
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

1

Development of Prolog for Database Management

System

Pradeep Kumar
Research Scholar

SSJ Campus, Almora
Kumaun University

Sumit Khulbe
Teaching Personnel,
SSJ Campus, Almora

Kumaun University

Prof. H S Dhami
Dept. of Mathematics,

SSJ Campus, Almora
Kumaun University

ABSTRACT

The present paper aims at the development of logical

programming language (Prolog) for implementing database

concepts in the form of establishment of links between logic

programming and databases. We have been able to implement

a deductive/inference database management and Knowledge-

based systems in Prolog.

Keywords

Prolog mechanism, Indexing, Knowledge-based systems and

Deductive/Inference model.

1. INTRODUCTION
We know that PROLOG is one of the most popular languages

based on an inference mechanism and many expert systems

are implemented in PROLOG. In the present work, we have

selected this language to express the rules and a PROLOG

interpreter and it’s uses as an inference mechanism, taking the

initiative from the work of A Domenici et al. [1]. We have

also utilized the work of Pascual Julián-Iranzo et al. [16], who

have examined the extension of Prolog in order to be able to

deal with similarity-based fuzzy unification and the work of

R.J. Lucas [18], who has kept the options open to

implementers of Prolog interfaces to relational databases.

 While interest in the use of Prolog for database

applications is growing, the size of such applications is

limited on account of the ability of current implementations of

Prolog for handling disc-resident clauses. Various software

and hardware approaches, such as codeword indexing, have

been put forward to solve this problem, S Zhou et al. [20]

have examined the reports of the comparative performances of

one-level and two-level codeword indexing. In another

research work F. Gozzi et al. [8], have described the PRIMO

system as a PROLOG-Relational Interface. The main design

goals of PRIMO include portability, modularity, and

transparency. As a result of portability, the PRIMO interface

can be established between any two PROLOG and relational

systems; provided that the former supports a call to the

operating system and that the latter supports SQL.

In Prolog database space, the cache architecture was

discussed by Lanfranco Lopriore [11]. In this paper Lanfranco

has reduced the database memory requirements of Prolog

programs used in DBMS. N.W. Paton et al. [14] have used

Prolog to implement in object-oriented database. Research on

Prolog – based object oriented engineering in DBMS, present

the primary concepts of PBASE, a prototype object oriented

database system. PBASE is intended to support the needs of

engineering applications with specific reference to structural

engineering, as mentioned by A.S. Watson et al. [2]. Another

work in prolog and a rational DBMS for decision support

systems was given by Jorge Bocca et al. [10]. Research on

techniques for implementation of the system which is

implemented by coupling Prolog with a commercial relational

DBMS will be a useful tool for designing expert systems,

especially for designing expert systems that have a

requirement for knowledge-directed processing of large

amounts of shared information given by Yuguo Zhang et al.

[23]. A compendium of research on PROLOG with database

management for different systems has been given by Deyi Li

[6].

Research on Applying Prolog to Develop

Distributed Database Systems has been conducted on a

number of different distributed databases, given by Nuno P.

Lopes et al. [15]. Implementation of an integrated multi-

database for PROLOG systems have been covered as part of

large systems by DA Bell et al. [5]. A table oriented database-

prolog system approach given by S.M Kuo Pan et al. [19].

 In this paper, we investigate deductive inference for

interiors and exteriors of Horn knowledge bases, where

interiors and exteriors are those which were introduced by

Makino et al [12] to study stability properties of knowledge

bases for PROLOG systems. Knowledge-based systems are

commonly used to store the sentences as our knowledge for

the purpose of having automated reasoning such as deduction

applied to them given by Brachman et al [3]. Deductive

inference is a fundamental mode of reasoning, and is usually

abstracted as follows, as given in the work of Makino and

Ono [13]:

Given a knowledge base KB, assumed to capture

our knowledge about the domain in question, and a query χ

that is assumed to capture the situation at hand, decide

whether KB implies χ, denoted by KB |= χ, which can be

understood as the question: ―Is χ necessarily true given the

current state of knowledge?‖

In this paper, we consider interiors and exteriors of

knowledge bases used by PROLOG database.

We have also used the Deductive/Inference model

for conclusion based on the form of premises interpreted as a

function. In order to provide rules of inference with a

sufficient computational power, the logical Data Model also

supports a concept of so-called computational terms.

Primitively speaking, computational terms are arithmetical

expressions having free variables, constants and/or other

terms as parameters. The following notation is used to define

such computational terms:

http://www.sciencedirect.com/science/article/pii/0167805184900135
http://www.sciencedirect.com/science/article/pii/0167805184900135
http://www.sciencedirect.com/science/article/pii/0167805184900135
http://www.sciencedirect.com/science/article/pii/0165607489901658
http://www.sciencedirect.com/science/article/pii/0165607489901658

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

2

 ([Parameter_1] [Operation] [Parameter_2])

Where [Parameter_1] and [Parameter_2] are free variables,

constants or other computational terms, and these terms are

used as free variables in rules of inference for Query analyzed.

For this concept we have derived a method for

query evaluation in deductive databases and it is based on

discovering of axioms and facts relevant to a given query.

Such type of work had been proposed and generated by

Eliezer L. Lozinskii [7]. We have also modified the Query

evaluation and optimization technique of Wei Lu [22] in

deductive and object-oriented spatial databases. It has been

demonstrated that our system is able to improve the quality of

the state of Prolog systems. Our approach can be regarded as

converting the more common way of using a Prolog system to

automatically post-edit the output of DBMS systems by

Deductive/Inference model, as described in Troels Andreasen

[21]. Similar work references can be seen in the works of

Chan Chee keong et al. [4]) for Implementation of a deductive

database system using SQLBase and in Prolog Programming

Language Encyclopedia of Physical Science and Technology

in DBMS verification, given by Heimo H [9]. In this paper we

are presenting a methodology as a Knowledge base system,

introduced by R.J. Gil [17] for a novel

integrated knowledge support system.

2. METHODOLOGY
Prolog automates and reduces much of the daily construction

paperwork process while associating pertinent related

information. Prolog offers clear visibility into what is

happening on a project to the client, site and home office

project management. This allows for closer collaboration and

improved communication between home office and field

personnel, so for these facts and findings we used the concept

of Prolog clauses as follows:-

To find a clause that matches the query:-

?- F(a,b), the Prolog system does not look at all the clauses in

the knowledge base only the clauses for f. Associated with the

function f is a pointer or hashing function that sends the

search routine directly to the right place. This technique is

used in this paper and also called as indexing.

Many implementations carry this further by indexing on not

only the predicate, but also the principal function of the first

argument. In such an implementation, the search considers

only clauses that match F(a,?) and neglects clauses such as

F(b,c).

Indexing can make a predicate Head/Tail recursive when it

otherwise would not be. For example,

F(x (A, B)):- F (A).

F (q).

It is tail recursive even though the recursive call is not in the

last clause, because indexing eliminates the last clause from

consideration: any argument that matches x (A, B) cannot

match q. The same is true of list processing predicates of the

form

F ([Head | Tail],?) = F ([],?)

Here [] means the null array where user can formed any type

of string operation of database, to reduce the cost.

The standard case, the simplest one, is the case where the

goals of the query refer to non-recursive virtual predicates,

each predicate being defined only by one clause. Most of the

PROLOG-DBMS presented in this paper reduce the clustering

of data used.

In fact this general methodology is modified when a predicate

definition contains:-

Evaluable predicate, or

Negation, or

A ―cut", or

A predicate defined by several clauses, or

A recursively defined predicate.

Query is terminated, the corresponding sub-goals are replaced

in the PROLOG program by a new predicate which is used to

represent the ground clauses associated to the query answer,

and the resolution of data in database is continued. We are

working in a structure (D, F) and let V be a universal set of

variables, given once and for all, used to refer to the elements

of its domain D . We will assume that V is infinite and

countable. We can now construct syntactic objects of two

kinds, terms and constraints. Terms are sequences of DBMS

elements from

V~F of one of the two forms of a particular data,

x or f t 1t n, where x is a data variable, f

is an n-place operation and where the ti are less complex

terms (i=1…..n).

In this approach the number of call to the DBMS can be quite

important, leading to an important overhead, because for each

call the DBMS has to analyze the query, to optimize it, and so

on. But the advantage is that the size of each answer is much

smaller.

3. DESIGNING TOOLS USED IN

QUERY OPTIMIZATION
Design is a process by which design intentions are

transformed into design descriptions and has identifiable

phases or sub processes. Although the phases may not be

addressed hierarchically for the entire design cycle and are

often carried out recursively, there is an inherent order in the

way in which designers approach a design problem, the

following represents one decomposition.

(i) Design analysis or formulation involves identifying the

goals, requirements and possibly the vocabulary relevant to

the needs or intentions of the designer. It is the development

of the detailed specification of the design brief,

(ii) Design synthesis involves the exploration of a design

space, producing a solution includes the formation or

selection of a prototype followed by elaboration or

refinement.

(iii) Design evaluation involves interpreting a partially or

completely specified design description for conformance with

goals and/or expected performances.

For every stored relation (R) with an attribute (A) we keep:

•|R|: the cardinality of R (the number of tuples in R)

• b(R): the blocking factor for R

• min(R; A): the minimum value for A in R

• max(R; A): the maximum value for A in R

• distinct (R; A): the number of distinct values of A

http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/B012227410500853X
http://www.sciencedirect.com/science/article/pii/B012227410500853X
http://www.sciencedirect.com/science/article/pii/B012227410500853X

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

3

We use the following insertion sort program to illustrate how

simple Prolog programs are typically constructed.

% insertion sort (simple version)

isort([], []).

isort(A.As, Bs) :-

isort(As, Bs1),

insert(A, Bs1, Bs).

The isort predicate follows a typical pattern for list

processing. There is a base case for [] and a case for A.As

with a recursive call containing as and another call containing

A. The structure of insert is similar, except the case dealing

with non-empty lists has been split further into two sub-cases.

The two basic techniques used are structural induction and

case analysis. A typical programmer using a modern

functional language would code insert in a similar way to the

Prolog version, using structural induction and case analysis.

The code for isort may also b e written in the same style.

However, a good functional programmer should realize that

the resulting code follows a familiar pattern. That pattern is

generalized by the higher order function foldr, which can be

used to code isort more simply as follows:-

isort As = foldr insert [] As

As described in Fig1 :

4. FRAMEWORK OF PROLOG IN

DBMS
We have presented an Interface based on the static approach.

It is interesting to compare its advantages and drawbacks with

regard to the dynamic approach. In the following we do this

comparison taking into account two different criteria: the

number of interactions between the PROLOG interpreter and

the DBMS, and the size of the answers obtained from the

DBMS which must be stored in core memory. The differences

are significant only in the case of the queries whose

evaluation involves predicates which are recursively defined.

To design the software module, called Framework, which

interfaces the PROLOG interpreter and the Relational DBMS

we adopted the following guidelines in this paper:-

1. The queries sent to the DBMS should correspond to the

largest sub-sets of the PROLOG program which can be

independently evaluated by the DBMS.

2. The queries are not transformed by the Framework in order

to optimize query evaluation; this optimization is supposed to

be done by the DBMS.

3. Neither the Prolog interpreter, nor the DBMS modules are

modified; the consequence of this requirement is that the

Interface does not need to know how these two modules are

implemented.

We attempt to propose an extensible framework to database

management system (DBMS) which deals with the unique and

emerging challenges for Prolog or any other language as

depicted here a data. We addressed extension required to

various existing components like data types, data operations,

indexing, data integration, data storage and management in

order to process and manage Prolog efficiently.

remove_duplicates([First|Rest], Result) :-

member(First, Rest),!,

remove_duplicates(Rest, Result).

remove_duplicates([First|Rest], [First|New_Rest]) :-

% First does not occur in Rest.

remove_duplicates(Rest, New_Rest)

sum_list(Number_List, Result) :-

sum_list(Number_List, 0, Result).

% sum_list(+Number_List, +Accumulator, ?Result)

sum_list([], A, A). % At end: unify with accumulator.

sum_list([H|T], A, R) :- % Accumulate first and recur

Fig 1:

5. MODIFICATION OF THE

FRAMEWORK
In this research paper we have used the concept of

Knowledge-based system for truth values which was found in

a article of Brown et al. 2003. Knowledge-based system is

commutative, as in that x ∨ y = y ∨ x for disjunction and

x ∧ y = y ∧ x for conjunction. In our present research work ,

we have attempted xuser input, and ysystem output. If

the user wants to check that whether the database is correct

for user choice then he/she has to keep this fact into mind that

the leading database management systems like Oracle, IBM

DB2, Microsoft SQL Server, Metadata are equipped with

complex data types which can store or cannot be store/support

any Prolog data types which are normally sequences, primary

and secondary structures, and images. In such cases they are

supposed to provide object oriented development framework

and direct support to store and process XML which are highly

recommend to advanced Prolog data types. They are powerful

enough to support data quality, integrity, availability, security,

manageability, interoperability and an ability to manage and

process huge volumes of data.

Again we use recursive functions to correct the database

errors and formulated them with respect to the following three

rules and apply them to understand in database through

language:-

1. a V (b V c) = (a V b) V c ------------------------------------

associative

2. a V b= b V a ---

commutative

Generate

Equivalent Queries

(R)

Determine cost Cost Information

(A)

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

4

3. ab  bc then ac -------------------------------------

transitivity

6. DESCRIPTION OF THE PROJECT
% remove_duplicates(+List,-ProcessedList)

% Removes the duplicates in List, giving Processed List.

% Elements are considered to match if they can

% be unified with each other; thus, a partly uninstantiated

% element may become further instantiated during testing.

% If several elements match, the last of them is preserved.

public class SuffixTree { public void sample Usage() {

 %:sum_list(+ListOfNumbers,?Result)

%. Sums the numbers in the list, giving Result. Crashes with

an

%. error message if first argument is not a list of numbers.

sum_list([],0). % Empty list sums to 0.

sum_list([First|Rest],N) :- % Add first number to sum of rest.

number(First),!,

sum_list(Rest,R),

N is First+R.

sum_list(_,0) :- % Catch ill-formed arguments.

errmsg(’First arg of sum_list/2 must be a list of numbers.’).

class CompactSuffixTree extends AbstractSuffixTree {

 public CompactSuffixTree(SimpleSuffixTree

simpleSuffixTree) {

 super(simpleSuffixTree.text);

 super.root = compactNodes(simpleSuffixTree.root, 0);

 super.best = simpleSuffixTree.best;

 } private SuffixTreeNode compactNodes(SuffixTreeNode

node, int nodeDepth) {

 node.nodeDepth = nodeDepth;

 for (SuffixTreeNode child : node.children) {

 while (child.children.size() == 1) {

 SuffixTreeNode grandchild =

child.children.iterator().next();

 child.incomingEdge.label += ", "

 + grandchild.incomingEdge.label;

 child.stringDepth +=

grandchild.incomingEdge.label.length();

 child.children = grandchild.children;

 // for (SuffixTreeNode grandchild : child.children)

 grandchild.parent = node; }

 child = compactNodes(child, nodeDepth + 1); }

return node; }}

class SuffixTreeNode {

 AbstractSuffixTree tree;

 SuffixTreeEdge incomingEdge = null;

 int nodeDepth = -1;

 int label = -1;

 Collection<SuffixTreeNode> children = null;

 SuffixTreeNode parent = null;

 int stringDepth;

 int id = 0;

 public static int c;

 public int visits = 1;

 public SuffixTreeNode(AbstractSuffixTree tree,

 SuffixTreeNode parent,

 String incomingLabel, int depth, int label, int id) {

 children = new ArrayList<SuffixTreeNode>();

 incomingEdge = new SuffixTreeEdge(incomingLabel,

label);

 nodeDepth = depth; this.label = label; this.parent

= parent;

 stringDepth = parent.stringDepth +

incomingLabel.length();

 this.id = id; this.tree = tree;

 }

public SuffixTreeNode(AbstractSuffixTree tree) {

 children = new ArrayList<SuffixTreeNode>();

 nodeDepth = 0;

 label = 0;

 this.tree = tree; }

 public void addSuffix(List<String> suffix, int pathIndex) {

 SuffixTreeNode insertAt = this;

 insertAt = search(this, suffix);

 insert(insertAt, suffix, pathIndex); }

 private SuffixTreeNode search(SuffixTreeNode startNode,

List<String> suffix) if (suffix.isEmpty()) {

 throw new IllegalArgumentException(

 "Empty suffix. Probably no valid simple suffix

tree exists for the input.");

 }

 Collection<SuffixTreeNode> children =

startNode.children;

 for (SuffixTreeNode child : children) {

 if (child.incomingEdge.label.equals(suffix.get(0))) {

 suffix.remove(0);

 child.visits++;

 if (child.visits > 1

 && child.stringDepth > tree.best.stringDepth)

{

 tree.best = child; }

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

5

 if (suffix.isEmpty()) { return child;

}

 return search(child, suffix); } }

 return startNode; }

 private void insert(SuffixTreeNode insertAt, List<String>

suffix,

 int pathIndex) {

 for (String x : suffix) {

 SuffixTreeNode child = new SuffixTreeNode(tree,

insertAt, x,

 insertAt.nodeDepth + 1, pathIndex, id);

 insertAt.children.add(child);

 insertAt = child; } }

 public String toString() {

 StringBuilder result = new StringBuilder();

 String incomingLabel = this.isRoot() ? "" :

this.incomingEdge.label; for (int i = 1; i <=

this.nodeDepth; i++)

 result.append("\t"); if (this.isRoot()) {

 c = 1;

 this.id = 1;

 } else {

 this.id = c;

 result.append(this.parent.id + " -> ");

 result.append(this.id + "[label=\"" + incomingLabel +

"\"]" + "("

 + visits + "," + (stringDepth) + ")" + ";\n"); }

 for (SuffixTreeNode child : children) {

 c++;

 child.id = c;

 result.append(child.toString()); }

 return result.toString();

 } public String printResult()

}

7. BACKGROUND OF THE WORK

The concept of generating program source code by means of a

dialogue involves combining strategies with system and user

initiative. The strategy with system initiative safely navigates

the user, whereas the strategy with user initiative enables a

quick and effective creation of the desired constructions of the

source code and collaboration with the system using obtained

knowledge to increase the effectiveness of the dialogue.

The present invention sets forth a method and an arrangement

for different database correction processing and can be

automate the process of adapting domain specific Prolog

understanding. It solves the problem of simple natural

language understanding and allows users to interact with

machines using natural language. This work shall be of

immense importance to the students of programmers and

DBA who sometime feel harassed while selection of database

and moreover are not certain about the exercises in extraction

of languages to develop a database.

8. CONCLUSION
We have presented the implementation of a PROLOG and

DBMS interface which does not need any modification of the

PROLOG interpreter or the DBMS evaluator. This interface,

even if it is not optimal, allows clustering many calls to the

DBMS since it can generate queries containing: AND, OR, or

NOT operators, and existential quantifiers. We have

suggested an increasingly active role for such systems which

is likely to have the potential to change the design process

itself. The logic programming community should take

advantage of the higher order style of programming developed

by the functional programming community. This style

encourages more abstraction, more reuse of code and more

concise data programs in database management systems. We

have shown by example how higher order programming also

fits well with the additional strengths of logic programming

such as multiple modes and Meta data logics. To study such

structures, especially to check recent database and to search

for solutions may be made faster using a computer.

9. REFERENCES
[1] A Domenici, B Lazzerini, CA Prete (1990), Introduction

to Prolog computation model and its

implementation Information and Software

Technology, Volume 32, Issue 6, and pp. 423-431.

[2] A.S. Watson, S.H. Chan (1991), A prolog-based object

oriented engineering DBMS Original Research Article

Computers & Structures, Volume 40, Issue 1, and pp. 11-

21.

[3] Brachman, R. J. and Levesque, H. J. (2004), Knowledge

Representation and Reasoning.

[4] Chan Chee Keong, Chen Yin (1997), Implementation of a

deductive database system using SQLBase , Volume 20,

Issue 6, and pp. 317-323.

[5] DA Bell, JB Grimson, DHO Ling (1989), Implementation

of an integrated multi database-PROLOG

system , Volume 31, Issue 1, and pp. 29-38.

[6] Deyi Li (2004), A PROLOG database management,

Volume 3, Issues 3–4, ISBN 0-86380-014-9, and pp.219.

[7] Eliezer L. Lozinskii (1992), Inference by generating

in deductive databases Data & Knowledge

Engineering, Volume 7, Issue 4, and pp. 327-357.

[8] F. Gozzi, M. Lugli, S. Ceri (1990), An overview of

PRIMO: A portable interface between PROLOG and

relational database Information Systems, Volume 15, Issue 5,

pp. 543-553.

[9] Heimo H. Adelsberger (2003), Prolog Programming

Language Encyclopedia of Physical Science and

Technology in DBMS verification, and pp. 155-178.

[10] Jorge Bocca, Europeean (1986), EDUCE: Prolog and a

rational DBMS for DSS, Volume 2, Issue 3, and pp. 274.

[11] Lanfranco Lopriore (1993), A data cache

for Prolog architectures Future Generation Computer

Systems, Volume 9, Issue 3, and pp. 219-234.

http://www.sciencedirect.com/science/article/pii/095058499090129F
http://www.sciencedirect.com/science/article/pii/095058499090129F
http://www.sciencedirect.com/science/article/pii/095058499090129F
http://www.sciencedirect.com/science/article/pii/095058499090129F
http://www.sciencedirect.com/science/article/pii/004579499190451Q
http://www.sciencedirect.com/science/article/pii/004579499190451Q
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/S0141933196010976
http://www.sciencedirect.com/science/article/pii/0950584989900517
http://www.sciencedirect.com/science/article/pii/0950584989900517
http://www.sciencedirect.com/science/article/pii/0950584989900517
http://www.sciencedirect.com/science/article/pii/0950584989900517
http://www.sciencedirect.com/science/article/pii/0169023X9290030F
http://www.sciencedirect.com/science/article/pii/0169023X9290030F
http://www.sciencedirect.com/science/article/pii/B012227410500853X
http://www.sciencedirect.com/science/article/pii/B012227410500853X
http://www.sciencedirect.com/science/article/pii/0167739X9390013F
http://www.sciencedirect.com/science/article/pii/0167739X9390013F
http://www.sciencedirect.com/science/article/pii/0167739X9390013F

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.24, June 2013

6

[12] Makino, K. and Ibaraki, T. (1996), Interior and exterior

functions of Boolean functions. Discrete Applied

Mathematics, Volume 69, and pp. 209–231.

[13]Makino, K. and Ono, H. 2011. Deductive Inference for

the Interiors and Exteriors of Horn Theories. ACM

Trans. Comput. Logic V, N, Article A, A.1-A.16..

[14] N.W. Paton, S Leishman, S.M. Embury, P.M.D Gray

(1993), On using Prolog to implement object-oriented

databases Information and Software

Technology, Volume 35, Issue 5, and pp. 301-311.

[15] Nuno P. Lopes , Juan A. Navarroy , Andrey balchenkoy ,

and Atul Singh (2003), Applying Prolog to Develop

Distributed Systems.

[16] Pascual Julián-Iranzo, Clemente Rubio-Manzano, Juan

Gallardo-Casero (2009), Bousi~Prolog:

a Prolog Extension Language for Flexible Query

Answering in Theoretical Computer Science, Volume

248, and pp. 131-147.

[17] R.J. Gil, M.J. Martin-Bautista (2012), a novel

integrated knowledge support system based on ontology

learning: Model specification Knowledge-Based

Systems, Volume 36, and pp. 340-352.

[18] R.J. Lucas (1991), Prolog—relational database interfaces

Information and Software Technology, Volume 33, Issue

10, and pp. 734-740.

[19] S.M. Kuo Pan, Y. Kaneda (1989), A table

oriented database-prolog system Micro processing and

Microprogramming, Volume 25, Issues 1–5, and pp. 9-

14.

[20] S Zhou, MH Williams (1991), Assessment of two-level

codeword indexing applied to Prolog database

Information and Software Technology, Volume 33, Issue

2 and pp. 157-162.

[21] Troels Andreasen (2003), An approach to knowledge-

based query evaluation, Fuzzy Sets and

Systems, Volume 140, Issue 1, and pp. 75-9.

[22] Wei Lu, Jiawei Han (1995), Query evaluation and

optimization of in deductive and object-oriented spatial

databases, Volume 37, Issue 3, and pp. 131-143.

[23] Yuguo Zhang, Peter Hitchcock (1990),

Coupling Prolog to a Database Management

System , Volume 15, Issue 6, and pp. 663-667.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/article/pii/0950584993900639
http://www.sciencedirect.com/science/article/pii/0950584993900639
http://www.sciencedirect.com/science/article/pii/S1571066109002874
http://www.sciencedirect.com/science/article/pii/S1571066109002874
http://www.sciencedirect.com/science/article/pii/S1571066109002874
http://www.sciencedirect.com/science/article/pii/S1571066109002874
http://www.sciencedirect.com/science/article/pii/S0950705112001955
http://www.sciencedirect.com/science/article/pii/S0950705112001955
http://www.sciencedirect.com/science/article/pii/S0950705112001955
http://www.sciencedirect.com/science/article/pii/S0950705112001955
http://www.sciencedirect.com/science/article/pii/095058499190047F
http://www.sciencedirect.com/science/article/pii/0165607489901658
http://www.sciencedirect.com/science/article/pii/0165607489901658
http://www.sciencedirect.com/science/article/pii/0165607489901658
http://www.sciencedirect.com/science/article/pii/095058499190061F
http://www.sciencedirect.com/science/article/pii/095058499190061F
http://www.sciencedirect.com/science/article/pii/S0165011403000289
http://www.sciencedirect.com/science/article/pii/S0165011403000289
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/0950584995989245
http://www.sciencedirect.com/science/article/pii/030643799090068Z
http://www.sciencedirect.com/science/article/pii/030643799090068Z

