executed

in a runtime environment, which is a very good way to specify

a set of random values to be provided for an individual

parameter of a parameterized test method. It is a pure .net

API, which is very different from other tools which sit on an

API. Future plans for this tool involve creating an open and

documented interface for the users to write their own plug-ins,

which provides the maximum of object recognition for their

own applications.

The tool has the following major features:

 Standard unit testing features such as test, fixture,

setup, teardown, ignore, expected exception, etc.

 The testing process based on both different

attributes and rich set of assertions

 The Unit Testing Tool support parameterized tests

with as many parameters as needed.

 Built on the .NET Framework.

 Offers a flexible and standard test automation

interface

 The test automation modules can be created as

simple executable builds, with a standard .NET

compiler.

 The unit testing tool automation library (API) is

based on .NET, therefore, allowing tester to

integrate it into existing test environments and to

combine existing automation tasks with the tool.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

12

 Provides the ability to do test automation in tester’s

own environment

 Uses standard and modern programming techniques

 Allows testers with less programming knowledge to

create professional test modules

 Targets to get everything automated

 User interface allows for managing test cases and

configurations.

 Categories to group tests for execution.

3. THE DESIGN OF THE TOOL

The Unit testing Tool consists of several components as

shown in Figure [1]:

Assembly
Parsing

Test Fixture
Runner

Unit Test Attribute

and Assertion

Definitions

Unit Test Core Engine

Unit Test

Windows

Application

General Purpose Helper Library

Fig.1: over view of The Unit Testing Tool

 General Purpose Helper Library

 Unit Test Attribute and Assertion Definitions:
This assembly consists of the necessary definitions

for implementing a unit test class. The attributes that

are associated with a unit test class and its methods

must are defined. Similarly, the assertions that the

unit test methods can perform are defined. This

assembly is the only assembly that needs to be

referenced by a unit test assembly.

 Unit Test Core Engine: This component consists
of two pieces:

o general assembly parsing functions:
which extract out the classes and methods

in an assembly and their attributes

o unit test automation: which consists of

creating test fixtures, managing the
classes and methods in a test fixture, and

running the tests

 Unit Test Windows Application: The Window
Forms application consists of three sections:

o a tree view showing all the unit test

classes, their methods, and the specific

test results

o a progress bar providing the user with

feedback as to the progress of the test

cases

o a summary of test results, showing the

count of passed, ignored, and failed tests

 The Unit Test Core Engine: A high level block

diagram of the test apparatus can be illustrated as
shown in Figure [2].

Fig.2: the test apparatus

4. THE TOOL'S TESTING TECHNIQUE

The unit testing tool runs upon certain events in the test cycle

by decorating fixture classes and methods with the appropriate

provided attributes as in figure [3]. The tool consists of setup

code that prepares the test input, then executes some test code

on the unit under test, and finally assesses the observed

behavior.

Action Attributes allow the user to create custom attributes to

encapsulate specific actions for use before or after any test is

run.

Fig.3: The unit testing tool cycle.

The unit testing tool also may use the random attribute to

specify a set of random values to be provided for an individual

parameter of the parameterized test method [2, 4]. By using

the JCrasher algorithm which works by building a graph of

input generation methods and traversing this graph in order to

create test-cases which is then executed in a runtime

environment [3]. The unit testing tool creates test cases from

all possible combinations of the datapoints provided on

parameters. The recent success of parameterized unit testing is

based on the ability to cover diverse behavior with a single

case: The same test code executed with different inputs can

show different behavior.

Retrofitting of unit tests [9] is an approach where existing unit

tests are converted to parameterized unit tests, by identifying

inputs and converting them to parameters, and by generalizing

assertions to oracles that hold independently of the input.

An additional advantage of parameterized unit tests is that

they are easier to understand: There is less test code, and this

code is also independent of the concrete inputs. Test factoring

describes a related technique where an existing test case is

converted to improve aspects such as readability or execution

Collection of Assemblies

TestRunner

Collection of Test Fixtures

TestUniteAttributes

Manages

Interfaces To

U
si

n
g
 A

ss
em

b
li

es
 T

es
tR

u
n

n
er

 C
re

a
te

s

Setup For Test Fixture

Setup For Unit Test

Teardown For Unit Test

Unit Test

Teardown For Test Fixture

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

13

speed. For example, unrelated objects can be replaced with

mock objects [10], and minimization [11, 12] reduces the

length of automatically generated test cases.

During the coding and testing process, programmer must

make sure that his tests do not leave important parts of the

code untested [5]. The unit testing tool helps write tests, but

selecting a complete test set is up to the individual

programmer [6]. The unit testing tool used the path coverage

metric for test coverage by using the Mutation criteria to

ensure generation of all paths needed from the unit testing and

to aid the tester to identify possible oracles [1, 8].

The all-paths criterion, which requires at least one test-case

per feasible path of the function under test, is recognized as

offering a high level of software reliability.

5. THE MUTATION CRITERIA

The coverage criteria are used to guide test generation and to

reduce the number of tests that are generated [7]. The

mutation coverage is based on syntactic faults. For code-based

unit level testing, small changes are introduced into the

program (mutants) and tests are required to cause each mutant

to result in incorrect output [14].

Choosing the mutation criteria among four famous different

criteria because it’s Effectiveness as it will help the tester find

more faults .Effectiveness is approximated by the number of

faults detected.

The tool’s algorithm combines the pre- and postconditions

with the test case into a parameterized unit tests, containing all

information in a single package. In detail:

Test parameterization: By converting concrete method

sequences into parameterized test cases, reducing the number

of statements the developer has to analyze.

Postconditions: By mutating the tested class then identifies

the relevant aspects of the postconditions, and suggests

oracles that are effective at finding defects.

Preconditions: By mutating the test inputs then identify the

relevant aspects of the preconditions, and filter out overly

specific postconditions.

Iterative refinement: By using a search-based approach to

iteratively derive new test inputs that aim at removing further

preconditions, thus simplifying the test case.

Efficiency is approximated by the number of tests needed to

satisfy the criteria. To generalize a method sequence to a

parameterized method sequence, we assume one dedicated

class as UUT. All method calls on this UUT are part of the

test code, and objects created by calls to the UUT are also part

of the test; all remaining calls are considered to be inputs. The

length of the test case is the number of calls n. A call can be a

call to a constructor, a method, or an assignment of a primitive

value or object member to a test object. The mutation criteria

algorithm used:

 Algorithm1 Parameterize Test Case

Require: Call Sequence M = (m1 , . . . , mn)

Require: Class under Test C

Ensure: Parameterized Unit Test P = (I , T , Pre, Post)

1: procedure PARAMETERIZE(M , C)

2: G ← (V, E)

3: S ← {}

4: for all m ∈ M do

5: v ← value(m)

6: V ← V ∪ {v}

7: for all vr ∈ params(m) do

8: G ← G ∪ {(vr , v)}

9: end for

10: if m is a call of C then

11: S ← S ∪ {v}

12: T ← T .m

13: end if

14: end for

15: for all v ∈ S do

16: for all (vr , v) ∈ V do

17: if vr ƒ∈ S then

18: I ← I ∪ { New parameter with type of v}

19: p ← Backwards slice of vr

20: Pre ← Pre ∪ { Extract conditions for p }

21: end if

22: end for

23: end for

24: Post ← { Extract conditions for each value in T }

25: return P

26: end procedure

The algorithm appears how a call sequence is converted to a

parameterized unit test. First, generating a graph in which

there is a vertex for every value, and edges between values if

the call producing a value has dependencies on other values.

By separating values that are test code from those values that

are setup code, one can easily determine inputs: For each test

vertex there is one input for every incoming edge that does not

come from another test vertex. The graph easily lets us derive

method sequences to construct each of the parameters; the

calls that are part of the test and not part of an input are added

to T. If the same input value is used by different calls, then

each of the uses results in a distinct input.

Algorithm 2 illustrates how a set of postconditions is reduced

to the relevant subset: The test case t is executed against every

single mutant, and a postcondition only qualifies as relevant

oracle, if there exists at least one mutant for which the

assertion fails [13].

Algorithm2 Determine effective postconditions

Require: Call Sequence M = (m1 , . . . , mn)

Require: Class under Test C

Require: Mutants of Class under Test M

Require: Set of Postconditions Post

Ensure: Reduced Set of Postconditions Postr

1: procedure FINDEFFECTIVE(M , C , M, Post)

2: Postr ← {}

3: for all m ∈ M do

4: S ← state after executing M on m

5: for all p ∈ Post do

6: if p evaluates to false in S then

7: Postr ← Postr ∪ {p}

8: end if

9: end for

10: end for

11: return Postr

12: end procedure

Algorithm 3 illustrates how a set of postconditions can be

gradually reduced to retain only general postconditions that
hold for more than one input [13].

Algorithm3 Determine robust postconditions

Require: PUT P = (I , T , Pre, Post)

Require: Class under Test C

Require: Mutants of Class under Test M

Ensure: Reduced Set of Postconditions Post

1: procedure FINDEFFECTIVE(M , C , M, Post)

2: Postr ← {}

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

14

3: for all m ∈ M do

4: S ← state after executing M on m

5: for all p ∈ Post do

6: if p evaluates to false in S then

7: Postr ← Postr ∪ {p}
8: end if
9: end for

10: end for

11: return Postr

12: end procedure

Algorithm 4 illustrates how to reduce the preconditions of a
given parameterized unit testing.

6. CONCLUSIONS

The Unit Testing Tool is software that can help developers to

write more effective tests. Moreover, full change coverage is

not just an achievable goal but also seems to reduce the

likelihood of introducing faults to the program. This

correlation and a change-centric test development approach

are major targets of the current evaluation.

The unit testing tool technique for ―test‖ generation actually

does not produce tests—it produces sequences of method

calls. While it is good at covering code, their effectiveness

relies on good run-time checks in the code or the run-time

system.

Finally, The Unit Testing Tool is a good example for the

potential of change-aware tools. It demonstrates how even

complex development activities can be supported by tools

when they are aware of what a developer has done to the code.

7. REFERENCES

[1] G. Fraser and A. Zeller. Mutation-driven generation of

unit tests and oracles. In ISSTA’10: Proceedings of the

ACM International Symposium on Software Testing and

Analysis, pages 147–158. ACM, 2010.

[2] C. Pacheco and M. D. Ernst. Randoop: feedback-directed

random testing for Java. In OOPSLA ’07: Companion to

the 22nd ACM SIGPLAN conference on Object-oriented

programming systems and applications companion,

pages 815–816, New York, NY, USA, 2007. ACM.

[3] C. Csallner and Y. Smaragdakis. JCrasher: an automatic

robustness tester for Java. Software Practice and

Experience, 34(11):1025–1050, 2004.

[4] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li. Tool

support for randomized unit testing. In RT ’06:

Proceedings of the 1st International Workshop on

Random Testing, pages 36–45, New York, NY, USA,

2006. ACM.

[5] N. Williams, B. Marre, P. Mouy, and M. Roger.

PathCrawler: automatic generation of path tests by

combining static and dynamic analysis. In EDCC 2005:

Proceedings ot the 5th European Dependable Computing

Conference, volume 3463 of LNCS, pages 281–292.

Springer, 2005.

[6] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

etesting engine for C. In ESEC/FSE-13: Proceedings of

the 10th European Software Engineering Conference

held jointly with 13th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,

pages 263–272, New York, NY, USA, 2005. ACM.

[7] N. Tillmann and J. N. de Halleux. Pex— white box test

generation for .NET. In TAP 2008: International

Conference on Tests and Proofs, volume 4966 of LNCS,

pages 134 –253. Springer, 2008.

[8] K. Lakhotia, P. McMinn, and M. Harman. Automated

test data generation for coverage: Haven’t we solved this

problem yet? In TAIC-PART ’09: Proceedings of

Testing: Academic & Industrial Conference – Practice

and Research Techniques, pages 95–104, Los Alamitos,

CA, USA, 2009. IEEE Computer Society.

[9] S. Thummalapenta, M. Marri, T. Xie, N. Tillmann, and J.

de Halleux. Retrofitting unit tests for parameterized unit

testing. In Proc. International Conference on

Fundamental Approaches to Software Engineering

(FASE 2011), 2011.

[10] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.

Automatic test factoring for Java. In Proceedings of the

20th IEEE/ACM International Conference on Automated

Software Engineering, ASE ’05, pages 114–123, New

York, NY, USA, 2005. ACM.

[11] K. Lakhotia, P. McMinn, and M. Harman. Automated

test data generation for coverage: Haven’t we solved this

problem yet? In TAIC-PART ’09: Proceedings of

Testing: Academic & Industrial Conference - Practice

and Research Techniques, pages 95–104, Los Alamitos,

CA, USA, 2009. IEEE Computer Society.

Algorithm4 Generate a Parameterized Unit Test

Require: Call Sequence M = (m1 , . . . , mn)

Require: Class under Test C

Require: Mutants of Class under Test M

Ensure: Parameterized Test Case P = (I , T , Pre, Post)

1: procedure GENERALIZE(M , C , M)

2: P ← PARAMETERIZE(M, C)

3: Prer ← minimized observations on inputs

4: Post ← observations on C after test execution

5: Post ← FINDEFFECTIVE(M, C, M, Post)

6: while Prer is not empty do

7: p ← remove one element from Prer

8: I ← generate input that satisfies ¬p ∧
V

Prer ∧
V

Pre.

9: if test generation succeeds then

10: Postr ← Execute test with new input I

11: M ← concrete method sequence of I and T

12: Postr ← FINDEFFECTIVE(M, C, M, Postr)

13: if Postr ∩ Post detects all mutants then

14: Post ← Postr ∩ Post

15: Prer ← Pre’∪ conditions subsumed by p

16: else

17: Pre ← Pre ∪ {p}

18: end if

19: end if

20: end while

21: return P

22: end procedure

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.7, May 2013

15

[12] Y. Lei and J. H. Andrews. Minimization of

randomized unit test cases. In Proceedings of the 16th

IEEE International Symposium on Software Reliability

Engineering, pages 267 276, Washington, DC, USA,

2005. IEEE Computer Society.

[13] G. Fraser and A. Zeller. Mutation-driven generation of

unit tests and oracles. In ISSTA’10: Proceedings of the

ACM International Symposium on Software Testing and

Analysis, pages 147–158. ACM, 2010.

[14] Mike Papadakis, Nicos Malevris, Maria

Kallia,Towards automating the generation of mutation

tests, AST '10: Proceedings of the 5th Workshop on

Automation of Software Test, May 2010.

[15] Whittaker, James A. Exploratory Software Testing:

Tips, Tricks, Tours, and Techniques to Guide Test

Design, Addison-Wesley Professional, 2009, 978-

0321636416.

[16] Kaner, Cem et al. Lessons Learned in Software

Testing. Wiley, 2001. 978-0471081128.

[17] Desikan, S. and Ramesh, G. Software Testing:

Principles and Practices, Pearson Education, 2006.

[18] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G.

Candea. Cloud9: A software testing service. In

Workshop on Large Scale Distributed Systems and

Middleware, 2009.

[19] Hendrickson, E. ―Agile Testing, Nine Principles and

Six Concrete Practices for Testing

onAgileTeams‖http://testobsessed.com/wordpress/wpcon

tent/uploads/2008/08/AgileTestingOverview.pdf 2008,

accessed 07/09/2010.

[20] K. Beck. Test Driven Development: By Example.

Addison-Wesley, 2003.

IJCATM : www.ijcaonline.org

http://dl.acm.org.cyber.usask.ca/author_page.cfm?id=81453641325&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/author_page.cfm?id=81361592959&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/author_page.cfm?id=81464674649&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/author_page.cfm?id=81464674649&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/author_page.cfm?id=81464674649&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/citation.cfm?id=1808266.1808283&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/citation.cfm?id=1808266.1808283&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408
http://dl.acm.org.cyber.usask.ca/citation.cfm?id=1808266.1808283&coll=DL&dl=ACM&CFID=99453847&CFTOKEN=48434408

