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ABSTRACT 

Packet losses decrease the quality of an image or video for 

multimedia applications. Robust image coding is crucial to 

combat packet losses, for transmission of images over non 

feedback networks. New CS based image coding schemes are 

robust against packet losses and carries CS samples of nearly 

equal importance. CS based coding also ensures low costs and 

complexity for image sensing. Hence CS based image coding 

techniques have some distinct advantages over traditional 

Forward Error Correction (FEC) techniques and Multiple 

Description Coding (MDC) based methods .Forward error 

Correction techniques are generally employed along with 

some transform based coding , but provides a limited error 

resilience. MDC methods are considered to be one of the 

widely used mechanisms for packet losses. Compressive 

sensing based methods are an alternate to MDC and are able 

to provide robust image coding against packet losses with 

large number of descriptions. Recent work takes CS as a 

framework and Multiple Description Coding is done to get 

robust image coding against packet losses. The aim of the 

paper is to give a brief introduction to all the above techniques 

and survey four different CS based image coding techniques. 

General Terms 

Compressive sensing (CS), error resilience, image 

transmission, Multiple Description Coding (MDC), packet 

loss, robust image compression, wavelets, sparseness 

Keywords 

survey, Compressive sensing, Bayesian, multi scale DWT, 

Inter and intra scale dependencies. 

1. INTRODUCTION 
The rapid growth of wireless applications has led to increased 

demand of robust multimedia transmission with high quality. 

The available bandwidth is limited and wireless networks are 

prone to noise. So network reliability in wireless is often 

unfavorable and packet losses frequently occur. The situation 

is even worse in some networks, such as emergency 

communication or military confrontation, suffered from 

electromagnetic, damage, congestion or malicious attacks. 

Reliable transmission of high quality images through 

networks is highly challenging. To transmit images efficiently 

(because of limited bandwidth), it is a common way for image 

to be compressed before transmitted. 

There are a number of lossy compression schemes employed 

on digital multimedia images. Two most important standards 

that evolved are JPEG and JPEG2000 [22]. JPEG employs 

Discrete Cosine Transform (DCT) to compact image energy 

and thus a fraction of significant coefficients can approximate 

the original image. The JPEG 2000 is the most recent image 

compression standard, which is based on Discrete Wavelet 

Transform (DWT) and outperforms JPEG in general. Set 

Partitioning In Hierarchical Trees (SPIHT) [19] coding of 

images is another popular method used for image 

compression. 

Although the existing image coding schemes can provide 

excellent compression performance, they also introduce high 

sensitivity to channel noise. One bit error or loss may cause 

severe error propagation and thus makes some of the bit 

stream that follows become meaningless [33]. Therefore, error 

control or data protection is necessary in many situations. In 

non-progressive schemes loss of a packet needs waiting for 

retransmission of the lost packet. There are a number of 

schemes defined for robust image coding in non-feedback 

systems (e.g., User Datagram Protocol (UDP)) that are shown 

in Fig 1. 

The rest of the paper is organized as follows. Section I 

introduces the three different categories of image coding 

techniques and lists the papers which are surveyed. Section II 

introduces the concept of Compressive sensing. Section III 

takes up the survey of specified methods. Section IV provides 

comparisons and conclusion. 

Section I 

Images contain large volume of data. The data is spread over 

multiple packets even after compression. So loss of a packet 

causes error propagation. Forward Error Correction (FEC) 

[1],MDC based schemes and CS based schemes  are three 

major types of image coding schemes which are robust 

against packet losses. 

Forward Error Correction Codes 

FEC based coding is one of the widely used channel coding 

techniques to control errors or lost information over noisy 

channels. Generally FEC methods are employed along with a 

Transform coding in context of Image coding. Transform 

based coding schemes in literature include Embedded Zero 

Wavelet (EZW) image coding [12], Robust quantization based 

image coding for transmission over noisy channels [21] .Most 

of these methods are wavelet based and coding is done by 

exploiting statistical properties of wavelet subbands. Forward 

error correction techniques are employed on these coded 

images to be robust against packet losses.  

However, Forward error correction algorithms can provide 

robustness only to some predefined level and cannot correct 

errors beyond that. In networks with high packet loss rates. 

compatible with JPEG2000 [23]. Yang et al. presented a 

hybrid MDC and error-concealment technique for SPIHT 

codec[32]. 
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Fig 1: Robust Image coding techniques 

Forward error correcting techniques become expensive as the 

number of errors that may occur increase. 

Multiple description coding has become a good alternate for 

robust image coding and can withstand packet losses to some 

extent. 

Multiple Description Coding 

Multiple Description Coding (MDC) is considered as one of 

the effective schemes to combat packet losses over packet loss 

networks. In most cases, a Multiple Description (MD) coder 

generates two or more sub-streams referred to as descriptions, 

so that each description alone provides low but acceptable 

reconstructed quality while all the descriptions together lead 

to the highest quality [28]. The idea of MDC is to provide 

error resilience to media streams. Since an arbitrary subset of 

descriptions can be used to decode the original stream, 

network congestion or packet loss in networks such as the 

Internet will not interrupt the stream but only cause a 

(temporary) loss of quality. The quality of a stream can be 

expected to be roughly proportional to data rate sustained by 

the receiver. Combined with Multiple Path Transport (MPT), 

each description can be individually packetized and routed 

over separate physical channel. Such architecture enables 

traffic dispersion and can relieve Internet congestion. In the 

literature, a number of MDC mechanisms have been 

proposed, which can be roughly divided into four categories: 

          1) Spatial partition: The original signal is simply 

decomposed into more than one sub-stream in spatial or 

transform domain. Each subset is processed and transmitted 

separately. Ozarow proposed an MDC method with two 

channels and three receivers in the early 1980s [17]. Gamal et 

al. derived achievable rates for multiple descriptions [9]. 

         2) Multiple quantizations: The output of a quantizer is 

assigned with two or more indexes, one for each description. 

Vaishampayan developed Multiple Description Scalar 

Quantizers (MDSQ) to overcome channel impairments [25]. 

Servetto et al. first proposed wavelet-based MDC using 

MDSQ [20]. Bai et al. presented a multiple description lattice 

vector quantization for wavelet image coding [2].  

        3) Correlation transform: The correlated information 

among different descriptions was harnessed. Wang et al. 

described an MDC technique using pair wise correlating 

transforms, where the correlation introduced by the transform 

helps to reduce the distortion when only a single description is  

received [27]. Lu et al. considered MDC in wavelet domain 

combing pair wise correlating transform with quincunx sub- 

sampling [16]. 

        4) Unequally error protected packetization: Tillo et al. 

offered a novel R-D-based multiple description scheme 

compatible with JPEG2000 [23]. Yang et al. presented a  

However, the number of descriptions in the existing MDC 

schemes is very small (typically 2). Multimedia content is 

typically with a large amount of data and such a huge data 

volume is often grouped into a number of packets. If an MDC 

approach has only two or three descriptions, each description 

would be still loaded into a lot of packets. In this scenario, 

packet loss in any single description can make the received 

packets from the description being useless and thus the 

decoded image quality would be severely affected. So the 

impact of packet loss in any single description is severe [29]. 

With the number of descriptions increasing, the coding 

complexity increases drastically and many decoders would be 

required. On the other hand, in the existing image coding 

frameworks (e.g., JPEG 2000), different portions of bit stream 

have different levels of significance on reconstructed quality. 

If the output of a source encoder could be represented with the 

data of equal importance in terms of information toward 

image reconstruction, error control would be less demanding. 

Compressed Sensing 

To overcome the limitations of existing MDC based 

algorithms the emerging Compressive Sensing (CS) theory is 

applied. The existing compression schemes follow „sample 

and then compress‟ process. When signals or images that 

contain high frequency components are sampled, complex 

systems are required to satisfy „Nyquist Criteria‟. In 

applications like medical scanners and radars which need high 

speed analog to digital converters, increasing sampling rate 

beyond the state-of-art is very expensive. Compressed sensing 

is technique to directly compress a signal or image while 

acquiring it. The basic idea behind compressed sensing is 

sparsity of natural images. 

Natural images are generally sparse in basis like Discrete 

Cosine Transform (DCT) or Discrete Wavelet Transform 

(DWT). In a sparse representation, suppose a signal X of size 

N ×N can be represented in linear combination of just K basis 

vectors such that K<< N. So if a signal X is K-sparse, taking 

K linear measurements directly can reproduce the original 

signal exactly. 

Even if a signal or image is not exactly K-sparse, but 

approximately K-sparse, taking K linear measurements can 

closely approximate the original signal or image. Instead of 

sampling the original signal at Nyquist rate and then 

compressing the insignificant components, compressed 

sensing directly takes M linear measurements while acquiring 

the signal when M >K such that the original signal can be 

closely reconstructed. This reduces significant complexity and 

cost of the codec. 

The linear CS measurements are taken by using i.i.d 

(independent and identically distributed) Gaussian matrices or 

Rademacher matrices. By simply multiplying the signal with 

one of the random matrices CS measurements can be taken.  

The CS principle (i.e., multiplication with a random sampling 

matrix) can be used as an MDC framework and the CS-based 

MDC has some distinctive advantages over the existing MDC 

schemes.  

 Firstly, if the CS measurement ensemble ф (e.g., 

i.i.d. random Gaussian) obeys Uniform Uncertainty 
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Principle (UUP), each random CS measurement is 

with nearly equal importance and thus can be 

inherently considered as one description of the 

original signal (i.e., CS-based coding framework is 

with a number of descriptions) [3]. 

 Secondly, the encoder of CS-based MDC is simple 

[29]. The generation of more than two descriptions 

only involves in making random measurements (i.e., 

multiplication with a random sampling matrix). 

 Thirdly, an attractive property of CS is that the 

recovery quality only depends on the number of 

received measurements (not on which of the 

transmitted measurements that are received) and 

therefore, the proposed CS-based coding scheme has 

a unified decoder, while some of the existing MDC 

schemes employ as many as 2𝑁𝑑 − 1 (as stated 

earlier, 𝑁𝑑  is the number of descriptions) decoders. 

There are several methods that have been proposed in 

literature that take CS measurements to code an image. As 

shown in fig 1 , to broadly subcategorize the methods on CS, 

the following categories are arrived. 

 Hybrid CS : The idea was suggested by Donoho [24] , to use 

different algorithms for different subbands of wavelet. Han et 

al [10] proposed an algorithm based on hybrid CS. 

 Multi Scale DWT based CS :  There are a number of 

schemes proposed under this category where wavelet  basis is 

primarily used for sparse representation. In regular CS, all the 

DWT subbands are re-measured using one CS sensing matrix. 

In multiscale CS, each decomposition scale is sampled 

separately and the number of CS measurements is allocated 

according to the number of wavelet coefficients.   

The methods under this category can be further divided based 

on recovery algorithm used, the measurement matrices used 

and whether the measurements  are adaptive or non 

adaptive.[30] The following algorithms are particularly 

considered under this category. Wang et al [29] proposed a 

CS based multiple description schemes where CS recovery is 

by solving a total variation problem. He at el [11] developed a 

Bayesian compressed sensing method, where a spike-and-slab 

prior [13] and a zero-mean Gaussian model were imposed for 

low-band and high-bands, respectively. Chenwei Deng et al. 

[6] proposed a method that uses different measurement 

matrices for low and high frequency subbands and uses 

different recovery schemes. 

 CS on other bases : Other popular bases like Fourier and 

DCT are also used for compressed sensing. For example 

Fourier sinusoids based CS is used in MRI, in radar Imaging. 

DCT bases compressive sensing is used in computational 

electromagnetics. 

Because of the nature of CS, all CS based methods are 

generally robust against packet losses. But when compared to 

traditional compressing methods like JPEG 2000 , CS based 

methods results in significant penalty [8], [31]. 

In context of robust image coding, this paper surveys about 

hybrid CS and multiscale DWT based CS schemes mentioned. 

These multiscale DWT based CS schemes acts as CS based 

MDC schemes. In CS based MDC schemes, measurements 

are taken against equal importance of information such that 

each measurement will act as a description. So the recovered 

image quality does not depend on the measurements that are 

received, instead it only depends on the number of 

measurements that are received. CS based MDC schemes 

result in good R-D performance. 

 

 

 

Section II 

2.0 Compressive Sensing Theory 
The introduction part slightly introduces the compressive 

sensing concept and its advantages; this section gives the 

mathematical details of  Compressive sensing. Fig 2 shows 

the general block diagram for compressive sensing of a signal 

or  image. 

Consider a real valued, finite length, one dimensional discrete 

time signal f  which can be represented as N×1 column vector 

in RN with elements f [n] where n= 1,2,3.... N. An image can 

be vectorised in a higher dimension in a similar way. f can be 

represented in terms of a basis of N×1 vectors {𝜓i}𝑖=1
𝑁  , such 

that the basis is orthonormal.  For an N×N basis vector 

𝜓 = [𝜓1 𝜓2 …𝜓𝑁].Then f  can be expressed as shown in 

equation 2.1 

     𝑓 =  𝑥𝑖𝜓𝑖

𝑁

𝑖=1

    𝑜𝑟     𝑓 =  𝜓𝑥                                      (2.1) 

Clearly x is the representation of f  in 𝜓 domain. In the 

representation of x if there are only K rows that have 

significant coefficients then the system is said to be K sparse. 

If K<< N then it is clear that just K rows of x can fully 

represent f. This is the basic idea of transform coding. But all 

transform coding methods follow "sample and then compress" 

procedure which require a lot of resources when the signal 

involves high frequency information. 

 

Fig 2: Block diagram of compressive sensing 

The idea of compressive sensing is to directly take M 

measurements of x where M>K and M<<N such that f can be 

reconstructed using M linear measurements of x,  represented 

by y. As shown in the fig 2 random measurement matrices are 

used for this purpose. CS theory says that from M 

measurements the signal can be recovered exactly if  

condition  in 2.2 is satisfied. 

                       𝑀 ≥  𝐶𝑜𝑛𝑠𝑡.𝐾. 𝑙𝑜𝑔𝑁                          (2.2) 

Where Const is a over measuring factor greater than 1.Once 

the signal is represented by linear measurements in some 

orthonormal basis as y, in order to get back the signal f a 

number of reconstruction algorithms are used. As mentioned 

in [26] there are different reconstructions algorithms existing 

in literature. There are at least five major classes of 

computational techniques for solving sparse approximation 

problems.  

1) Basis pursuit : The reconstruction algorithm is defined by 

a convex optimization problem. Solve the convex program 

with algorithms that exploit the problem structure .Most 

popular of this is l1 minimization. 

2) Greedy pursuit: Iteratively refine a sparse solution by 

successively identifying one or more components that yield 

the greatest improvement in quality. 

3) Bayesian framework: Assume a prior distribution for the 

unknown coefficients that favors sparsity. Develop a 

maximum a posteriori estimator that incorporates the 

observation. Identify a region of significant posterior mass  or 

average over most-probable models. 
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4) Non convex optimization: Relax the „0 problem to a 

related non convex problem and attempt to identify a 

stationary point. 

5) Brute force: Search through all possible support sets, 

possibly using cutting-plane methods to reduce the number of 

possibilities. 

Different algorithms and their combinations are used in the 

methods that are to be discussed. To apply any algorithm the 

basic condition to be satisfied for faithful reproduction of the 

signal is RIP (Restricted Isometric Property). To ensure RIP 

the necessary condition to be satisfied is that, the 

measurement matrix ф is incoherent with sparsifying basis 𝜓. 

That is, the  measurement matrix ф cannot be sparsely 

represented by the basis 𝜓 and vice versa. 

Section III 

This section surveys four robust image coding techniques. 

3.1 Hybrid CS 
Donoho [24] suggested a hybrid CS to measure wavelet 

coefficients in higher bands while using linear reconstruction 

for lower band. Han et al. [10] established a image 

representation method similar to hybrid CS which is intended 

for visual sensor networks. 

Natural images are complex representation of real world. It is 

hard to find out a basis, which results in exact sparse 

representation of the natural image. But the natural image in 

general is compressible. If an image x such that f(x) = 𝜓x 

,where 𝜓 is a orthonormal basis. x  is compressed by taking K 

largest coefficients into account represented as 𝑥𝐾 , then the 

difference ||𝑥 − 𝑥𝐾||   
     ||𝑥 − 𝑥𝐾||2  <   𝐶1 .𝑅.𝐾−𝑟 , 𝑟 =  1/𝑝 − 1/2        ( 3.1) 

where R and p are constants and depends on fn(x), that is the 

n-th largest coefficients in f ( x) and coefficients of  f  varies as 

1 ≤ 𝑛 ≤ 𝑁,  𝑓𝑛 𝑥  ≤ 𝑅.𝑛−1/𝑝           (3.2)  

 Donoho [24] suggested  the error bound on CS approximation 

reconstructed from non adaptive measurements. Given M 

measurements of signal x,  the reconstruction error bound 

takes the form as shown in equation 3.3 

  𝑥 − 𝑥𝐶𝑆  2  ≤  𝐶2 .𝑅.  
𝑀

log 𝑁 
 
−𝑟

, 𝑟 =
1

𝑝
−

1

2
  ( 3.3) 

where C2 is a constant. If the signal is exactly sparse, the two 

error bounds will be at same level. Otherwise , there will be a 

big gap between the two error bounds. Based on these error 

bounds, one can observe that CS is more suited for sparse 

signals and if decay rate of the signal is more, it can have fast 

CS recovery. 

Based on the analysis on error bounds, the conclusion is CS is 

more suited for signals with fast recovery and hence signals 

are sparser.  So to leverage maximum signal recovery and 

minimum error in presence of noise the image is divided into 

dense and sparse components. multiscale DWT is used for this 

purpose. The lowest subband of DWT representation of the 

signals have most significant data. The coefficients decay 

slowly, hence it is considered as dense component. 

In the other subbands the coefficients decay rate is observed 

to be fast. Since CS is more efficient for sparse signals, in the 

scheme, the input image is firstly decomposed into two 

components, i.e., dense and sparse components. 

Fig 3 [10] shows the scheme for Hybrid CS. The input image 

I is first decomposed into a dense component ID and a sparse 

component IS through a transform T , where T could be 

wavelet, curvelet, or any other transforms. In hybrid CS 

scheme, DWT basis W is used to decompose the image as 

shown in equation 3.4. 

  𝐼 = 𝐼𝐷 + 𝐼𝑆 =  𝛼1 𝑗0 ,𝑘𝑊𝑗0 ,𝑘 +    𝛼2 𝑗 ,𝑘𝑊𝑗 ,𝑘       (3.4) 

𝐾

𝑗2

𝑗=𝑗1𝐾

 

Where  j0 is the coarsest level of wavelet and j1 is next level 

and so on. The lowest band of wavelet transform is taken as 

dense component and other bands as sparse components. 

Although the input image could be decomposed into the dense 

and sparse components, one can still observe that there exists 

a strong visual correlation between them. Therefore, it is 

possible to use the dense component to predict the original 

image, as well as the sparse component. 

 

Fig 3: Image Representation scheme of hybrid CS 

The development of adaptive interpolation provides an 

effective tool to solve this problem. The adaptive interpolation 

describe the image as a 2D piecewise autoregressive (PAR) 

model, as in equation 3.5 

    𝑋𝑖,𝑗 =  𝛽𝑚 ,𝑛

(𝑚 ,𝑛  )∈𝐵𝑖 ,𝑗

𝑋𝑖+𝑚 ,𝑗+𝑛 + 𝑣𝑖 ,𝑗                             (3.5) 

Where (i , j) is the pixel to be interpolated, βi,j  is the window 

centered at pixel (i , j) , v i,j   is a random perturbation 

independent of pixel  and the image signal. 

In Zhang et al 's paper [35], they formulate the interpolation 

problem as an optimization problem: 

min𝑎, 𝑏, 𝑐      𝑢𝑖 −  𝑎𝑡𝑣𝑖−𝑡
 4 +  𝑏𝑡𝑢𝑖−𝑡

 8 
 

3

𝑡=0

 

2𝑖∈𝐵

  

+   𝑣𝑖 −  𝑎𝑡𝑢𝑖−𝑡
 4 + 𝑏𝑡𝑣𝑖−𝑡

 8 
 

3

𝑡=0

 

2𝑖∈𝐵

  3.6  

 

where Iu is the image to be interpolated and the Iv is the 

original image. ui & vi are pixels of image Iu and Iv 

respectively. B is the window size. The superscripts (4) and 

(8) indicate 4-connected neighboring and 8-connected 

neighboring, respectively. Fig 4 [10] depicts the sample 

relationships. 

 

Fig 4 : Relation between interpolation pixels 
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 Zhang et al. [35] gives a linear least-square solution to this 

problem, which estimate neighboring pixels simultaneously in 

window B as shown in equation 3.7. 

min𝑣      𝑢𝑖 − (𝑎 𝑡𝑣𝑖−𝑡
 4 + 𝑏 𝑡𝑢𝑖−𝑡

 8 )

3

𝑡=0

 

2𝑖∈𝐵

  

+   𝑣𝑖 − (𝑎 𝑡𝑢𝑖−𝑡
 4 + 𝑏 𝑡𝑣𝑖−𝑡

 8 )

3

𝑡=0

 

2𝑖∈𝐵

 (3.7) 

where 𝑎   and 𝑏  are estimated from Iu. With this interpolation 

scheme ID  is considered as subsample of I such that IS  can be 

interpolated to get back I. 

The two components are measured separately. ȊD and ȊS are 

used to represent the dense and sparse measurements of the 

signal components respectively. Direct samples are taken for 

the dense component. In order to take measurements of the 

sparse components IS, a Gaussian random ensemble ϕ is used.  

As the dimension of the input image is very high, block based 

sampling strategy is used to take CS measurements of sparse 

component. IS is first divided into several groups by scales 

and then reordered into a number of vectors of the same 

dimension. In the decoder side, the signal has to be recovered 

separately. Since the dense component is measured pixel by 

pixel, ȊD is exactly the wavelet coefficients of ID. Therefore, 

by directly applying inverse transform W‟ to ȊD will get ID. In 

order to recover IS, optimization problem has to be solved. 

The prediction Ȋ of the input image could be obtained by 

adaptive interpolation of the dense component by solving 

adaptive interpolation problem. The reconstruction of IS is 

based on POCS (Projection on to Convex Sets). In Candes's 

paper [15], they propose a different recovery procedure, 

which requires a small amount of priori information of the 

signal to be recovered but costs less computation in each 

iteration. In their algorithm, they assume the l1 norm of the 

recovered signal is known. 

In order to get a unique solution by compressed sensing the l1  

ball 𝐵 = {𝑥 ∶ ||𝑥 ||𝑙1  ≤  ||𝑥||𝑙1}  and the Hyper plane 

𝐻 = {𝑥 ∶ 𝜙𝑥  = 𝑦}  meet exactly at one point 𝐵 𝐻  =  {𝑥}.  
because B and H are convex x can be recovered from alternate 

Projections On to Convex Sets (POCS) algorithm.   

As the dense component ȊD is directly obtained, it is used to 

predict IS  by adaptive interpolation. This predicted IS is used 

as prior signal for initialization of iteration in POCS. This 

predicted IS acts as a reference and helps for solution to 

converge more rapidly and accurately. 

The main advantage of Hybrid CS scheme is separating the 

image into dense and sparse components and taking CS 

measurements for only those components that are suitable. 

Also prediction of the input by adaptive interpolation of dense 

component ensures reconstruction of image in lesser 

iterations. Hybrid CS method also provides high coding 

efficiency as the low band coefficients are JPEG 2000 

encoded. 

Hybrid CS method works excellently well in low PLR 

environments. However, with the PLR Hybrid CS cannot 

reconstruct original image with good quality. 

3.2 CS based MDC by solving total 

variation problem (TV) 
Wang et al. [29] proposed a CS-MDC by solving the 

minimum Total Variation (TV) problem. The scheme is 

intended for network multimedia communication where the 

end devices have resource constraints and bandwidth 

constraints.  

    Existing MDC based schemes are practically restricted to 2 

or 3 descriptions. So each description is still loaded into a lot 

of packets. So loss of packets will still pose a problem. 

Priority encoded transmission (PET) offers a way of 

generating an MDC code of fine description granularity. It can 

produce many packets, each of which by itself can be 

transmitted as a description. But the PET technique requires 

the source code to be rate-distortion scalable. Only few of 

compression standards are scalable. Moreover, the PET 

encoder is computationally very expensive because it needs to 

optimally packetize scalable source code stream. This makes 

PET-based MDC technique unsuitable for applications with 

resource constraints. In order to combat packet losses even in 

resource constrained network multimedia transmission, the 

CS based MDC scheme by solving Total Variation problem is 

defined. 

 

Fig 5 : Encoder 

3.2.1 Encoder 
The Schematic diagram of CS-MDC encoder is as shown in 

Fig 5[29]. The CS-MDC encoder generates multiple 

descriptions simply by making random measurements of the 

signal f such that y = ф f, where f  is a sparse representation of 

input image on some basis.(Wavelet basis used in the current 

algorithm). The matrix ф can be formed of many possible 

random bases, e.g., all entries of ф can be Gaussian random 

variables of zero mean and unit variance, or the Rademacher 

random variables. For the synchronization of the encoder and 

decoder, the random matrix ф is formed by a pseudo random 

number generator. 

 The CS measurements are real values and need to be 

quantized for digital communication. Because the random 

measurements are i.i.d. and obey a Gaussian distribution of 

rather high entropy, they can be coded by a uniform scalar 

quantizer of fixed code length without entropy coding. The 

absence of entropy coding will not incur heavy loss in coding 

efficiency while greatly simplifying the encoder and the 

packetization process. In the event of transmission bit errors, 

the fixed length code will also isolate the errors in the affected 

measurement without causing error avalanches. A number of 

coded measurements are packed into a packet and transmitted 

to the receiver via a lossy network.  

If the random measurements are taken on the entire image, the 

data will be huge and computationally difficult to solve the 

linear programming model . So the image f is partitioned into 

workable sized blocks H. For example 16×16 blocks are 

formed with H=256. So that for each block the decoder will 

work reducing the time complexity of the decoder. 

Measurement allocation : 

To address the problem of how many measurements have to 

be taken for each block, the sparsity of each block is 

considered. Clearly even allocation of measurements is 

suboptimal. So relation between number of measurements m 

and reconstruction error function e(m) is considered. 

Empirically the relation is found to be  𝑒(𝑚) = 𝛽 𝑚−𝛼  where 

β and α are constants.  β represents energy of the block and α 

represents decay rate. β and α are related to the coefficients 

{𝜃𝑖}1≤𝑖≤𝑁 in sparse space. They can be determined by the 

maximal absolute value |𝜃|𝑚𝑎𝑥  and variance ζ of the 

coefficients. 

Having the estimated error function e(m) for each block, CS 

measurements are allocated to B blocks in the principle of 

equal slope of e(m) in rate-distortion optimization. Let the 
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parameters in block b be βb and αb. The solution to the 

allocation problem is given by equation 3.8 

𝑚𝑏  =  
𝛽1  𝛼1

𝛽𝑏𝛼𝑏
𝑚1

−𝛼1−1
 
− 

1
1+𝛼𝑏

     1 ≤ 𝑏 ≤ 𝐵                 (3.8) 

where m1 and mb are bits allocated for 1st and bth block 

respectively. 

In order to compute the optimized measurement allocation, 

the decoder needs estimated the error functions e(m) = βm−α 

for all blocks. To facilitate this, | θ |max and σ  are transmitted 

to the decoder as the side information. If we quantize these 

values into Q levels, the overhead of the side information is 

negligible, being only 2log2 Q/H bits per sample. 

Quantization : 

Though the length of code word is uniform , the quantization 

step size is varied among the block in order to minimize the 

quantization distortion of measurements. Quantization step 

size in each block depends on the variance of measurements 

taken in that block. The variance of measurements in each 

block in turn is proportional to energy f the block. So variance 

can be estimated for each block by the decoder. Based on the 

same quantization step size is estimated. No side information 

is needed for decoding quantization step size. 

Packetization : 

Although each CS measurement can be considered to be a 

description by itself, it cannot be transmitted on its own for 

the payload of data packet in network communication is much 

larger than the code length l of a CS measurement. A set of 

coded measurements are packed into a data packet and 

delivered to the receiver via the network. In order to solve the 

problem of identifying missed packet at random, the unit 

interval [0,1] is partitioned into B subintervals in proportion to 

mb. At the run time, both CS-MDC encoder and decoder use a 

pseudo random number generator in [0,1] to select 

measurements from the B blocks, according to which 

subintervals the random numbers fall into. The selected 

measurements are packed into consecutive data packets in the 

pseudo random sequence. 

3.2.2 Decoder 
The CS-MDC decoder is even simpler. It first unpacks 

received packets, then performs inverse quantization and 

finally reconstructs the signal from the decoded measurements 

by solving the optimization problem. Fig 6[29] shows the 

block diagram of decoder. 

 

Fig 6: Block diagram of Decoder 

    At decoder the problem of l1 minimization is converted into 

a Total variation problem(minimum TV). The general  l1 

minimization problem for CS is defined as  

        𝑃1:  𝑚𝑖𝑛 ||𝜓𝑇𝑓||𝑙1    𝑠. 𝑡   𝜙𝑓 = 𝑦                           (3.9)  

    When the CS measurements are corrupted with noise 

𝑦 =  𝜙𝑓 + 𝑒 , ||𝑒||2  ≤  𝜖 , where 𝜖 is the energy of the noise. 

Then P1 problem will have slightly varied form. 

   𝑃1
′ :  𝑚𝑖𝑛 ||𝜓𝑇𝑓||𝑙1    𝑠. 𝑡  || 𝜙𝑓 −  𝑦||𝑙2 ≤ 𝜖               (3.10)  

    For a natural image signal fm,n, the discrete gradient is small 

in most locations. In this case, the objective function in (3.10) 

can be changed to minimum total variation problem of the 

signal  || f ||TV , namely  

       𝑃𝑇𝑉 :  𝑚𝑖𝑛 ||𝑓||𝑇𝑉    𝑠. 𝑡  || 𝜙𝑓 −  𝑦||𝑙2 ≤ 𝜖                (3.11)  

where 

||𝑓||𝑇𝑉  =   (𝑓𝑚+1,𝑛 −  𝑓𝑚 ,𝑛)2  +  (𝑓𝑚 ,𝑛+1 −  𝑓𝑚 ,𝑛)2
𝑚 ,𝑛    =

 |∇𝑓𝑚 ,𝑛 |𝑚 ,𝑛 . 

By solving the above optimization problem at the decoder 

side on each workable block , in any sparse basis, the original 

image can be recovered. 

Compared with  Other MDC based schemes, CS-MDC has a 

better granularity and lower complexity and can resist the 

packet losses efficiently. Furthermore, the decoder can 

reconstruct the signal in different space flexibly, which can 

help improve the performance for the signal which has many 

kinds of features in different parts. 

 However the R-D performance of the CS-MDC algorithm is 

relatively poor as the method does not fully exploit the inter 

and intra correlation dependencies . 

3.3 Bayesian Compressive Sensing 
He et al. [11] developed a Bayesian compressed sensing 

method, where a spike-and-slab prior [5] and a zero-mean 

Gaussian model were imposed for low-band and high-bands, 

respectively. The inter-scale dependency of high-bands has 

been applied for hierarchical Bayesian learning.  The basis for 

this method is based on the statistical properties of wavelet 

coefficients. Wavelet coefficients results in parent children 

relationships. The wavelet coefficients at the coarsest scale 

serve as “root nodes” for the quad trees, with the finest scale 

of coefficients constituting the “leaf nodes”. For most natural 

images the negligible wavelet coefficients tend to be clustered 

together; specifically, if a wavelet coefficient at a particular 

scale is negligible, then its children are also generally (but not 

always) negligible. This leads to the concept of “zero trees” 

[19] in which a tree or sub tree of wavelet coefficients are all 

collectively negligible. 

      The structure in the wavelet coefficients is imposed within 

a Bayesian prior, and the analysis yields a full posterior 

density function on the wavelet coefficients. Consequently, in 

addition to estimating the underlying wavelet transform 

coefficients of the given image (Ѳ),“error bars” are also 

provided, which provide a measure of confidence in the 

inversion. Such error bars are useful for at least two reasons: 

(i) when inference is performed subsequently on Ѳ, one may 

be able to place that inference within the context of the 

confidence in the CS inversion;  

(ii) typically one may not know a priori how many transform 

coefficients are important in a signal of interest, and therefore 

one will generally not know in advance the proper number of 

CS measurements N – one may use the error bars on the 

inversion to infer when enough CS measurements have been 

performed to achieve a desired accuracy. Let X be an M 

dimensional signal or image , which is sparse on wavelet basis 

vector ψ, an M×M basis. The CS  measurement 𝑣 = ф𝜓𝑇𝑥 =
 ф𝜃 , where ф is a N×M (N<<M) dimensional matrix of 

random projections. 𝜃 denotes M dimensional vector of 

wavelet transform coefficients. Suppose m coefficients of θ 

are significant and other M-m coefficients are negligible. 

Then 𝜃 = 𝜃𝑚 + 𝜃𝑒  where 𝜃𝑚  represents the original 𝜃 with 

M-m smallest coefficients set to zero. 𝜃𝑒  represents the m 

significant coefficients set to zero. If the m significant 

coefficients are found out, the signal x can be closely 



International Journal of Computer Applications (0975 – 8887)  

Volume 71– No.5, May 2013 

47 

approximated. So 𝜃𝑒  component is considered as noise ne . 

Further a noise component n0 is considered such that 

               𝑣 =  ф𝜃𝑚 + 𝑛                                   (3.12)  
where elements of n can be represented by a zero-mean 

Gaussian noise with unknown variance 𝜎2 , or unknown 

precision 𝛼𝑛 = 𝜎−2. 

3.3.1 TSW Modeling 
Tree-structured wavelet compressive sensing (TSW-CS) 

model is constructed in a hierarchical Bayesian learning 

framework. In this setting a full posterior density function on 

the wavelet coefficients is inferred. Within the Bayesian 

framework , a spike - and - slab model is imposed for 

Bayesian regression. The prior for the ith  element of θ 

(corresponding to ith transform coefficient) has the form 

shown in equation 3.13. 

θi  ~  1 −  πi  δ0 +  πi 𝒩 0,αi
−1 ,     i = 1,2, . . M, (3.13) 

which has 2 components. The first component δ0   is a point 

mass concentrated at zero, and the second component is a 

zero-mean Gaussian distribution with (relatively small) 

precision αi
−1. the former represents the zero coefficients in θ 

and the latter the non-zero coefficients. This is a two-

component mixture model, and the two components are 

associated with the two states in the HMT [7]. The mixing 

weight πi , the precision parameter αi , as well as the unknown 

noise precision αn , are learned from the data. The proposed 

Bayesian tree-structured wavelet (TSW) CS model is 

summarized as follows. 
v
θ  ,αn  ~ 𝒩 фθ,αn

−1I  ,                                              (3.14a) 

θs,i  ~   1 −  πs,i  δ0 + πs,i 𝒩 0,αs
−1  , with πs,i

=  

πr  , if s = 1

πs
0  , if 2 ≤ s ≤ L, θpa  s,i = 0  

πs
1  , if 2 ≤ s ≤ L, θpa  s,i ≠ 0

  

                                                                                      (3.14b) 

   αn  ~  Gamma a0, b0 ,                                                    (3.14c) 

   αs  ~  Gamma c0, d0 , s = 1,2,…… L                 (3.14d) 

    πr  ~  Beta e0
r , f0

r ,                                                       (3.14e) 

    πs
0 ~  Beta e0

s0 , f0
s0 ,          s = 2,…… L              (3.14f) 

    πs
1 ~  Beta e0

s1 , f0
s1 ,          s = 2,…… L              (3.14g) 

where θs,i  denotes the ith wavelet coefficient (corresponding 

to the spatial location) at scale s, for i= 1,2...,MS (MS is the 

total number of wavelet coefficients at scale s) , πs,i  is the 

associated mixing weight, and θpa  s,i denotes the parent 

coefficient of θ s,i . In (3.14b) it is assumed that all the 

nonzero coefficients at scale s share a common precision 

parameter αs . It is also assumed that all the coefficients at 

scale s with a zero-valued parent share a common mixing 

weight πs
0, and the coefficients at scale s with a nonzero 

parent share a mixing weight πs
1. 

Gamma priors are placed on the noise precision parameter αn  

and the nonzero coefficient precision parameter αs , and the 

posteriors of these precisions are inferred according to the 

data. The mixing weights  πr , πs
0 , πs

1 are also inferred, by 

placing beta priors on them. To impose the structural 

information, depending on the scale and the parent value of 

the coefficients, different Beta priors are placed. For the 

coefficients at the root node, a prior preferring a value close to 

one is set in (3.14e), because at the low-resolution level many 

wavelet coefficients are nonzero; for the coefficients with a 

zero-valued parent, a prior preferring zero is considered in 

(3.14f), to represent the propagation of zero coefficients 

across scales; finally, (3.14g) is for the coefficients with a 

nonzero parent, and hence no particular preference is 

considered since zero or nonzero values are both possible. 

3.3.3 MCMC Inference 
The posterior computation is implemented by an Markov 

chain Monte Carlo (MCMC) method [18] based on Gibbs 

sampling, where the posterior distribution is approximated by 

a sufficient number of samples. These samples are collected 

by iteratively drawing each random variable (model 

parameters and intermediate variables) from its conditional 

posterior distribution given the most recent values of all the 

other random variables. The priors of the random variables are 

set independently as 

P αn ,  αs S=1:L ,πr ,  πs
0,πs

1 S=2:L =  Gamma a0, b0  

{ Gamma(c0, d0)} Beta(e0
r , f0

r)}    
Beta e0

s0, f0
s0 

∗ Beta(e0
s1, f0

s1)
L
s=2   L

s=1                                                                                                                             

(3.15) 

Under this setting the priors are conjugate to the likelihoods, 

and the conditional posteriors used to draw samples can be 

derived analytically. At each MCMC iteration, θ can be 

sampled in block manner or sequentially. But the observation 

is sequential sampling results in faster convergence. 

3.3.4 Extensions to scaling coefficients 
The TSW-CS model presented in section 3.3.2 only performs 

inversion for the wavelet coefficients, assuming that the 

scaling-function coefficients are measured separately. 

However, TSW model can be extended to scaling coefficients 

as well. The model is same as in 3.3.2 except the following,   

θs,i  ~   1 −  πs,i  δ0 +  πs,i 𝒩 0,αs
−1  , with πs,i

=

 
 
 

 
 πsc , if  s = 0

πr  , if s = 1

πs
0 , if 2 ≤ s ≤ L, θpa  s,i = 0  

πs
1  , if 2 ≤ s ≤ L, θpa  s,i ≠ 0

  

                     ( 3.16a) 

              πsc  ~  Beta e0
sc , f0

sc  ,                                           (3.16b)   

Compared to the equation (3.14b) , (3.16a) is defined for s=0 

as well with a mixing weight  πsc , which is drawn from a prior 

distribution Beta e0
sc , f0

sc  . Considering that the scaling 

coefficients are usually nonzero, the hyper parameters are 

specified  such that  πsc = 1 is almost always true. 

The TSW-CS method outperforms conventional wavelet 

based CS schemes as the intra scale correlation of DWT is 

also exploited. The method is able to produce very good R-D 

performance with low number of CS measurements. 

However, the TSW-CS method cannot achieve high R-D 

performance, since such CS recovery schemes have not fully 

exploited the correlation of multi scale DWT [4]. 

3.4 Wavelet CS with different Low and 

High Measurements  
Chenwei Deng et al. [6] proposed Multiscale DWT based CS-

MDC method with different measurement matrices for low 

and high frequency. 
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3.4.1 Encoding 
The encoder and decoder of the system is as shown in fig 7 

[6]. A 4 level 9/7 Daubechies DWT is used for sparse 

representation of the image. The low and high frequency 

subbands are measured differently with 2 different 

measurement matrices. As the lowest frequency subband of 

DWT contains most significant data, more measurements are 

taken for Low frequency subbands. 

3.4.1.1 Discrete Wavelet Transform 
DWT decomposes image into a set of basis functions called 

wavelets i.e into four bands called LL, HL, LH, HH. Here 

multiscale 2-D DWT is applied. 

3.4.1.2 Measurements Sampling 
In the proposed CS based MDC image coding instead of 

directly coding the DWT coefficients, they are re-sampled 

towards equal importance of information. In the proposed 

method, i.i.d. Gaussian is selected as CS measurement 

matrices. In this process low frequency subbands and high 

frequency sub bands are re-sampled separately, such that the 

overall re sampled information is of equal important for all 

subbands. 

3.4.1.3 Side Information of Lower band 

Coefficients 
In order to identify the spatial structures existed in the low-

frequency subband (denoted as LL ), we first divide LL into 

several 4×4 blocks at the encoder side (note that for a natural 

image, a 3- to 5-level wavelet decomposition is performed and 

the number of scaling coefficients is practically no less 

than16×16). For the coefficients in each block, spatial Gabor 

filters with different frequencies and orientations are utilized 

to extract the dominant orientation of structures in each block 

[34].  

Fig 8[6] shows possible eight directions of spatial Gabor 

filters. By using such Gabor filters, each scaling coefficient 

has an output response with respective to the filter kernel and 

the largest response value will be selected as the 

representative orientation. For each block, the number of 

coefficients in each orientation is calculated and the 

orientation with the largest number of coefficients is 

considered as the statistically major orientation of structures. 

The information of major orientation in each block 

corresponds to one of the eight intra predictors. This is sent to 

the decoder as side information using 3 bits per block. If there 

is no major orientation in the 4× 4 block, i.e., the outputs of 

the eight Gabor filters are similar, all the eight intra prediction 

modes are tested at the encoder side and the candidate mode 

with minimal Sum of Absolute Differences (SAD) or Mean 

Absolute Differences (MAD) of the low-band residuals is 

selected and the information of selected intra mode is also 

sent to the decoder via 3 bits per block. 

3.4.1.4 Quantization and Packeting 
Once CS measurements are taken for High and Low 

frequency sub bands, the resulting coefficients are quantized 

and distributed into packets and sent across the channel. The 

entropy coding stage is optional.  

CS measurements are taken differently for high and low band 

coefficients separately as shown in equation 

 
𝑌𝐿
𝑌𝐻
 =   

ф𝐿         
         ф𝐻

   
𝑋𝐿
𝑋𝐻

                           (3.17) 

where 𝑌𝐻  and 𝑌𝐿 denote CS samples measured from low- and 

high-bands, while 𝑋𝐿 and 𝑋𝐻  represent the scaling and 

wavelet coefficients, respectively. Assume that L -level 2-D 

DWT is performed for an N -length image, the number of 

scaling coefficients is N/4L , which is much smaller than that 

of original image data . Such coefficients capture extremely 

important information, and therefore, almost the same number 

of CS samples are taken. Number of CS samples for high 

band wavelet coefficients is decided based on bit budget. 

3.4.2 Decoding 
The received stream is first unpackaged and decoding is done 

on received measurements. There are two separate algorithms 

proposed for low and high frequency wavelet coefficients 

recovery. Side information is used for intra prediction of low 

band coefficients in the receiving end and these overhead bits 

may be lost over lossy channel; however, the number of low 

band coefficients is much smaller than that of original image 

pixels (e.g., 0.39% for 4-level DWT) and the side bits are also 

very small. For such a small number of side information, these  
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Fig 7: Block diagram of CS based image compression 

side bits are put in different packets and more copies of the 

overhead are transmitted to combat channel loss. For high 

frequency band information developed a Bayesian 

compressed sensing method, where a spike-and-slab prior [13] 

and a zero-mean Gaussian model were imposed. Using this 

Bayesian framework High frequency band coefficients are 

recovered exploiting intra dependencies among neighboring 

high frequency coefficients. 

 

Fig 8 :  Spatial Gabor filter kernels with eight orientations 

 

3.4.2.1 Inverse Discrete Wavelet Transform  
The Wavelet coefficients recovered in previous step are used 

to as inputs to recover original image f by applying Inverse 

Discrete Wavelet Transform. 

3.4.3 Scaling Coefficients  
Scaling coefficients are not sparse and nature and carry most 

of the significant information of an image. the strong intra-

redundancy  of low-frequency subband provides possibilities 

to make a concise representation for the scaling coefficients. 

For each scaling coefficient the dominant orientation is found 

out and for each block, the orientation with largest number of 

coefficients is considered as dominant orientation. This is sent 

as side information with 3 bits per block. 

With the received CS samples and the side information of 

intra mode predictor, one can recover the scaling coefficients 

at the decoder side, by solving the following object function: 

min   𝑅[𝑋𝐿(𝑠)] 𝑙1       𝑠. 𝑡       ф𝐿𝑋𝐿 − 𝑌𝐿 𝑙2 ≤  𝜖  (3.18) 

1≤𝑠≤𝑆

 

where XL and YL denote the scaling coefficients and received 

CS measurements, respectively; ε represents the noise term 

and фL is the measurement matrix; S is the number of 4×4 

blocks. R[.] depicts the residuals generated by intra-prediction 

using one of the eight directional modes shown in Fig 8. 

3.4.4 Wavelet Coefficients Recovery 
Wavelet coefficient recovery is based on Bayesian CS method 

explained in 3.3.2 and 3.3.3. TSW CS model is applied for 

sparse coefficients.  

The method is referred as WLH - CS as different CS 

measurement matrices are used for low and high band wavelet 

coefficients. The method fully exploits intra and inter scale 

dependencies of wavelet coefficients. 

 

 

Section IV 

4. COMPARISONS  
Table 1 compares different CS based image coding techniques 

that are discussed. , CS TV represents CS based MDC by 

solving total variation problem. TSW-CS represents  Tree 

structured Wavelet CS. WLH -CS   represents CS based MDC 

using multiscale DWT with different measurements for low 

and high bands. 

Table 1: Comparison of different methods 

Method Computati

onal 

complexit

y 

Application Methodology 

Hybrid 

CS 

Medium Storage based 

/transmission 

applications 

with Low 

PLRs. 

Separately coding 

dense and sparse 

components of 

image. 

CS TV Low Networks 

where end 

devices are 

resource 

constrained 

Block based CS 

measurements are 

taken and solved  by 

minimizing total 

variation problem 

TSW-CS High Transmission 

on networks 

with Low to 

medium PLR 

Exploiting inter 

scale dependencies 

of multiscale DWT 

(MCMC inference 

for coefficients 

recovery) 

WLH -

CS 

High Transmission 

on High PLR 

networks 

Exploiting inter 

scale, intra scale 

dependencies of 

multiscale DWT. 

different  recovery 

and measurements 

for low and high 

band coefficients 

TSW -CS and WLH CS methods uses MCMC techniques and 

require more computational resources. However , both the 

methods can achieve better image quality with fewer number 

of CS measurements (Computationally efficient). 

Fig 9 shows about how the relative reconstruction error  

converges for TSW CS method . The method is implemented 

on a 128 ×128 cropped cameraman image. 
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Fig 9:CS measurements Vs Reconstruction error for TSW-CS. 

5. CONCLUSIONS 
The comparisons presented above can be summarized as 

follows 

 Hybrid CS method is best suited for storage based 

applications or transmission on networks with Low 

packet loss rate. This method is a good compromise 

between coding efficiency and coding expenses, as 

the method exploits the properties of dense and 

sparse components of wavelet decomposed image.  

 CS-MDC Total Variation method is best suited for 

visual sensor networks, where the network is 

resource and bandwidth constrained.  

 TSW-CS method exploits the inter scale 

dependencies of multiscale DWT , by belief 

propagation. The method makes CS recovery 

problem to be computationally very efficient. The 

method is suited for image coding on networks with 

low to medium packet loss rates.  

 WLH-CS method is best suited for image coding on 

networks with high to very high packet loss rates. 

The method fully exploits the intra and inter scale 

dependencies of multiscale DWT.  

Previously the coding efficiency of CS based algorithms is 

poor compared to JPEG 2000 [8], [31]. Now by taking 

different measurement algorithms for low and high frequency 

subbands, the coding efficiency has been increased without 

sacrificing quality. Rate - distortion performance, Complexity 

of codec and Coding efficiency are considered as main 

parameters for devising a practical image codec which is 

robust against packet losses.  

To resist loss of packets different algorithms are developed 

for duplication [6]. Also by employing different algorithms 

for recovery of low and high frequency sub bands, the 

complexity of receiver also controlled. The trend is towards 

algorithms with optimized R-D characteristics ,coding 

efficiency and error resilience with minimal computational 

complexity. We hope more methods that can be 

implementable in real time applications. 
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