
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

9

Usability and Evaluation of Software Quality

using Software Metrics

Pradeep Kumar

Department of Computer
Science & IT, SHIATS,

University Allahabad, India.

Dr. Raghav Yadav
Assistant Professor (Sr. Grade)

Department of Computer
Science & IT , SHIATS

University Allahabad,India

Dileram Bansal
Department of Computer
Science & Engineering
Sri Satya Sai Institute of
Science & Technology

Sehore,Bhopal

ABSTRACT

It is difficult to understand, let alone improve the quality of

software without the knowledge of its software development

process and software product. There must be some

measurement process to predict the software development,

and to evaluate software products. This paper provides a

brief view on Software Quality, Software Metrics and

Software Metrics methods that will predict and measure the

specified quality factors of software. It further discusses about

the Quality as given by the standards such as ISO, principal

elements required for the Software Quality and Software

Metrics as the measurement technique to predict the Software

Quality. This paper was performed by evaluating a source

code developed in Java, using Software Metrics, such as Size

Metrics, Complexity Metrics, and Defect Metrics. Results

show that, the quality of software can be analyzed, studied

and improved by the usage of software metrics.

Keywords
Software Metrics, Software Product Metrics, Product Metrics,

Software Quality Metrics, Evaluation of Software Code,

Usability of Software Metrics.

1. INTRODUCTION
Quality is always an issue on which most of the researchers

are working on, while developing the software. With the

increase in the software market, customers are expecting

software‟s of higher quality and they are even willing to pay

higher prices for the software. With this increase in

expectations and hike in the software market, companies and

countries are continuing to invest great deal of money, time,

and effort in improving the software quality [1]. Software

quality cannot be improved without knowledge of

development process. The number of bugs and the errors

occurred during the software development process have to be

found in the early stages of development for better quality. If

the errors are found late, then the corrective action will be

very expensive [2] [3]. Software organizations will be greatly

benefited if there is process to plan and predict the software

development. The process of measuring the software is known

as software metrics. Software metrics is defined as, “an

objective, mathematical measure of software that is sensitive

to differences in software characteristics. It provides a

quantitative measure of an attribute which the body of

Software exhibits. Its aim is to development process of

software by controlling the different aspects .So it can be said

that metrics are used to improve the ability to identify ,

control and measure the essential parameter during its

development or it can also be said that measurement of

software product and the process by which it is being

developed. The information gained from software metric can

be used to manage and control the development process,

which will lead to improvement in the results of the software

product. Good software metrics must have the ability to

predict the software development process. The results

obtained from the software metrics can be used to indicate,

which parts of software have to changed or modified.

Software metrics have proved to reflect the software quality,

and thus they have been widely used in software quality

evaluation techniques [6] [7]. Software metrics are studied as

a way to access the quality of large system [8] [9] and have

been applied to object oriented systems as well [8] [10] [11].

IEEE has published a standard for the software quality metrics

methodology [17], which led to the development in this field.

Its aim was to provide a systematic approach for the

establishment of software quality metrics by identifying,

implementing, analyzing and validating the software quality

metrics of a system. The development of metrics as given by

IEEE is given in Table 1.

Table 1: IEEE Software Metrics Methodology [17].

Software Quality Activity ----------

Establishment of Software

Quality Requirements

Identifying the Software

Quality metrics

Implementation of Software

Quality metrics

Analyzing the results of metrics -

Validating the metrics

2. Software Quality
Quality, it is difficult to define – not because of the difficulty

to achieve, but because of the difficulty to describe the term.

Quality has different meanings for different people. For

example if we owing a car, then will define the quality as

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

10

ruggedness of the car, or the fastness of the car, or the looks

of the car. So from this it can be said as the definition of the

software quality varies with the views of the person using or it

can also be said as the views of the beholder. When it comes

to software, the beholder is, the person using the software, or

the person interacting with the software, when it is executed

.That is, the person will be satisfied when the software does

what he or she wants to do, when it is purchased. The

software purchased includes the code, but the users will only

be interested in the working and service offered such as the

user manual, help and support .In case of software developed

for the internal use in company or in an organization, the

quality is about the performance of the software whenever the

user asks the development organization to produce it. Quality

cannot be defined by the technical excellence alone [18].

Quality of software gets affected by many human factors such

as communication and motivation between the developers and

testers, and the value of money for the development process.

The developed software products and services must be

affordable and the customer must be able to enjoy the usage

of software. Different people have different views on

delivering software products with quality. Even though the

developers produce software products with new features, but

with flaws and with higher price, then it will be of no use.

Quality of the software products must be defined according to

the user‟s view, i.e., does the software perform as I wanted? If

not, then the user concludes that the software is not of good

quality. It is the concept that defines the quality of software –

the degree to which the software product will fulfill the

requirements specified. The requirements can be functional,

non- functional, and it can also be requirements for

maintenance, portability and so on. The importance of this

concept is that the requirements of the product are the

requirements for the quality [19]. And these requirements

must be in such a way that the user wants it to be. The ability

to know what the user wants or expects from the software is

the problem that affects the quality of software. Various

studies show that 25% to 40% of defects in the software are

caused due to the errors related to the requirements [18] [20].

According to the Capers, the requirement errors account for

30% defects in MIS applications, 15% in software in the

system, 25% in software‟s of military systems and overall

25% [18][21]. A study done by Ray Rubey shows that,

incomplete specification of requirements account for 28% of

the defects and intentional deviation from the specified

specifications caused 12% of defects [18] [22]. The above

data indicates that by clearly specifying the requirements,

quality of the software can be improved. Improvement in the

quality also requires the practical implementation of

requirements specified. The implementation process involves

project planning, project budget (cost and time), and software

lifecycle, designing, coding, and testing. Technical

documentation and user manual for help are also required.

Challenges are faced during the communication between

different teams, during interfacing, ensuring cost and time

lines, keeping the software bug free, verifying that the

software is meeting the requirements, if not, then taking

appropriate actions to make the changes. With the increase in

the factors like, frequent change in requirements, shortage of

cost and time lines, lack of co-ordination or communication

between developers or testers, there will be a chance of

building accidental complexity (bugs or errors or unwanted

behavior of the software). The increase in this complexity will

result in the decrement of software quality. The Figure 1 gives

the relation between the quality and complexity of software.

From Figure 1, it can be said that, with the increase in the

complexity the quality will decrease and after some point the

software will be of no use, as the complexity takes over the

software quality.

Figure 1: Quality Verses Complexity

The software‟s developed will always have some complexity

in it, but it will be in minimum. Care should be taken such

that it continues to remain in the same minimum level.

Organizations developing software must have some methods

to know the development process and to keep a track of the

software development. Software metrics is one such

mechanism which is used to determine the quality of software

and keeps track of ongoing project process, software products,

and software development process.

3. Software Metrics
Software metrics provide measurement for certain aspects of

software. The usage of

Metrics will reduce the subjectivity during the assessment of

software quality and it provides quantitative basis for making

decisions about the software quality [17] [26]. Metrics can also

be used to recognize the duplicated code which can later be

removed by applying appropriate refactoring [8] [27] [28]. As

we have discussed earlier, software metrics is divided in to two

types: software product metrics and software process metrics.

Software product metrics is used to measure the final products

of the software, for example: software code or design

documentation. Software process metrics is used to measure

the software development process, for example: type of

methodology and overall development time.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

11

The first level of software metrics begins with the

establishment of software quality requirements. All the

attributes that define the software quality requirements must

be agreed by the management and user-oriented views are

then assigned to the attributes [17].Software metrics

measuring software products is different for different

paradigms. In procedural paradigm, it measures the functions

and interaction of functions [30] and in object oriented

paradigm, it measures the classes and interaction of classes

[29] [30]. In case of procedural paradigm, the function name,

type of function, parameters in the function and the interaction

between the functions through function calls will make the

structure of the software. Whereas, in object oriented

paradigm, class data, operational attributes and the coupling

of classes with one another will make the structure of the

software. Figure 2 describes metrics model for selection of

metrics and evaluation of metric results. Selection of metrics

depends on the development phase of software product. If it is

in the starting of development then, process metrics will be

used and if the development is in the final phase (i.e., before

the customer approval) then, product metrics will be used.

The results obtained from the metrics are then compared with

the standard or the sections of the software product. The

evaluation will be human.

4. Product Metrics
Product metrics are usually derived from the system itself

[31]. The metrics data of this type can be collected after

specific time intervals. The initial work in product metrics

deals with the characteristics of the source code. It is always

better to have metric information in the early stages of

development because; it will increase the chances of

controlling the development process and the results. The

following are some examples of metrics which are discussed

below.

4.1 Size Metrics
The size of function is regarded as; one of the controversial

but still it is the one of the most widely used metrics [29] [30].

It becomes controversial because there is no perfect measure

for size, which everyone agrees on. The size metrics is an

attempt to quantify the „size‟ of software, and the widely used

size metrics is Lines of Code (LOC). The size metrics has

some deficiencies because it cannot be measured until the

process of development is completed. Some Halstead‟s

metrics are also used to measure the size metrics, but they are

not discussed in this paper work. Lines of Code (LOC) are

one of the most widely used metrics for the program size [32].

LOC is calculated by the total number of lines of code in a

function. The total number lines can be with or without the

blank and comment lines [30]. The decision to include the

blank and comment lines will be of the developers. The size

metrics can be extended to measure the size of a system by

summing all the LOC metric values of all the functions in the

system. The calculated values of lines of code metrics is

shown in results section (Table 2 to Table 6).

4.2 Complexity Metrics
Complexity metrics is considered as the measure of control

flow in a function. The complexity metrics is used to quantify

the relation between the complex codes and its failures. The

example of Complexity Metrics is Cyclomatic Complexity

Metrics. Cyclomatic Complexity metrics was proposed by

McCabe in the year 1976. It is a measure derived from the

product itself [2] [33]. It is used to measure the control flow

complexity in a function. It is also considered as one of the

internal metrics, as it built early warning from the collection

of the collection of internal metrics [34]. The measured values

of cyclomatic complexity metrics can be calculated

numerically or can be represented in figures. There are tools

for representing the cyclomatic complexity in figures. The

calculated cyclomatic complexity is shown in results section.

4.3 Defect Metrics
It is an external measure of the system derived from the

external assessment of the behavior of the system [33]. It is

used to measure the number of defects in a software product

and the data required for the metrics is collected from the

product itself. So, it can be said that it quantifies the product

metrics. There has been no particular procedure for the

measurement of number of defects. One of the alternative

methods for the defects metrics is to find number of errors

during code inspection.

5. Methods
The Methods used in this paper consists of both investigation

and practical approach. The investigation on Software Quality

through case study of different journals.

6. Results
Lines of Code: The lines of code calculated are the total

number of executable lines, i.e., excluding the comment lines.

The summary of java source code and the summary of each of

its classes are given in the tabular columns from Table 2 to

Table 6. The results are further discussed in discussions

section.

Table 2: Summary of Lines of Code Metrics

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

12

Number of

Classes

Class name Lines of

Codes

Number of

methods

1 Class 1 329 12

2 Class 2 302 12

3 Class 3 32 2

4 Class 4 18 2

Table 3: Summary of Lines of Code Metrics for class 1

Number of

Methods

Method Lines of

Codes

1 Run Server 70

2 Process Connection 43

3 Send Data 38

4 Wait for Connection 31

5 Close Connection 29

6 Get Stream 28

7 <init > 59

8 Display Image 9

9 Set text field editable 9

10 Access $000 5

11 Access $100 4

12 Access $200 4

Table 4: Summary of Lines of Code Metrics for class 2

Number

of

methods

Methods Lines of Codes

1 Run Client 44

2 Process Connection 39

3 Send Data 38

4 Wait for Connection 30

5 Close Connection 29

6 Get Stream 28

7 <init > 63

8 Display Image 9

9 Set text field editable 9

10 Access $000 5

11 Access $100 4

12 Access $200 4

Table 5: Summary of Lines of Code Metrics for class 3

Number of

Methods

Methods Lines of Codes

1 Main 28

2 <init> 4

Table 6: Summary of Lines of Code Metrics for class 4

Number of

Methods

Methods Lines of Codes

1 Main 14

2 <init> 4

Cyclomatic Complexity: The cyclomatic complexity of each

class is calculated by counting the number of methods, and

the complexity involved during its control flow. The results of

cyclomatic complexity are shown in Figure 3, Figure 4 to

Figure 6 and it is further discussed in discussions.

Figure 3: Color coding for Cyclomatic Complexity Metrics

[37]

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

13

Figure 4: Cyclomatic Complexity

7. Discussions
The metrics may not directly define quality or can be related

to quality. However, they can be used to improve the quality.

They can be used to define the parameters that affect the

quality and also the changes that can be made to improve the

quality. The other main advantages of these metrics are that,

they can be used to create the test cases for software testing.

They also provide us with the information such as the number

of lines in the code, the most complex part of code and also

the number of methods contained in the code. Each of the

metrics provides us with specific information of the code. The

lines of code metrics represent the size of program and also

the number of methods involved in the program. The results

of the Lines of Code Metrics are discussed below: Table 3

gives the summary of java source code. It consists of 4 classes

and the metrics for lines of code for each is calculated. The

number of methods involved in each class is also calculated.

By summing the total number of lines for each code, the total

size of the system can be found. Table 3 to table 6 gives the

summary for Class 1, class 2, class 3 and class 4. The usage of

this metrics will reduce the subjectivity by providing the total

number of lines in each class and the number methods present

in it. It makes the software more clear and visible. The lines of

code for each class can be cross checked by comparing it with
summary of classes given in Table 3, Table 4, Table 5, and

Table 6.

Cyclomatic complexity, apart from providing us with the

complexity in each and every method involved in the code,

also provides us with the flow of complexity i.e., structural

complexity. It also indicates how complicated the flow is in a

function and also indicates how many test cases are needed to

perform the basis path testing on the function. The results of

Cyclomatic Complexity Metrics are discussed below:

Figure 4 shows the cyclomatic complexity for java source

code. As discussed in lines of code metrics, it consists of 4

classes and flow complexity is shown in Figure 4. The vertical

bars represent the classes, and it is from left to right. The

horizontal bars represent the method involved in each class,

and it is from top to bottom. The colors shaded in each

method represent the cyclomatic complexity of that method.

The meaning of the color and its level of complexity is shown

in Figure 3. The method with red color will have the highest

cyclomatic complexity, and its value will be greater than or

equal to 7. Yellow color represents moderate cyclomatic

complexity with its value ranging between 4 and 7. Green

color is for low cyclomatic complexity and it will range

between 0 and 4. As there has been no interfacing in the java

source code, interfacing is not being discussed. But its color

representation is shown Figure 3. Defect metrics does not

have particular procedure to measure the total number of

defects in the system. The alternative method is to calculate

some of the characteristics of the code. As the java source

code has been provided after its development, only one

characteristic of it has been calculated i.e., the total number of

errors during code inspection. The java source code has been

inspected and the total number of errors during inspection has

been found.

8. Conclusion
The software quality, software metrics and some of

applications of software quality metrics has been studied,

analyzed and reviewed. The java code has been evaluated

using pre-defined metrics and the value of different metrics

was calculated. From the calculated values of metrics i.e.,

lines of code, number of errors, and cyclomatic complexity, it

was clear that, these metrics can be successfully used to

predict the quality level of the software developed. For the

future this study can be applied for C++ code.

9. REFERENCES
[1] Barbara Kitchenham and Shari Lawrence Pfleeger:

“Software Quality: The Exclusive Target‟. IEEE

publication, January 1996.

[2] Nachiappan Nagappan, Laurie Williams, Mladen Vouk,

and Jason Osborne:” Early Estimation of Software

Quality Using In-Process Testing Metrics: A Controlled

Case Study”. Microsoft Research, Redmond, WA 98052,

ACM publications.

[3] Boehm, B. W.: “Software Engineering Economics”.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[4] J. E. Gaffney, Jr.: “Metrics in software quality

assurance”. January 1981, ACM 81: Proceedings of the

ACM '81 conference.

[5] Wei Li and Harry Delugach: “Software Metrics and

Application Domain Complexity”. Computer Science

Department The University of Alabama in Huntsville

Huntsville, AL 35899, IEEE publications 1997.

[6] B.W. Boehm, J. R. Brown, and M. Lipow: “Quantitative

evaluation of software quality”. In Proceedings of the

2nd International Conference on Software engineering,

pages 592–605, 1976.

[7] software quality?”. IEEE publications, Fifth International

Workshop on Software Quality 2007.

[8] Tom Mens and Serge Demeyer: “ Future Trends in

Software Evolution Metrics”. ACM publications 2002.

[9] N. Fenton and S. L. Pfleeger: “Software Metrics: A

Rigorous and Practical Approach”. International

Thomson Computer Press, London, UK, second edition,

1997.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.3, May 2013

14

[10] Demeyer and S. Dueasse. Mettles: “Do they really help?

In Proc. Languages at Modules and Objects”. Hermes

Science Publication, pages 69-82.

[11] S. R. Chidamber and C. E Kemerer: “A metrics suite for

Object-oriented design”. IEEE Trans. Software

Engineering, June 1994.

[12] Jeffrey Voas: “ A New Generation of Software Quality

Conferences”, IEEE publications, IEEE Software

January/February 2000.

[13] Barry Boehm, Sunita Chulani, June Verner and Bernard

Wong: “Fifth Workshop on Software Quality”. IEEE

Publications, 29th International Conference on Software

Engineering.

[14] Kitchenham, B: “ The Failure of Quality, Proceedings of

the Second Workshop on Software Quality”. ICSE 2004.

[15] “Software Metrics - An Introduction”. IEEE

publications.

[16] Konstantinos Stroggylos, Diomidis Spinellis:

“Refactoring – Does it improve software quality?”. IEEE

publications, Fifth International Workshop on Software

Quality 2007.

[17] “IEEE Standard for a Software Quality Metrics

Methodology”. IEEE publications.

[18] Evans, Isabel: “Achieving Software Quality Through

Teamwork”.Norwood, MA, USA: Artech House,

Incorporated, 2004.

[19] Kenett and Ron: “Software Process Quality:

Management and Control”.New York, NY, USA: Marcel

Dekker Incorporated, 1999.

[20] Schulmeyer, G. Gordon: “Software Quality Assurance-

Coming to Terms, in The Handbook of Software Quality

Assurance”. Schulmeyer, G. Gordon and McManus,

James I., eds., New York: Van Nostrand Reinhold

Company, Inc., 2nd ed., 1992.

[21] Jones, T. Capers: “Applied Software Measurement”.

McGrawHill, 1991.

[22] McCabe, Thomas J., and Schulmeyer, G. Gordon: “The

Pareto Principle Applied to Software Quality Assurance,

in The Handbook of Software Quality Assurance”,

Schulmeyer, G. Gordon and McManus, James I., eds.,

New York: Van Nostrand Reinhold Company, Inc., 2nd

ed., 1992.

[23] Thomas B. Hilburn and Massood Towhidnejad:

“Software Quality Across The Curriculum”. Published in

32nd ASEE/IEEE Frontiers in Education conference.

[24] Hector Morrison: ”Standards and Certification”. IEEE

publication 1993.

[25] Dr. James A. Bednar and Dr. David Robertson:

“Software Quality and Standards”. SEOC2 Spring 2005,

Quality/Standards.

[26] O'Regan and Gerard: “Practical Approach to Software

Quality”. Secaucus, NJ, USA: Springer-Verlag New

York, Incorporated, 2002.

[27] K. Kontogiannis: “Evaluation experiments on the

detection ofprogramming patterns using software

metrics”. IEEE Computer Society Press, 1997.

[28] B. Lagufi, D. Proulx, E. M. Merlo, J. Mayrand, and J.

Hudepohl: “Assessing the benefits of incorporating

function clone detection in a development process”.

IEEE Computer Society Press, 1997.

[29] Wei Li and Sallie Henry: “Maintenance Metrics for the

Object Oriented Paradigm”. IEEE publications.

[30] Wei li: “ Software Product Metrics – Using them to

Quantify Design and Code Quality”. IEEE publications,

December 1999/ January 2000.

[31] Nachiappan Nagappan, Thomas Ball, and Brendan

Murphy: “Using Historical In-Process and Product

Metrics for Early Estimation of Software Failures”

Microsoft Research, IEEE publications.

[32] Everald E. Mills: “Software Metrics‟. SEI Curriculum

Module SEI-CM-12-1.1, December 1988.

[33] ISO/IEC: "DIS 14598-1 Information Technology –

Software Product Evaluation". ISO 1996.

[34] McCabe, T. J.: "A Complexity Measure". IEEE

Transactions on Software Engineering, Vol. 2, No. 4, pp.

308-320, 1976.

[35] Chulani, S, Ray, B., Santhanam, P. and Leszkowicz,

R.:“Metrics for Managing Customer View of Quality”,

IEEE Metrics conference, Sep. 2003.

[36] M. Lorenz and J. Kidd: “Object-Oriented Software

Metrics: A Practical Approach”. IEEE publications.

[37] http://cyvis.sourceforge.net/

