
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

19

Underwater Sensor Network Simulation Tool (USNeT)

Kyriakos Ovaliadis

University of Portsmouth,
Portsmouth, UK

 Nick Savage

University of Portsmouth,
Portsmouth, UK

ABSTRACT

A new Underwater Sensor Simulation Tool (USNeT) is

proposed in this paper which has been designed and

implementedassuming the conditions that affect underwater

communication. This system provides real-time process based

simulation and supports three-dimensional deployment.

USNeT follows the object-oriented design style and all

network entities are implemented as classes in C++

encapsulating threads mechanisms. Threads have been used

because of the system need to handle multiple tasks. . Finally,

the system has the functions to allow accurate visualization of

the sensor nodes in a 3D manner and it presents a freely

controllable camera that allows users to view the area from

any angle.

General Terms

Underwater network simulation.

Keywords

Cluster, multithread, object-oriented simulation, energy

efficiency.

1. INTRODUCTION

This project proposes a simulator that focuses on UWSNs.

The primary use of the simulator is to test the proof of concept

for a specific energy efficient cluster routing algorithm. Since

the simulator needs to simulate UWSN, the development of a

model for an acoustic channel is required. The system also

needs to be able to scale to a large number of sensor nodes

and should be capable of modeling the energy state of each

sensor in both transmission and reception state. Configuration

options should include the number of nodes, the simulation

time, the battery level, the data gather interval, the necessary

variables for the communication process such as signal

frequency, maximum transmission distance transmission rate,

packet losses and errors and finally the variables for the

cluster based scenarios such as the CH selection area, the

suspension time of a node and the times a node has the ability

to seek for a CH. The simulator should provide a graphical

user interface (GUI) that allows the user to configure a

simulation, run the simulation and then visualize the results.

Moreover, the visualization scheme has to be understandable,

usable and it must not decrease the performance of the

simulator in term of scalability. In conclusion, the software

should deliver the required functionality and performance to

the user and it should not make wasteful use of system

resources and should be able to evolve to meet changing

needs [2],[3]. Table 1 shows a list of functional and non-

functional requirements.

This paper is organized as follows. In Section 2, this paper

briefly reviews some related work. In Section 3 the operation

of a cluster based network is explained with the design

methodology and the system architecture. In section 4 the

implementations details of USNeT are presented. In Section 5,

a simulation scenario based on the cluster algorithm has been

chosen to present the operation of the USNet application.

Finally, in Section 6, there is a discussion about the benefits

of the application and some future research directions.

Table 1. Functional and non-functional requirements

Functional Non-Functional

 Model underwater

channel

 Configure simulation

 GUI

 Visualize simulation

results

 Backup results for

future reference

 Run under windows

 Easy to use

 Extensible

 Speed up simulation

procedure

 Provide other

MAC protocols

 Provide other

routing protocols

2. PREVIOUS WORK

Sensor network systems have been widely studied in the last

decade and a lot of work has been completed on designing

and developing sensors and communication systems. There

are many network simulators that have been extensively used

by researchers with different features. A short list includes

NS2 [4], OPNET [6], OMNet++ [7] and TOSSIM [8] which

are very popular in sensor network research community [9-

12]. OPNET provides a comprehensive development

environment supporting the modeling of communication

networks and distributed systems. The simulation workflow

has been adopted from our application due to the system’s

simplicity (import configuration, run simulation, view results)

and flexibility (duplicate the scenario, re-run simulation,

compare the obtained results). NS2 is an open source

application that provides the opportunity to view how the

simulator has been designed, especially the part of the

communication process between network components, the

packet format and the event scheduler. OMNeT++ has been

studied for future reference due to the modular architecture

that it uses. The approach taken in this paper for designing

applications is more understandable and easy to use. Finally,

TOSSIM, a bit-level discrete event simulator and emulator of

TinyOS [13], has also been studied for future reference

mainly for its ability to simulate real sensor code.

For UWSN, due to its different environment and constraints,

most of the current work in simulation design is implemented

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

20

in MATLAB [16-18]. However there are a limited number of

reliable underwater simulation platforms which are proposed

by the research community, compared with the terrestrial

networks. In addition to this, most of them have been

designed for specific experiments and it is difficult for other

researchers to reuse the developed modules. The following

simulators have been studied in order to investigate the

underwater physical and MAC layer model implementation.

Furthermore the MAC layer section of Aqua-Sim helped us to

design and implement the ALOHA based protocol in our

simulator.

P.Xie et al. developed a new UWSN simulation package

called Aqua-Sim[1],[19]. This simulation tool follows the

object-oriented design style of NS2, supports three

dimensional modeling and it can simulate acoustic signal

attenuation, propagation delays and packet collisions. Aqua-

Sim integrates very easily the existing codesof NS2 and hasan

adequate number of MAC and routing protocolsspecially

designed for UWSN. Finally, because of the lack of a NS2

NAM animator to visualize 3D UWSNs, uses an additional

tool, the Aqua-3D animator [20].

UWSim is also a simulator that has been used for underwater

sensor network modeling. This simulator designed and

implemented for testing scenarios specific to UWSN

environments, such as low bandwidth, low frequency, high

transmission power, and limited memory. The software

development follows C# object-oriented programming and it

is based on a novel routing protocol proposed by the

developers. Currently, UWSim has support for a limited

number of functionalities, it is custom-designed for a specific

algorithm and it calls for further extensions to support a wide

range of UWSN simulation scenarios [21],[22].

3. NETWORK ARCHITECTURE

An underwater network is typically made up of many

autonomous and individual sensor nodes that perform data

collection operations as well as store and forwarding

operations to route the data that has been collected to a central

node. The main challenges of deploying such a network are

the cost, the computational power, the memory, the

communication range and most of all the limited battery

resources of each individual sensor node [23].

Grouping sensor nodes into clusters has been used by

researchers in order to extend the lifetime of an underwater

sensor network. Many clustering algorithms have been

proposed in the literature for UWSNs in the past few years

[24]. These techniques vary depending on the sensor network

deployment, the network architecture, the characteristics of

the sensor and the master sensor node (Cluster Head) and the

network operation model.

Fig 1: Topology structure.

A typical cluster based network consists of a sink (base

station) and certain sensor nodes that are grouped into

clusters. In the structure, each cluster has a head, which are

known as head-cluster or Cluster Head (CH). A CH may be

elected by the sensors in a cluster or pre-assigned by the

network designer. A CH may also be just one of the sensors or

a node that is richer in resources. The CH is assumed to be

reachable to all sensors in its cluster and it can broadcast

messages to all sensors in this cluster. Sensor nodes perform

two main functions: sensing and relaying. The sensing

component is responsible for probing its environment to track

an object or event. The collected data are then relayed to the

sink through CHs in each level (tiers) [25]. The topology of

such a system is shown in figure 1.

3.1 Design methodology

USNeT follows the object-oriented design style and all

network entities are implemented as classes in C++

encapsulating threads mechanisms. Threads have been used

because of the system need to handle multiple tasks in parallel

and concurrently. This cannot be achieved with discrete event

simulators such as NS2. In discrete event simulators, events

that affect the state of the system are chronologically ordered

into event queue, and event scheduler executes them one by

one [26]. An event-driven simulator cannot execute multiple

events at different nodes at the same time unless it uses a

parallel discrete event or multithread approach [27].

In real life a wireless sensor node must do multiple operations

without knowing the state of the other sensors at the same

time. Each sensor operates independently doing tasks such as:

sense a physical phenomenon, gather and store this

information, send/accept information to/from other sensor

node etc. In this simulator every entity (i.e. node, CH, sink

etc.) of the system proceeds independently and

simultaneously, providing a real-time process-based

simulation. No sensor node waits for another node, they all

proceed at their own rate completing their tasks.

The thread methodology gives the ability to design and

implement the communication medium and protocol in an

easier and more accurate manner, leading to the simulation

working in a more realistic way. Using threads also improves

the performance of the application and they do not incur

significant overhead to implement [28].

3.2 Threads and multithreading issues

Multithreading is a technique that permitsa program to carry

out multiple tasks concurrently by dividing it into multiple

threads. Multitasking operating systems can do more than one

thing simultaneously by running more than a single process.

Similar to this, a process can do the same by running more

than a single thread. Each thread is a sequence of instructions

executed independently allowing a multithreaded process to

perform numerous tasks concurrently. Multithreading via

parallelism and scalability, offers you the possibility to take

advantage of multiprocessors, including multicore and

multithreaded processors. When a multiprocessor machine

executes a multithreaded program the independed threads can

run simultaneously (in parallel) on separate processors,

exploiting the parallelism of the hardware[29]. On multicore

processors and multithreaded processors, a multithreaded

application's performance scales appropriately because the

cores and threads are viewed by the OS as

processors[29].Numerical algorithms and numerical

applications with a high degree of parallelism, such as matrix

multiplications, can run much faster when implemented with

threads on a multiprocessor [28],[29].

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

21

Fig 2: System architecture.

3.3 System architecture

The architect diagram of the application can be seen in figure

2. The diagram is composed by the basic routines and

subroutines of the system. The visualization scheme of the

application divides the graphical user interface from the

simulation engine resulting in not reducing the scalability of

the simulator. The major procedures will be explained in the

section that follows.

3.4 Joint –Layer design

A joint layer technique has been chosen to control the

physical, data link and routing functionalities.

 Not fully implemented

 Use probability for packet error rate and loss rate

Higher

layers

 Network

layer

Data

link

layer

Physical

layer

Fig. 3: System layers.

The reason of following this approach is first of all because of

the system energy consumption that must be optimized.

Energy consumption is affected by all layers and strict layered

design is not flexible enough to deal with this critical issue.

On the other hand if the layers cooperate with each other this

can significantly reduce the overall system energy

consumption [30].Secondly due to multithreading technique

used and the need that most of the parameters should be

accessible to multiple layers, it was more efficient to develop

the protocol stack by joining the layers.

4. IMPLEMENTATION

As already stated the application is divided in two major

modules for scalability reasons: the user interface module and

the computational module or simulation engine.

4.1 Interface

The main objective of the user interface is, first of all, to allow

the user to import the necessary objects and variables of the

model, then to provide the model’s simulation procedure

animated on the screen, to start/stop simulation execution and

to export the results.

4.2 Computational unit

This module consists of two major classes; the sensor class

which defines the attributes of the sensor (node, sink, and CH)

and the signal class which defines the acoustic link between

sensors.

4.2.1 Sensor class

The sensor class simulates the full function of the sensor

encapsulating all the necessary algorithms such as the

communication algorithms along with all the other algorithms

concerning the calculation of the energy consumption.

4.2.1.1 Distance calculation

ToA (Time of Arrival) technique is used to calculate the

distance between sensors. ToA measures the distance between

nodes using signal propagation time. Using the ToA

technique, nodes transmit a signal to their neighbors at a

predefined speed, which in the case of this environment is

1500 m/sec and wait for answers [31]. Their neighbors, in

 Clustering formation algorithm

 Locate CHs and cluster members

 Establish routing path between cluster

members.

 Uses time lots for intra cluster

communication.

 Aggregate data.

 Aloha based MAC protocol for UWSNs

 The protocol incorporates ACKs for

successful reception.

 Calculates RTT for the ACKs waiting

time.

 Controls retransmissions.

 Controls data flow

 Energy model

 Calculate SNR, SL,NL, TL.

 Calculate transmission power.

Clustering

Routine

Communication

Routine

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

22

turn, send a signal back to them. Inter-node distance is

computed by measuring the difference between sending and

receiving times (round trip approach) [32].

The accurate calculation of the distance between sensors gives

the system the ability to use the exact signal strength needed,

saving with this way a significant amount of energy.

4.2.1.2 Energy consumption calculation

According to reference [33], the power level (P in Watts) and

the energy consumed (Et in Joules), during transmission of a

K packets from a sensor node located at a distance d (d in

meters) from the CH are given by the following expressions:

For shallow waters:

 tI H d π 2P 
 (1)

and

KTPNE txt 

 (2)

For deep waters:

 t

2 I d π 4P 
 (3)

and

KTPNE txt 

 (4)

where N represents the number of hops towards the surface

sink, Ttx (Ttx in second) represents the packet total

transmission time, K represents the total number of packets

sent by the source node, It (It in Watt/m2) represents the

intensity at a distance point in the sea and H (H in meters)

represents the distance (height) between the sea bottom and

surface (only in shallow waters).

For commercial hydrophones, the energy needed to receive a

packet is typically around one fifth of the transmitted energy

[34],[35]. Thus the energy to receive a packet (Er in joule) is

tr E

5
1E 

 (5)

4.2.1.3 Sensor and packet attributes

As already stated a sensor can be either a simple node

member of a cluster or a cluster head. A sensor entity includes

the following fields.

a. Sensor_id: a unique number given from the

simulator.

b. Cluster_id: when a cluster group is formed, this

field takes the value of the CH sensor_id.

c. CH_id: when a sensor becomes a CH then this field

takes the value of the cluster_id field otherwise remains null.

d. Battery level: initial battery level.

e. Energy field: calculates the remaining amount of

energy.

f. Timer 1: used when the cluster is forming.

g. Timer 2: used in the communication process.

h. Distance: calculates the distance between sensor

nodes.

i. Message counter: a sequence number – message id.

j. Packet counter: records the packet transmission

efforts.

k. Buffer: flash memory for the data.

A packet can be either a control packet used from the sensor

as a connection request to a CH, an acknowledgment (ACK)

or a packet with data. The packet includes two parts, the

header and the payload (data). For simplicity reasons the

packet’s header has been used to represent the control packets

and ACKs, instead of having different types of packets.

Fig 4: Basic fields of a source packet.

The packet header which is 32 bytes long includes the

following fields.

a) Sensor_id: a unique number (source id).

b) Cluster_id: when a cluster group is formed, this

field takes the value of the CH sensor_id.

c) CH_id: when a sensor becomes a CH then this field

takes the value of the sensor_id field otherwise remains null.

d) Target_id: destination sensor id.

e) Energy field: remaining amount of energy.

f) Timestamp: departure time of the packet.

g) Packet_id: a sequence number – message id.

h) Data size: the size of the payload.

4.2.2 Sorting signal class

The signal class is a very simple C++ sorting class which

classifies the received packets (signals) and calculates the

order that a sensor accepts these signals in relation of time.

The simulator calculates the distances between sensor nodes,

the propagation delay and the transmission time for a packet

to reach a destination. The signal class, every time a sensor

has to accept packets from different sources, uses the above-

mentioned information, classifies the time each packet will

propagate for and therefore gives to the destination sensor the

ability to choose the order in which it will accept these

packets.

4.3 Procedures and algorithms used

There are two major algorithms that form the main routine of

the system, the communication and the cluster algorithm.

Fig 5: Main procedure.

The communication algorithm is responsible for establishing

the communication path between the wireless sensors,

gathering the necessary data from the environment and the

Start

Clustering

Communicate

Header Payload (data)

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

23

other sensors and sending this data to the upper level. The

cluster algorithm is responsible for two very important tasks,

the cluster formation and the selection of the CHs. Clustering

is performed by assigning each sensor node to a specific CH

node and all communication to (from) each sensor node is

carried out through its corresponding CH node.

4.3.1 Main procedure

The clustering formation and communication process can be

described in a few simple steps:

1. Firstly the nodes are deployed inside the space

randomly.

2. When the deployment is finished each node sends a

control packet seeking for a CH. The look up area is the

sphere around the node with radii equal to the maximum

transmission distance R.

3. First the sink and afterwards each CH according to

the clustering algorithm sends back an ACK accepting these

nodes to become members of the cluster.

4. When the clustering procedure is finished and each

node belongs to a cluster team, the communication process of

sending and receiving data begins. This time the node does

not use the maximum transmission distance R but the exact

distance.

5. Every node gathers data from the environment and

after a specific time or when the buffer is full, sends this data

to the CH of its team.

6. Every CH communicates only to each other and

forwards the aggregated data to the sink which is the master

CH.

4.3.2 Clustering procedure

This procedure is responsible for forming the cluster scheme

by using the cluster algorithm. The basic idea of this

algorithm is that each sensor, when the deployment is

finished, sends a control packet seeking for a CH. If the

sensor accepts an ACK then it connects to the specific CH

otherwise it enters a different state such as the retry or the

sleeping (suspension) state. A sensor can spend a significant

amount of time seeking a CH. Therefore to avoid the total

consumption of the sensor’s energy, after the retry state,

where a sensor retransmits the control packet, it enters in a

suspension mode. The suspension time is the period where a

sensor sleeps without sending or receiving any signals and

therefore without spending any energy. For further research,

the suspension time can be altered by the user.This algorithm

also has the responsibility of selecting the CHs for the next

clusters at the lower tiers. This action is achieved when the

algorithm chooses the CHs by taking into account the distance

between the CH candidate and the already in place CH.

Fig 6:Clustering procedure.

4.3.3 Communication procedure

This procedure integrates two significant procedures which

will be detailed over the next pages, the gather data and the

transmit data procedures.

Fig 7: Communication procedure.

Generally a communication procedure has to deal with the

receiving, gathering and sending of data. However it must

take into account the two states that a sensor can be: the

client state where a sensor is a simple node gathering data

from the environment and the cluster head state where a

sensor is a CH gathering data from both the environment and

the other node sensors of the cluster team.

This procedure also cooperates very close with the cluster

procedure in the case of a sensor node that loses the

connection with a CH. When a sensor loses a connection then

it must try to find another CH, meaning it needs to start the

cluster procedure.

1 start
2 call gather data procedure

3 call transmit data procedure
4 if no ACK then

5 call cluster procedure

6 endif

7 end

1 start
2 start timer t1

3 initialize a packet retry counter (p_count)

4 repeat
5 send a control packet cont_p

// control packet is the request packet

6 if no ACK then
7 p_count=p_count+1

8 if p_count>limit then

// limit: the maximum transmission retries a packet can do
9 sensor sleep // suspension time

10 endif

11 else
12 calculate sensor distance from head

13 if (sens_dist<=max_dist) and (sens_dist>=min_dist)
14 then

15 sensor is a head

16 else
17 sensor is a client

18 endif

19 endif
20 to t1>T1 // T1: maximum time for the cluster procedure

21 end

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

24

4.3.4 Gather data procedure

This procedure is responsible for gathering data from the

environment, data from other sensors (if the sensor is also a

CH), control packets and ACKs. The type of data received is

checked at the waitForAck, waitForData and check buffer

procedures. The amount of data gathered depends on the

buffer size and the time period that a sensor collects data. If

this time is exceeded then the sensor is forced to send the

collected data, regardless of the buffer’s state. There is a

possibility the buffer size will not reach the buffer limit when

the sensor sends the data. This condition has been chosen

because it is very important during research to get results in

specific intervals depending, of course, on the research

scenarios chosen by the researcher. However the period of

gathering information can be changed by the user giving

theability for further analysis.

Fig 8: Gather data procedure.

To avoid buffer overflow the procedure uses a buffer limit as

a criteria of sending the information and not when the buffer

is full. The buffer limit is chosen to be 500 bytes.

4.3.5 Transmission procedure

This procedure is responsible for transmitting the data to the

upper or lower tiers depending on the type of data. For

example if the node is a client sensor then the data can be a

control packet as a request to a CH (upper tier) to join a

cluster team, an ACK to a CH and finally information data.

Fig 9: Transmission procedure.

On the other hand if the node is a CH then the data can be

either an ACK to the lower tier client sensor or an aggregating

information data packet to the upper tier CH.This procedure is

also responsible for the time period which a sensor is allowed

to wait for an ACK until retransmission and how many retries

a sensor can do. The number of retries it is not limited but it

can be changed by the user for a further research purpose. The

time period which a sensor is allowed to wait for an ACK

must be greater than the Round Trip Time (RTT). In our case,

RTT is the length of time it takes for a packet to be sent plus

the length of time it takes for an ACK of that packet to be

received. The sensor calculates the RTT at the beginning of

the cluster procedure, when it seeks for a CH to connect with.

4.3.6 WaitForAck and WaitForData procedures

As already stated the receiving data can be a control packet,

an ACK, or information data. The basic idea of clustering is

that each sensor can communicate and exchange information

only with the CH of their cluster team. However there is a

possibility for a sensor to receive a packet which is not

wanted. The situation where a received packet is unwanted

occurs when:

a. Duplicated packets have been received at the

destination node.

b. Packets with a different target (destination) id have

also been received at the destination sensor node.

c. A simple sensor, that is required to collect data only

from the environment, “listens” to data from other cluster

team mates.

Fig 10: WaitForAck procedure.

These two procedures give a solution to these problems by

checking the receiving data’s sensor-target and, with the help

of the check buffer procedure, use the useful information,

send the necessary ACKs and discard the unwanted data

packets. Preventing a sensor from listening to packets with a

different target id and thus saving more energy is a significant

issue that needs further analysis. This subject will certainly be

a part of our future research work.

Fig 11: WaitForData procedure.

1 start

2 call check buffer procedure

3 if control packet received then
4 if target_id=-1 then

5 sensor is a cluster head - send an ACK

6 else
7 discard data

8 endif

9 endif

10 end

1 start
2 call check buffer procedure

3 if control packet received then

4 if target_id==sensor_id then
// target_id, sensor_id : sensor’s packet fields

5 ACK received

6 else

7 if target_id=-1 then

// when -1 is the value of the field, then the sensor is a head

8 sensor is a cluster head - Send an ACK
9 else

10 discard data

11 endif
12 endif

13 endif

14 end

1 start

2 start p_count
3 repeat

4 initialize timer t2

5 send data
6 repeat

7 if no ACK then

8 call waitForAck procedure
9 endif

10 to t2<RTT // RTT: Round Trip Time

11 p_count=p_count+1
12 to p_count<limit // limit: the max Tx retries a packet can do

13 end

1 start
2 initiate sample timer (tsm)

3 gather data from environment

4 if tsm<=Tsm then // Tsm: max time to gather data
5 repeat

6 call waitfordata procedure

7 to buffer>limit // the buffer has a limit of 500 bytes
8 call transmit data procedure

9 endif

10 end

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

25

4.3.7 Check buffer procedure

Fig 12: Check buffer procedure.

The responsibility of this procedure is to check if the sensor’s

buffer has data and the type of this data. This procedure

cooperates very closely with the previous two procedures on

the matter of discarding unwanted data packets and using or

keeping the useful ones. Therefore one of the main tasks of

this procedure is also the storage of this data which is the

aggregated information from other sensors.

5. Simulator application

5.1 Overview

The graphical user interface (GUI) consists of two major

components: a graphical display canvas, which could be

expanded in case of viewing a large scale UWSN, and three

property tabs for displaying node and signal properties. The

researcher can easily use the input boxes or the roll bars to

enter the necessary variables such as frequency, simulation

time etc., according to a research scenario.

In the first property tab (see figure 13a) with the name “Signal

info” the necessary variables for the communication process

such as signal frequency, maximum transmission distance and

transmission rate can be entered.

(a)

(b)

Fig. 13: Signal info and simulation data tabs.

Furthermore, the maximum and minimum distance of the CH

selection area, the packet error and the packet loss ratio can

also be altered. In the second tab (see figure 13b) with the

name “Simulation Data” the researcher can alter the

simulation time, the sensor’s battery level, the data gather

interval, the sleeping (suspension) time of a node and how

many times a node has the ability to seek for a CH

Fig.14: Mobile tab.

Finally, the last property tab (see figure 14) with the name

“Mobile” can be used when the scenario needs sensor

mobility. In this tab a sensor’s coordinates can be altered

while the simulation process is already in progress. The

sensor’s coordinates are imported into the simulator via a

spreadsheet which gives the ability to choose between random

and definite deployment. It also gives the ability to store the

deployment scenarios for future reference.The researcher can

also speed up the simulation time by using the time

acceleration roll bar. The user has the ability to gather the

necessary results very quickly by accelerating the simulation

time by a factor that starts from 1 up to 600 However the

acceleration of the simulation time forces the system

processes to perform more rapidly. When the system's load is

heavy, meaning a large amount of calculations, the speed up

procedure can cause a reduction in the computational

accuracy. In order to overcome this problem the system must

use either more computational power or decrease the amount

of calculations in relation of time. Reduction of the number of

calculations means fewer processes and fewer threads

meaning fewer simulation entities.

5.2 Simulation scenario

A simple scenario has been chosen to present the operation of

USNeT simulator. 50 nodes were randomly deployed in a

field with dimensions 3000×3000×900 (m3), where 900

meters is the maximum depth of a sensor. The communication

range for both the sensor nodes and the sink node was 1500

meters. The bandwidth of the data channel was set to 5 Kbps

and the frequency range to 25 KHz. Each data packet with the

packet header was 532 bytes long and the surface sink was set

at the center of the sea surface. The simulation parameters are

shown in the table 2.

Table 2. Simulation Parameters

Parameters Values

Number of Sensors 50 nodes

Frequency range 25 KHz

Max. TX distance 1500 m

Min CH candidate range 70%

1 start

2 check buffer procedure
3 if data packet received then

4 if data size!=0 then

5 if target_id=sensor_id then
6 store the data

7 send an ACK

8 endif
9 endif

10 endif

11 end

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

26

Max CH candidate range 90%

Extra distance 10%

Packet with errors ratio (1/1000) 20

The deployment of this sensor network is shown in the figure

15.

Fig.15: 3D Canvas.

Fig.16: Simulation result tab.

The researcher has the ability to use the 3D capabilities of the

USNeT simulator and therefore to have a more clear view of

the cluster formation. There are a camera zoom and a view

angle options and the projection of each cluster team is in a

different color. The simulation results can be seen either on

the “consumption” tab of the simulator (see figure 16) or on

the exported file by using a spreadsheet application. The

researcher can examine the outcome simulation data for each

sensor separately, such as the energy consumption, the battery

level, the successful transmitted/received packets, the

successful transmitted/received ACKs and control packets.

The detailed presentation of the results gives the researcher

the ability of a more thorough analysis of the system.

6. Conclusion

The main objective of our research is to design and test an

energy constrained cluster based algorithm. For this reason a

new simulator has been designed and implemented. It has a

user friendly frontend environment, provides real-time

process based simulation and it supports three-dimensional

deployment. This simulator follows the object-oriented design

style and all network entities are implemented as classes in

C++ encapsulating threads mechanisms. Threads have been

used first of all because of the system need to handle multiple

tasks. Since multi-core systems are now widely available and

installed, doing multithreading parallelism is a simple but

potentially efficient optimization for simulators performance

[36]. Moreover, the benefits of our multithreaded application

are responsiveness to the user and resource sharing which lead

to a scalable and reliable simulation environment. When the

application performs a long time tasks such as simulating

large scale sensor networks, the amount of intensive

calculations and I/O operations may slow down and possibly

freeze up the system. This can lead to unreliable and, in the

second case, no output results. However multithreading

techniques allows the application to continue running even if

part of it is blocked or is performing a lengthy operation. The

number of sensors can also influence the simulation time and

the memory usage. More memory usage means more frequent

operations on the system resource, which is very time

consuming. The creation of a thread does not require

extensive system memory and the sharing of files and other

resources, is simplified. Multi-threading enables you to make

the best use out of the existing hardware resources and also

enables simple resource sharing. Multithreading is also used

to speed up the simulation time in relation to the real time.

The simulator has the ability to run the simulation process

faster than real time which makes it possible to observe the

behavior of a network for large time durations. The designer

does not have to wait for a long period during the evaluation

phase of the system in order to monitor the sensor network

performance. Finally, the researcher has the ability to test

several scenarios very easily and quickly and compare and

analyze the output results by using a simple spreadsheet

application. The further work that must be done on this

simulation tool is to broaden its ability to validate not only

cluster-based but any other routing protocols such as flooding,

multipath and miscellaneous [37]. At this stage this is difficult

to be accomplished without making some edits into the source

code. For example in order to use multipath routing the cluster

algorithm must be subtracted and a new algorithm must be

designed and major alterations to the rest of procedures must

be done. However for a user who is familiar with the object

oriented C++ programming language these alterations can be

done very easily and quickly because the program code is

understandable and easy to modify. Furthermore, the rest of

the application which has to do with the user interface unit

can be remained as it is with minor changes.

References

[1] P. Xie, Z. Zhou, Z. Peng, H. Yan, T. Hu, J.-H. Cui, Z.

Shi, Y. Fei, and S. Zhou, "Aqua-Sim: An NS2 Based

Simulator for Underwater Sensor Networks," in Proc. of

MITS/IEEE OCEANS Conference, Biloxi, Mississippi,

USA, 2009, pp. 1-7.

[2] H. Sundani, H. Li, V. Devabhaktuni, M. Alam and P.

Bhattacharya,”Wireless Sensor Network Simulators A

Survey and Comparisons,” International Journal Of

Computer Networks,vol.,2., pp.249-265,Apr.2010.

[3] E. Egea-Lopez, J. Vales-Alonso, A. S. Martınez-Sala, P.

Pavon-Marino and J. Garcıa-Haro, “Simulation tools for

wireless sensor networks,” in Proc. SPECTS 2005,

Philadelphia, PA, 2005, pp. 559–566.

[4] Network simulator, NS2. [online]. Available:

http://nsnam.isi.edu/nsnam

[5] J. Chung and M. Claypool. NS by Example. Worcester

Polytechnic Institute. [online]. Available:

http://nile.wpi.edu/NS/.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.22, June 2013

27

[6] OPNET, modeling and simulation. [online].

Available:http://www.opnet.com/solutions/network_rd/.

[7] OMNET++, network simulation framework. [online].

Available: http://www.omnetpp.org.

[8] Simulating TinyOS Networks. [online]. Available:

http://www.cs.berkeley.edu/~pal/research/tossim.html.

[9] P. Wang, C. Li, and J. Zheng, “Distributed minimum-

cost clustering protocol for underwater sensor networks

(uwsns),” in Proc. of the IEEE Int. Conf. on

Communications (ICC07), Glasgow, Scotland, 2007, pp.

3510–3515.

[10] J. Llor, and M.P. Malumbres, “Underwater Wireless

Sensor Networks: How Do Acoustic Propagation Models

Impact the Performance of Higher-Level Protocols?”

Sensors 2012,vol. 12(2), pp. 1312-1335, Jan. 2012.

[11] L. Liu “A topology recovery algorithm of underwater

wireless sensor networks,” In Proc. of the 12th IEEE Int.

Conf. on Communication Technology (ICCT), Nanjing,

China, 2010, pp.64-67.

[12] Y. Wang, C. Wan, M. Martonosi, and L. Peh., “Transport

layer approaches for improving idle energy in challenged

sensor networks,” In Proc. of the 2006 SIGCOMM

workshop on Challenged networks (SIGCOMM'06

Workshops), Pisa, Italy, 2006, pp. 253-260.

[13] TinyOS Home page. [online]. Available:

http://www.tinyos.net/.

[14] S. Robinson, Simulation: The Practice of Model

Development and Use. West Sussex, England: Wiley,

2004, pp. 13-24.

[15] PowerTOSSIM: Efficient Power Simulation for TinyOS

Applications. [online]. Available:

http://www.eecs.harvard.edu/~shnayder/ptossim/.

[16] Sanchez, S. Blanc, P. Yuste, I. Piqueras and J. José

Serrano, “Advanced Acoustic Wake-up System for

Underwater Sensor Networks,” Communications in

Information Science and Management Engineering, vol.

2(2), pp. 1-10, Feb. 2012.

[17] K. Jusufi, R. Behymer, M. Hoyer, and S. Zhou,

“Designing a three-node underwater acoustic relay

network,” in Proc. of the National Conference On

Undergraduate Research (NCUR), Salisbury

University,2008, pp. 10–12.

[18] Y. Teymorian, W. Cheng, L. Ma, X. Cheng, X. Lu, and

Z. Lu, “3d underwater sensor network localization,”

IEEE Trans. Mobile Comput.,vol. 8, no. 12, pp. 1610–

1621, 2009.

[19] Z. Guo , B. Wang , P. Xie , W. Zeng and J.H. Cui,

“Efficient error recovery with network coding in

underwater sensor networks,” Ad Hoc Networks, vol.7,

pp.791-802, June, 2009.

[20] “Aqua-3D-obinet. [online].

Available:http://obinet.engr.uconn.edu

[21] S. K. Dhurandher , S. Misra , M. S. Obaidat and S.

Khairwal, “UWSim: A Simulator for Underwater Sensor

Networks,” Simulation, vol.84, pp.327-338, July 2008.

[22] S. K. Dhurandher , S. Misra , S. Khairwal and S.

Neelay,” Algorithms for Power-Efficient Data

Acquisition in Underwater Sensor Networks,” in Proc. of

7th WSEAS Int. Conf. on Applied Computer Science,

Venice, Italy, 2007, pp. 420-423.

[23] K. Ovaliadis, N. Savage, and V. Kanakaris, “Energy

efficiency in underwater sensor networks: a research

review," Journal of Engineering Science and Technology

Review, vol. 3, pp. 151-156, June 2010.

[24] F. Salva-Garau and M. Stojanovic, “Multicluster protocol

for ad hoc mobile underwater acoustic networks,” in

Proc. of the IEEE OCEANS’03 Conference, San Diego,

CA, 2003, pp. 91-98.

[25] Abbasi and M. Younis, “A survey on clustering

algorithms for wireless sensor networks,” Journal of

Computer Communications, Special Issue on Network

Coverage and Routing Schemes for Wireless Sensor

Networks, vol. 30, pp. 2826–2841, 2007.

[26] M. Jevtic, N. Zogovic and G. Dimic, “Evaluation of

Wireless Sensor Network Simulators,” in Proc. of the

17th Telecommunications Forum (TELFOR

2009),Belgrade, Serbia, 2009, pp. 1303-1306.

[27] M. Thoppian, H. Vu, S. Venkatesan, R. Prakash, N.

Mittal and J. Anderson, “Improving Performance of

Parallel Simulation Kernel for Wireless Network

Simulations,” in Proc. of Military Communications

Conference (Milcom), Washington, DC , 2006, pp. 1-6.

[28] Lewis and D. J. Berg, “PThreads Primer,” Mountain

View, Calif., USA: SunSoft Press, 1996.

[29] Multithreaded Programming Guide. [online]. Available:

http://docs.oracle.com/cd/E19253-01/816-5137/

[30] Z.Peng, Z.Zhou,J.H. Cui and Z. Shi, “Aqua-Net: An

underwater sensor network architecture – design and

Implementation and initial testing,” in Proc. of

MTS/IEEE OCEANS 2009, Biloxi, Mississippi, USA,

2009, pp. 26–29.

[31] Penteado, L. H. M. K. Costa and A. C. P. Pedroza,

“Deep-ocean Data Acquisition Using Underwater Sensor

Networks,” in Proc. of the 20th International Offshore

(Ocean) and Polar Engineering Conference -ISOPE-

2011, Beijing, China, 2010, pp. 383-389.

[32] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless

sensor network localization techniques,” Computer

Networks, vol. 51, pp. 2467-2483, July 2007.

[33] M. C. Domingo and R. Prior, “Energy analysis of routing

protocols for underwater wireless sensor networks,”

Computer Communications (Elsevier), vol. 31, pp. 1227–

1238, Nov. 2007.

[34] F. Garcin, M. H. Manshaei, and J-P. Hubaux.

“Cooperation in Underwater Sensor Networks,” in Proc.

of the International Conference On Game Theory For

Networks, Istanbul Turkey, 2009, pp. 540-548

[35] Underwater Acoustic Modem. Available:

http://www.link-quest.com.

[36] G. Seguin, “Multi-core Parallelism for ns-3 Simulator,”

INRIA Sophia-Antipolis, Tech. Rep., 2009.

[37] Wahid and K. Dongkyun, “Analyzing Routing Protocols

for Underwater Wireless Sensor Networks,” International

Journal of Communication Networks and Information

Security (IJCNIS), vol. 2, pp. 253-261., Dec. 2010.

IJCATM : www.ijcaonline.org

http://www.opnet.com/solutions/network_rd/
http://www.omnetpp.org/
http://www.link-quest.com/

