# On Security of Hill Cipher using Finite Fields 

P. L. Sharma<br>Department of Mathmatics<br>Summer Hill, Shimla

M. Rehan<br>Department of Mathmatics<br>Summer Hill, Shimla


#### Abstract

Hill cipher in cryptography is a symmetric key substitution algorithm, which is vulnerable to known plaintext attack. The present paper provides two fold securities to the existing Hill cipher by using the elements of finite fields and logical operator.


## Keywords

Plain Text; Symmetric Key; Hill Cipher; Finite Field; Logical Operator.
MSC : 11T71, 94A60, $68 P 25$.

## 1. INTRODUCTION

The security of information to maintain its confidentiality, integrity and availability has become a major issue today. Cryptography is a cornerstone of the modern electronic security technologies used today to protect valuable information resources on intranets, extranets, and the internet $[1,2]$. It is the study of techniques and applications of protecting the integrity and authenticity of information sent through insecure channels. Various techniques from different areas of mathematics like number theory, matrix analysis, finite fields [3], logical operators [4] etc. are used in building and analysing ciphers.

The Hill cipher in cryptography is a classical symmetric cipher based on matrix transformation. It was invented by Lester S. Hill in 1929 [5]. He extended this work in [6]. The main advantages of Hill cipher includes its frequency analysis, high speed, high throughput and the simplicity due to the fact that it uses matrix multiplication and inversion for encryption / decryption. However it succumbs to the known plaintext attack [7, 8]. In Hill cipher for decryption to be possible, the key matrix should be invertible. According to Overbay [9] the key space of Hill cipher is $G L\left(n, Z_{m}\right)$, the group of $n \times n$ matrices that are invertible over $Z_{m}$, where $Z_{m}$ is ring of integers modulo $m$ [10].

Several researchers have contributed to improve the security of Hill Cipher. Saeednia [11] tried to make Hill cipher secure by using the dynamic key matrix obtained by random permutations of columns and rows of the master key matrix. Chefranov [12] proposed a modification to [11] which is similar to Hill cipher permutation method but it uses a pseudo-random permutation generator. The number of dynamic keys is same as taken in [11]. Ismail et al. [13] in their technique for repairing Hill cipher introduced an initial vector that multiplies each row of current key matrix to form a different key for each block encryption. Adi et al. [14] modified the Hill cipher based on circulant matrices. In their cryptosystem, they have used a prime circulant matrix.

We give an algorithm which increases the security of Hill cipher. The proposed algorithm along with illustration involves the encryption and decryption of plaintext by making
the use of elements of finite fields and logical XNOR operator.

## 2. ALGORITHM OF PROPOSED CRYPTOSYSTEM

Two different keys are used in the proposed algorithm. The first key is taken as a non singular matrix and the second key is obtained with the help of elements of finite fields. The elements of finite fields are used in binary \& polynomial form [2] during encryption and decryption of the message.

## ENCRYPTION:

1. Sender and receiver shares the secret key $K_{1}$, where $K_{1}$ is $(n-1) \times(n-1)$ non-singular matrix and $n$ is a positive integer.
2. The sender converts the plaintext into pre-assigned numerical values and calculates $S_{1}=K_{1} P\left(\bmod 2^{n}-1\right) ; S_{1}$ is the first cipher text, $P$ is the plain text.
3. Then sender converts $S_{1}$ into binary string of $n$-bits which gives matrix $M \&$ choose a random matrix $A$ of order $(n-1) \times(n-1)$.
4. Sender performs $X N O R$ operation with randomly selected rows/columns of $A$ with each row of matrix $M$ and gets a matrix $M_{X N O R}$.
5. Now the sender converts the entries of $M_{X N O R}$ into the elements of $G F\left(2^{n}\right)$ \& multiply each entry with $g^{n}$ and calculates $K_{2}$, whose entries are 1 if $g$ has the power greater than $2^{n}-1$ otherwise 0 and shares it with receiver.
6. He then reduces the powers of the entries to $\bmod \left(2^{n}-1\right)$ and gets the matrix $M_{4}$.
7. After writing it into binary form, he converts the same in numerical values and then into text to get the final cipher text $S_{2}$.

## DECRYPTION:

1. The receiver receives the message. After changing it into numerical values, he converts them in binary elements of $n$ bits and then into elements of $G F\left(2^{n}\right)$ to get $D_{1}$.
2. Receiver then multiplies the entries of $D_{1}$ with $g^{2^{n}-1}$ which represents 1 in the corresponding key matrix $K_{2}$.
3. Receiver then multiplies each entry with $g^{-n} \& ~ c o n v e r t s ~ t h e m ~$ in binary elements of $n$-bits.
4. Receiver recognizes the rows/columns of matrix randomly chosen by the sender and he converts them in binary elements of $n$-bits to perform $X N O R$ with each row of the matrix obtained in step 3.
5. Then receiver converts the entries in numerical values to obtain $S_{1}$.
6. He then finds $P=K_{1}^{-1} S_{1}\left(\bmod \left(2^{n}-1\right)\right)$.
7. Then the receiver converts the entries of $P$ in text to get the plaintext.

Let the letters of the alphabets and some more symbols be associated with integers as follows

Table 1
Numerical values for alphabets and some symbols used in the paper

| $@$ | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $H$ | $I$ | $J$ | $K$ | $L$ | $M$ | $N$ | $O$ |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| $P$ | $Q$ | $R$ | $S$ | $T$ | $U$ | $V$ | $W$ |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| $X$ | $Y$ | $Z$ | $I$ | 1 | 1 | $\wedge$ |  |
| 24 | 25 | 26 | 27 | 28 | 29 | 30 |  |

## 3. ILLUSTRATION

Let us consider the message which is to be sent on the insecure channel is [EVARISTEGALOIS].

## ENCRYPTION:

Step1. Sender considers the $4 \times 4$ non-singular key matrix $K_{1} \&$ shares it with the receiver.

$$
K_{1}=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
3 & 5 & 2 & 2 \\
5 & 1 & 3 & 1 \\
3 & 1 & 3 & 2
\end{array}\right]
$$

Step 2. Sender converts the above plain text into numerical values using Table 1 which gives,

$$
P=\left[\begin{array}{cccc}
27 & 5 & 22 & 1 \\
18 & 9 & 19 & 20 \\
5 & 7 & 1 & 12 \\
15 & 9 & 19 & 29
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
K_{1} P= & {\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
3 & 5 & 2 & 2 \\
5 & 1 & 3 & 1 \\
3 & 1 & 3 & 2
\end{array}\right]\left[\begin{array}{cccc}
27 & 5 & 22 & 1 \\
18 & 9 & 19 & 20 \\
5 & 7 & 1 & 12 \\
15 & 9 & 19 & 29
\end{array}\right] } \\
& =\left[\begin{array}{cccc}
4 & 11 & 22 & 13 \\
25 & 30 & 15 & 30 \\
28 & 2 & 27 & 28 \\
20 & 1 & 2 & 24
\end{array}\right]=S_{1} \text { (say) }
\end{aligned}
$$

Step 3. Sender converts the above numerical values into 5-bit binary string and therefore $S_{1}$ gives

$$
M=\left[\begin{array}{llll}
00100 & 01011 & 10110 & 01101 \\
11001 & 11110 & 01111 & 11110 \\
11100 & 00010 & 11011 & 11100 \\
10100 & 00001 & 00010 & 11000
\end{array}\right]
$$

Now sender randomly choses $4 \times 4$ matrix $A$ as follows

$$
A=\left[\begin{array}{llll}
2 & 5 & 2 & 3 \\
2 & 4 & 2 & 6 \\
3 & 3 & 4 & 6 \\
2 & 3 & 1 & 3
\end{array}\right]
$$

Step 4. Sender now selects the rows/columns $C_{1}, C_{2}, R_{2}, R_{3}$ from the matrix $A$ at random to perform logical XNOR operation with each row of matrix $M$. Sender converts the elements of $C_{1}$ into 5-bit binary number \& performs logical operator with first row of matrix $M$

00010000100001100010
XNOR
00100010111011001101
which gives the first row of matrix $M_{X N O R}$

## 11001101100101010000.

Similarly $C_{2}, R_{2}, R_{3}$ are converted into binary numbers and logical operator $X N O R$ is performed with second, third and fourth rows of matrix $M$ respectively.
Therefore,
00101001000001100011

## XNOR

11001111100111111110
gives
00011001011001100010
as IInd row of matrix $M_{X N O R}$ and
00010001000001000110
XNOR

11100000101101111100
gives
00001110010011000101
as the IIIrd row of matrix $M_{X N O R}$ and
00011000110010000110
XNOR
10100000010001011000
makes the IVth row of matrix $M_{X N O R}$ as
01000111011100100001.

Hence the matrix $M_{X N O R}$ is

$$
M_{X N O R}=\left[\begin{array}{llll}
11001 & 10110 & 01010 & 10000 \\
00011 & 00101 & 10011 & 00010 \\
00001 & 11001 & 00110 & 00101 \\
01000 & 11101 & 11001 & 00001
\end{array}\right]
$$

Step 5. Sender converts the above entries into the elements of $G F\left(2^{5}\right)$ in their basis form such that $\left(g^{5}+g^{2}+1\right)=0$, we have

$$
M_{2}=\left[\begin{array}{cccc}
g^{25} & g^{28} & g^{6} & g^{4} \\
g^{18} & g^{5} & g^{17} & g^{1} \\
g^{0} & g^{25} & g^{19} & g^{5} \\
g^{3} & g^{14} & g^{25} & g^{0}
\end{array}\right]
$$

Multiply the above entries by $g^{5}$. Therefore, $M_{2}$ becomes

$$
M_{3}=\left[\begin{array}{cccc}
g^{30} & g^{33} & g^{11} & g^{9} \\
g^{23} & g^{10} & g^{22} & g^{6} \\
g^{5} & g^{30} & g^{24} & g^{10} \\
g^{8} & g^{19} & g^{30} & g^{5}
\end{array}\right]
$$

and the key matrix

$$
K_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is chosen in such a way that if power of $g$ in $M_{3}$ is less than 31 , the entry in the key matrix is taken 0 otherwise 1 .
Step 6. $M_{3}$ is reduced to mod 31 and hence it becomes

$$
M_{4}=\left[\begin{array}{cccc}
g^{30} & g^{2} & g^{11} & g^{9} \\
g^{23} & g^{10} & g^{22} & g^{6} \\
g^{5} & g^{30} & g^{24} & g^{10} \\
g^{8} & g^{19} & g^{30} & g^{5}
\end{array}\right]
$$

Step 7. The elements of cipher text matrix $M_{4}$ are converted in binary elements as follows,

$$
S_{2}=\left[\begin{array}{llll}
10010 & 00100 & 00111 & 11010 \\
01111 & 10001 & 10101 & 01010 \\
00101 & 10010 & 11110 & 10001 \\
01101 & 00110 & 10010 & 00101
\end{array}\right]
$$

These entries of $S_{2}$ are then converted into numerical values, which gives

$$
S_{3}=\left[\begin{array}{cccc}
18 & 4 & 7 & 26 \\
15 & 17 & 21 & 10 \\
5 & 18 & 30 & 17 \\
13 & 6 & 18 & 5
\end{array}\right]
$$

and numerical values are converted into text using the Table 1.
So the cipher text is RDGZOQUJER^QMFRE.
The cipher text is sent to the receiver through public channel.

## DECRYPTION:

Step 1. The receiver receives the message. He converts the message in numerical values using Table 1 and after converting numerical values in binary elements of 5-bits, he writes them in the form of a matrix, which gives

$$
S_{2}=\left[\begin{array}{llll}
10010 & 00100 & 00111 & 11010 \\
01111 & 10001 & 10101 & 01010 \\
00101 & 10010 & 11110 & 10001 \\
01101 & 00110 & 10010 & 00101
\end{array}\right]
$$

Then he converts these entries in the elements of $G F\left(2^{5}\right)$ and $S_{2}$ becomes

$$
D_{1}=\left[\begin{array}{cccc}
g^{30} & g^{2} & g^{11} & g^{9} \\
g^{23} & g^{10} & g^{22} & g^{6} \\
g^{5} & g^{30} & g^{24} & g^{10} \\
g^{8} & g^{19} & g^{30} & g^{5}
\end{array}\right]
$$

Step 2. Receiver multiplies those entries of $D_{1}$ with $g^{31}$ which represents 1 in the corresponding key matrix $K_{2}$. Therefore transformed matrix is

$$
D_{2}=\left[\begin{array}{cccc}
g^{30} & g^{33} & g^{11} & g^{9} \\
g^{23} & g^{10} & g^{22} & g^{6} \\
g^{5} & g^{30} & g^{24} & g^{10} \\
g^{8} & g^{19} & g^{30} & g^{5}
\end{array}\right] .
$$

Step 3. Now the receiver multiply $D_{2}$ with $g^{-5}$ and obtain

$$
D_{3}=\left[\begin{array}{cccc}
g^{25} & g^{28} & g^{6} & g^{4} \\
g^{18} & g^{5} & g^{17} & g^{1} \\
g^{0} & g^{25} & g^{19} & g^{5} \\
g^{3} & g^{14} & g^{25} & g^{0}
\end{array}\right] .
$$

Therefore the binary representation of $D_{3}$ is

$$
D_{4}=\left[\begin{array}{llll}
11001 & 10110 & 01010 & 10000 \\
00011 & 00101 & 10011 & 00010 \\
00001 & 11001 & 00110 & 00101 \\
01000 & 11101 & 11001 & 00001
\end{array}\right] .
$$

Step 4. Receiver recognizes the rows/columns $C_{1}, C_{2}, R_{2}, R_{3}$ of the matrix $A$ selected by the sender. He then converts its elements contained in $C_{1}$ into 5 -bit binary number and performs logical operator with first row of $D_{4}$. Therefore,

$$
00010000100001100010
$$

XNOR

11001101100101010000
which gives the first row of matrix $M$ as 00100010111011001101.

Similarly $C_{2}, R_{2}, R_{3}$ are converted into binary string of 5-bits and logical operator $X N O R$ is performed respectively with second, third and fourth rows of matrix $D_{4}$. Therefore,

00101001000001100011

## XNOR

00011001011001100010
gives the IInd row of matrix $M$ as
11001111100111111110
and
00010001000001000110
XNOR
00001110010011000101
gives the IIIrd row of matrix $M$ as
11100000101101111100
and
00011000110010000110
XNOR
01000111011100100001
results the IVth row of matrix $M$ as 10100000010001011000.

Hence the matrix $M$ is

$$
M=\left[\begin{array}{llll}
00100 & 01011 & 10110 & 01101 \\
11001 & 11110 & 01111 & 11110 \\
11100 & 00010 & 11011 & 11100 \\
10100 & 00001 & 00010 & 11000
\end{array}\right]
$$

Step 5. Receiver converts these entries of $M$ in numerical values and hence it becomes

$$
S_{1}=\left[\begin{array}{cccc}
4 & 11 & 22 & 13 \\
25 & 30 & 15 & 30 \\
28 & 2 & 27 & 28 \\
20 & 1 & 2 & 24
\end{array}\right]
$$

Step 6. The receiver finds $K_{1}^{-1} S_{1}(\bmod 31)$.
Therefore,

$$
\begin{aligned}
& K_{1}^{-1} S_{1} \\
& =\left[\begin{array}{cccc}
27 & 17 & 23 & 20 \\
26 & 3 & 14 & 8 \\
11 & 11 & 25 & 2 \\
23 & 3 & 14 & 10
\end{array}\right] \\
& =\left[\begin{array}{cccc}
27 & 5 & 22 & 1 \\
18 & 9 & 19 & 20 \\
5 & 7 & 1 & 12 \\
15 & 9 & 19 & 29
\end{array}\right] .
\end{aligned}
$$

$$
=\left[\begin{array}{cccc}
27 & 17 & 23 & 20 \\
26 & 3 & 14 & 8 \\
11 & 11 & 25 & 2 \\
23 & 3 & 14 & 10
\end{array}\right]\left[\begin{array}{cccc}
4 & 11 & 22 & 13 \\
25 & 30 & 15 & 30 \\
28 & 2 & 27 & 28 \\
20 & 1 & 2 & 24
\end{array}\right](\bmod 31)
$$

Step 7. Receiver converts the digits in text using Table 1 and the plain text [EVARISTEGALOIS] is obtained.

## 4. CONCLUSION

The proposed cryptosystem is based on the elements of finite fields, which is an extension of the original Hill cipher. It provides security in two levels. In this cryptosystem, the second key is different for different block data which gives difficulty for adversary to break the cryptosystem. Therefore, there are least possibilities of Brute force attack. Here also, the cipher text cannot be broken with the known plain text attack as there is no direct relation between plain text and cipher text even if the key matrices are known.

## 5. ACKNOWLEDGMENTS

Authors acknowledge the support of UGC-SAP and are grateful to Professor R. K. Sharma, Department of Mathematics, IIT Delhi for his valuable guidance and suggestions. Authors also thank the referee for his comments to bring the paper in the present form.

## 6. REFERENCES

[1] Stallings, W. 2006. Cryptography and Network Security. Fourth Edition. Pearson.
[2] Schneier, B. 2007. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Second Edition. John Wiley\& Sons.
[3] Lidl, R., and Niederreiter, H. 1997. Finite Fields. Cambridge University Press. Cambridge. Second Edition.
[4] Lakshami, G. N., Kumar, B. R., Suneetha, Ch., and Chandra Shekhar, A. 2011. A Cryptographic Scheme of Finite Fields Using Logical Operators. International Journal of Computer Applications. 31(4), p.1-4.
[5] Hill, L.S. 1929. Cryptography in an Algebraic Alphabet. American Mathematical Monthly. 36, p. 306-312.
[6] Hill, L. S. 1931. Concerning Certain Linear Transformation Apparatus of Cryptography. American Mathematical Monthly. 38, p. 135-154.
[7] Buchmann, J.A. 2004. Introduction to Cryptography. Second Edition. Springer-Verlag. New York.
[8] Stinson, D.R. 2006. Cryptography Theory and Practice. Third Edition. Chapman \& Hall/CRC.
[9] Overbey, J., Traves, W., and Wojdylo, J. 2005. On The Key Space of The Hill Cipher. Cryptologia. 29(1), p. 59-72.
[10] Koblitz, N. 1994. A Course in Number Theory and Cryptography. Springer Verlag. New York.
[11] Saeednia's, S. 2000. How to Make The Hill Cipher Secure. Cryptologia. 24, p. 353-360.
[12] Chefranov, A.G. 2007. Secure Hill Cipher Modification SHC-M. Proceedings of the First Internationl Conference on Security of Information and Networks. Trafford Publishing. Canada, p. 34-37.
[13] Ismail, I.A., Amin, M., and Diab, H. 2006. How to Repair Hill Cipher. Journal of Zhejiang UniversityScience A. 7(12), p. 2022-2030.
[14] Adi, N.R.K., Vishnuvardhan, B., Madhuviswanath, V., and Krishna, A.V.N. 2012. A Modified Hill Cipher Based on Circulant Matrices. Procedia Technology (Elsevier). 4, p. 114-118.

