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ABSTRACT 

An equalization technique based on nonlinear Hammerstein 

type filters to combat the inter symbol interference (ISI) effect 

is proposed. This technique is nothing but nonlinear 

generalization of the linear equalizer. Linear frequency 

selective fading channels in presence of additive white 

Gaussian noise is considered using DPSK and QAM 

modulation techniques in this work. Simulation results shows 

that the proposed technique is found superior compared to 

when linear equalizer is used. Better BER performance at 

moderate and higher SNRs is achieved for M-QAM 

modulation. Results also show better MSE performance than 

the linear structure. 
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1. INTRODUCTION 
Generally in frequency selective channels, the input 

signal after being transmitted suffer from inter-symbol 

interference (ISI) and noise. In order to reduce these effects, 

an optimum receiver based on maximum likelihood sequence 

estimation (MLSE) is designed. MLSE which is a non-linear 

method has high computational complexity that increases 

exponentially with the channel memory length. Therefore in 

frequency selective channels, MLSE is replaced by 

suboptimum receivers. Linear and decision feedback 

equalizers (DFE) are the most common techniques [1]. Linear 

equalizer (LE) is simply a linear transversal filter with a 

limited number of taps. Linear transversal filters are used in 

DFE as feed-forward and feedback blocks. Many other 

equalization techniques are presented in practice to reduce ISI 

effect[1-3]. 

In this paper, discussion is on generalized nonlinear 

structure for channel equalization that is based on 

Hammerstein type filters. Normally this technique is 

performed on frequency selective fading channels. 

Hammerstein filter is a nonlinear polynomial filter which is 

used in many applications. Some of them are system 

identification [4],[5], modeling[6],[7], echo 

cancellation[8],[9] and noise cancellation[10]. Hammerstein 

decision feedback equalization (HDFE) is used in fiber- 

 

 

 

 

 

 

wireless channel for compensation of nonlinear distortion in 

the electrical-to optical converter [11], [12].  

In the next section a system model is presented. Section III 

introduces the nonlinear Hammerstein equalization 

technique.. Simulation results and discussions are presented in 

section IV, before concluding the paper in section V. 

2.  SYSTEM MODEL 
In this section the equivalent low-pass discrete time 

model of the system is considered. DPSK and M-QAM 

modulation techniques are employed in this system.. A 

frequency selective fading channel modeled by a tapped delay 

line with L taps is considered to be: 

]........[ ]21 LhhhH                                               (1) 

Where h i  is the random gain of the ith tap. These components 

are assumed to be real valued zero-mean Gaussian random 

variables with variance
2

hi  . Further, they are assumed 

uncorrelated and normalized to unity, i.e.: 

  1
1

2
 

L

i ihE                                                   (2) 

The channel fading is assumed to be slow, such that the tap 

gains do not vary during one data frame. It is also assumed 

that the frequency selective fading channel has a specific 

power delay profile (PDP), which is the profile of the mean 

square values of the tap gains. The received signal which is 

corrupted by ISI and noise is expressed as 

 


L

i i nwinxhny
1

)()1()(                         (3) 

Where w(n) is a real-valued zero-mean white Gaussian noise 

with variance 
2

w  . Eq. (3) can be expressed in matrix form: 

)()()( nWnHXny                                        (4) 

Where H is the channel vector and X(n) is the received data 

vector, defined as:   
TLnxnxnxnX )1(....)1()([)(              (5) 

In sub-optimum receivers, the detected signal is obtained by 

passing y(n)  through an equalizer and a hard detector. 
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3.  GENERALISED HAMMERESTEIN 

EQUALIZATION TECHNIQUE 

3.1 Equalizer Model 
The block diagram of Generalized Hammerstein Equalization 

technique (GHE) is shown in below Fig 1. Here the received 

signal is passed through a delay line with   eqL  taps. Then, 

the signal at every tap is applied to a Hammerstein filter of 

order D. The output polynomial of the ith filter is then 





D

oddkk

k

iik nygn
)(1

i )(~)(Z  

eqLifor ........2,1                                             (6) 

Where ikg is the kth coefficient of the output polynomial of 

the ith filter, and )(~ nyi  is defined as the signal at ith tap, i.e.: 

eq

eq

i Lfori
L

inyny ,......2,1
2

1
)(~ 







 
    (7) 

The summation of Eq. (6) contains only the odd powers. It 

can be shown that the terms containing the even powers are 

equal to zero. The filters outputs are summed to produce the 

equalizer output )(nz  

  
 eq

L

i

d

oddk

k
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)(~)(                          (8) 

Eq. (8) when expressed in matrix form: 

)()( nYGnz H

T

H                                                     (9) 

Where HG is a 12/)1( DeqL
vector that consists of 

coefficients ikg  and )(nYH  is a 

12/)1( DeqL
vector defined as: 

 

oddDnynynynynY TT

D

TTT

H ,)](~.....)(~)(~)(~[)( 531  (10) 

where )(
~

nYP  is a eqL  vector defined by using Eq. (7): 

TP

L

PP

P nynynyY
eq
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~

21                        (11) 

Z(n) is an estimate of the transmitted symbol x(n)  To 

minimize the mean square error we have to find out the 

coefficients  ikg  . The output decision  )(ˆ nx  is obtained by 

passing  Z(n) through a hard detector 

3.2  Calculation of the coefficients 
The MSE criterion is used for calculating the coefficients of 

Hammerstein filters from the training mode. The training 

mode having the transmitter sends a training sequence, let us 

assume that it is known to receiver as the desired signal 

d(n).The difference between the desired and estimated values 

gives the error signal which is given  by the eq. 

)()()()()( nznxnzndne                     (12) 

The cost function is defined as below: 

)({ 2 neE                                                          (13) 

The coefficients are computed so as to minimize     .Using 

Eqs. (9) And (12) in (13), we get:  
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If we define the 12/)1( DeqL
cross correlation 

vector: 
)}()({ nxnYEP HH                                             (15) 

And the  2/)1(DeqL 2/)1( DeqL
 

autocorrelation matrix: 

)}()({ nYnYER T

HHH                                           (16) 
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                                                                        Fig. 1Generalized Hammerstein Equalizer 

 

And note that 
T

H

T

H PnYnxE )}()({  

H

T

HH

T

H GPPG  ,and 1)}({ 2 nxE ,  we obtain: 

HH

T

HH

T

H GRGPG  21                                (17) 

This is a quadratic function of vector HG with a single global 

minimum. To minimize , we need to have: 

0                                                                             (18) 

Where is the gradient operator From Eqs. (17) and (18) and 

using the gradient properties we can write: 

022  HHH PGR                                      (19) 
Finally, the coefficients of Hammerstein filters are obtained 

by solving Eq. (19): 

 

HHH PRG 1                                                             (20) 

Assuming that 
1

HR is invertible. 

 

4. SIMULATION RESULTS 
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GHE: Leq = 3, D =5

LE: Leq = 3

Fig. 2 Average BER for GHE & LE systems for Leq= 3 

and D=5 
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GHE: Leq = 5, D =5

LE: Leq = 5

Fig.3Average BER for GHE & LE systems for Leq=5,  

D = 5 
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GHE: Leq = 3, D =7

LE: Leq = 3

       Fig. 4 Average BER for GHE & LE systems for 

Leq=3, D =7 
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GHE: Leq = 5, D =7

LE: Leq = 5

 

Fig 5 Average BER for GHE & LE systems for Leq=5 and 

D = 7 
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Fig. 6 Average BER for GHE & LE systems for 

Leq={1,3,5}  D = 5 
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GHE: Leq = 3, D = 5, M = 2

LE: Leq = 3, M = 2

GHE: Leq = 3, D = 5, M = 4

LE: Leq = 3, M = 4

GHE: Leq = 3, D = 5, M = 16

LE: Leq = 3, M = 16

 
Fig 7 Average BER for GHE & LE systems for Leq=3, 

 D = 5 for M= (2, 4, 16)  

4.1 Conclusions: 
The average Bit Error Rate (BER) for different SNR 

values are plotted for both linear equalizer and Generalized 

Hammerstein Equalizer techniques. Fig. 2&3 shows that BER 

decreases as the number of taps of the equalizer increases 

from 3 to 5 with the order of the filter taken as 5 i.e. D = 5. In 

other words taking the order of the filter fixed the BER rate 

decreases considerably for moderate to high SNR values as 

the number of taps increases from 3 to 5 i.e. Leq= {3,5}. 

Results were also obtained by increasing the order of the filter 

to 7 i.e. D = 7 for different number of taps Leq =3,5 from fig. 

4&5.  

The results obtained reveal that considerable 

improvement in BER, but when compared with the previous 

figures the performance of GHE with the order of the filter 

D=5 out performs than the filter with the order D = 7 for 

moderate to high SNR values. The conclusion that is drawn 

from the above results is the proposed GHE to perform well 

the order of the filter has to be limited to a value less than or 

equal to 5 i.e. D = 5. Fig. 6 shows how the proposed GHE 

performs if the taps takes different values i.e. Leq= {1, 3, 5} 

for the order of the filter D = 5. The conclusion that is drawn 

is as the number of taps increases for fixed order the BER 

decreases gradually.  
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The BER of GHE decreases drastically for moderate 

to high SNR values. The above results are obtained provided 

the modulation technique being used is DPSK. Performance 

of the proposed GHE and LE is also carried out for fixed 

order and fixed number of taps for different values of the M-

QAM modulation scheme and found that as the value of M 

increases BER also increases. Excellent performance for the 

proposed GHE is obtained for M = 2 as shown in fig  
 

4.2 Results: MSE 
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GHE: Leq = 3, D =5
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Fig. 8 Average MSE for GHE & LE systems for Leq =3 

and D = 5 
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Fig. 9 Average MSE for GHE & LE systems for Leq =5 

and D = 5 
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Fig. 10 Average MSE for GHE & LE systems for Leq =3 

and D =7 
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Fig. 11 Average MSE for GHE & LE systems for Leq =5 

and D =7 
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Fig. 12 Average MSE for GHE & LE systems for 

 Leq =1,3,5& D = 5 
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GHE: Leq = 3, D = 5, M = 2

LE: Leq = 3, M = 2

GHE: Leq = 3, D = 5, M = 4

LE: Leq = 3, M = 4

GHE: Leq = 3, D = 5, M = 16

LE: Leq = 3, M = 16

 

Fig. 13 Average MSE for GHE & LE systems for Leq=3, 

D = 5 & M= (2, 4, 16) 

 

4.3 MSE Conclusions: 
The performance of the proposed GHE is found to 

be superior to the linear equalizer in terms of its average 

Mean Square Error (MSE) for different SNR values. 

Significant out performance is obtained for GHE systems at 

moderate and high values of SNR. Fig. 8 and 9 reveals that as 

the number of taps increases for fixed order of the filter the 

MSE decreases considerably. Observing fig. 10 and 11 it can 

be concluded that as the order of the filter is increased for two 

different values of the taps the performance of the proposed 

GHE is almost same as the previous results but significant 

improvement is seen at high SNR values ie when the SNR 

values are in the range of 30 to 40.  

Comparing the results obtained from the fig. 12 

considerable improvement in the performance of the GHE is 

seen at moderate to high SNR values. The Modulation 

technique used for the above results is DPSK. Performance of 

the proposed GHE and LE is also carried out for fixed order 

and fixed number of taps for different values of the M-QAM 

modulation scheme and found that as the value of M increases 

MSE also increases. Superior performance for the proposed 

GHE is obtained for M = 2. The decrease in MSE is 

considerable at moderate to high SNR values as shown in fig 

13. 
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