
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.2, May 2013

11

Accelerated Parallel Generation of Binomial Coefficients
using GPU

Mohsin Altaf Wani

Research Scholar computer science

Mewar University

Chittorgarh

Rajasthan

S.M.K Quadri
Research Supervisor computer sciences

Mewar University

Chittorgarh

Rajasthan

ABSTRACT

GPUs (Graphics processing units) can be used for general

purpose parallel computation. Developers can develop parallel

programs running on GPUs using different computing

architectures like CUDA or OpenCL. The Binomial

Coefficient Generation is used to generate a table of binomial

coefficients each entry in row n and column k of this table

contains number of combinations of n objects taken k at a

time. It is known that this problem can be solved by dynamic

programming technique using O(nk)-time complexity

algorithm where the table to be generated has n rows and k

columns. The main contribution of this paper is to present a

parallel implementation of this O(nk)-time algorithm on a

GPU and to analyze the speed up possible when compared to

a CPU based implementation.

Keywords

Dynamic programming; Parallel algorithm; GPU; OpenCL.

1. INTRODUCTION

GPUs are specialized processors designed to

accelerate computations for drawing and manipulating

images[5]-[7]. Modern GPUs have teraflops of processing

power and manufacturers are designing them for general

purpose computing in addition to their traditional domain of

graphics processing. Nowadays GPUs are attracting attention

of a large number of developers. AMD GPUs can be

programmed using OpenCL(Open Computing Language)

framework which is specified by the khronos group[8].

Similarly NVIDIA provides a parallel computing architecture

known as CUDA(Compute Unified Device Architecture)[3],

the computing engine in the NVIDIA GPUs. CUDA gives

developers access to the virtual instruction set and memory of

the parallel computational elements in the GPUs.

Dynamic programming is an algorithmic technique

used to find a solution of a problem over an exponential

number of candidate solutions [2]. In this approach we solve

small instances first, store the results, and later, whenever we

need a result, look it up instead of recomputing it. The term

"dynamic programming" comes from control theory, and in

this sense "programming" means the use of an array (table) in

which a solution is constructed. The steps in the development

of a dynamic programming algorithm are as follows:

i. Establish a recursive property that gives the solution to an

instance of the problem.

ii. Compute the value of an optimal solution in a bottom-up

manner.

Several important problems like optimal binary search tree,

edit distance problem can be solved using the dynamic

programming [1].

The main contribution of this paper is to implement a dynamic

programming solution to generate binomial coefficients [2] on

the GPU and to analyze the performance when compared to a

CPU based implementation.

2. BINOMIAL COEFFICIENTS AND

DYNAMIC PROGRAMMING

The main purpose of this section is to define how

the Binomial Coefficients are generated and to review the

dynamic programming algorithm to solve it.

The goal here is to develop an algorithm that

generates Binomial coefficients. Binomial coefficients can be

generated using the formula given below as equation 1.

 Equation 1.

 n!
n
Ck = ____________ for 0 ≤ k ≤ n

 n! (n-k)!

For values of n and k that are not very small, we

cannot calculate the binomial coefficients directly from this

definition because n! is very large for even modest values of

n. However it has been established that binomial coefficients

can also be computed using an alternative method given

below equation 2.

 Equation 2.

n-1

Ck-1 +
n-1

Ck 0 < k < n

n
Ck = or

 1 k=0 or k=1

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.2, May 2013

12

The equation 2 eliminates the need to compute n! or

k! by using recursive property of binomial coefficients.

An efficient dynamic programming algorithm to

compute binomial coefficients based on equation 2 exists. We

will use equation 2 to construct our solution in an array C

where C[i][j] will contain iCj. The steps required to construct a

dynamic programming algorithm are as follows:

i. Establish a recursive property. Which in

our case is equation 2. Now state that equation in terms of

array C, which is

 Recurrence 1

 C[i-1] + C[i-1[j] 0 < j < i

C[i][j] = or

 1 j=0 or j=i

ii. Solve a given instance of the problem in

bottom-up manner by computing rows in C in sequence

starting with first row.

This method gives us the ability to use previously

computed results to compute new ones. Also saving us the

burden of generating huge numbers like n! or k! in our

algorithm. The steps required to generate Binomial

coefficients is shown in figure 1 below. As can be seen in

figure 1 this array is basically Pascal's triangle. In general we

need to compute the values in each row up to the kth column

only.

 Figure 1.

 0 1 2 3 4 j k

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

 C[i-1][j-1]C[i-1][j]

 C[i][j]

i

n

The computation proceeds as follows:

I. Compute row 0: C[0][0] = 1

II. Compute row 1: C[1][0] = 1 , C[1][1] = 1

III. Compute row 2: C[2][0]=0, C[2][1] =

C[1][0] + C[1][1] = 1 + 1 = 2, C[2][2]=1

.

.

 We can go on computing larger values of the

Binomial coefficient in sequence. After each iteration the

values needed in the next iteration are already available. This

procedure is fundamental to dynamic programming approach.

3. CUDA

CUDA (compute unified device architecture) is a

parallel computing architecture with a parallel programming

model and instruction set architecture that is used to harness

the parallel compute engine in Nvidia GPUs to solve many

complex computational problems in a more efficient way than

on a CPU[3].

CUDA parallel programming model has a hierarchy

of thread groups called grid, block and threads[3]. A single

grid is composed of multiple blocks, each of which has equal

number of threads. Blocks are allocated to streaming multi

processors such that all threads in a block are executed by the

same streaming multi processor in parallel. All threads can

access the global memory. However, threads in a block can

only access shared memory of streaming processor to which

block is allocated; shared memory is on chip unlike global

memory which is DRAM on board having higher latency.

Threads in different blocks cannot share data in shared

memory.

The multiprocessor executes threads in groups of 32

parallel threads called warps. Threads composing a warp start

together at the same program address, however they are free

to branch and execute independently. But a divergent branch

may lead to poor efficiency[4].

Threads can access data from multiple memory

spaces. Each thread has its own register and private local

memory. Each block has a shared memory with high

bandwidth only visible to all threads of the block.

CUDA C extends C language and allows

programmers to define C functions known as kernels in

CUDA. By invoking a kernel, all blocks in a grid are allocated

to streaming multiprocessors. The kernel call terminates when

all threads in a block finish the computation. All threads in a

block are executed by a single streaming multiprocessor, they

are barrier synchronized by calling CUDA C __syncthreads()

function[3]. However there is no direct way to synchronize

threads executing in different blocks.

In this paper a parallel implementation of a dynamic

programming algorithm on a GTX 570 GPU having 480

CUDA cores in 15 Streaming multiprocessors is developed.

4. PARALLEL IMPLEMENTATION

 Purpose of this section is to show an

implementation of Binomial coefficient generation using

dynamic programming on GPU. A parallel implementation of

this algorithm on a GPU is developed and its performance is

analyzed.

4.1 PARALLEL ALGORITHM

 This parallel algorithm for Generation of binomial

coefficients is designed as follows. Each row in the array is

computed by the parallel algorithm separately. The element in

first row and column is set to 1, then the kernel is invoked

with parameters which adjust the number of threads executing

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.2, May 2013

13

at a time. The approach here is to use a single thread to

compute individual element in the array.

 Algorithm 1.

__global__ void binomial(double *C, int row)

 {

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 int col = tid + 1;

 B[row*N+col] = B[(row-1)*N + (col-1)] + B[(row-

_ 1)*N +col];

 }

This kernel is invoked from host code where b is the

array in which binomial coefficients are calculated and row is

used to select the row to be computed. Each row in the array

is computed using a separate kernel call. First kernel call is

used to compute first row, after first kernel call completes and

returns to host code second kernel call is issued to compute

second row. The computation is repeated in this manner. This

method of issuing separate kernel calls eliminates the

problems of synchronizing computation of different rows on

GPU because CUDA doesn't guarantee to maintain the order

of execution of different blocks of threads.

5. EXPERIMENTAL RESULTS

 The dynamic programming algorithm for generating

Binomial coefficients has been implemented using CUDA C .

Nvidia GeForce GTX 570 with 480 processing cores(15

Streaming multiprocessors with 32 cores each) and 1.25GB

GDDR5 DRAM is used for computing results. For the

purpose of estimating speedup of a GPU based

implementation, a CPU based implementation has also been

developed. Intel core i5 760 running at ~3.0 GHz and 8GB

RAM is used for sequential implementation of dynamic

programming algorithm.

 Table 1 shows computing time in seconds for

binomial coefficients in tables of size 5000, 7000, 9000,

12000.

Table 1: Time in milliseconds for generating Binomial

coefficients GPU and CPU

Size 4500 5500 6500 7500 8500 9500

Time

on

GPU

102.3 148.5 202.0 269.9

338.4 422

Time

on

CPU

983 1591 2278 3073 4009 5039

 Table 1 shows us, that for generating small

instances of Binomial Coefficients GPU based

implementation is 9.6 times faster than CPU based

implementation. Once larger instances are considered the

GPU based implementation is up to 12 times faster than CPU

based implementation. So a best possible speed up factor of

12 is possible for large instances of chained matrix

multiplication using the proposed implementation.

6. CONCLUSION

In this paper a parallel implementation of dynamic

programming algorithm for generating Binomial coefficients

on GPU has been proposed. Though the proposed algorithm

requires minimum additional effort still it manages to be 12

times faster than a CPU based implementation. This proves

that even a small amount of work on our part can achieve

significant amount of speed up on current generation of

GPUs. In our case up to 12 times as compared to CPU based

implementation.

 References

[1] Cormen, T. H., Lieserson, C.E., Rivest, R.L. 1990

Introduction to Algorithms. MIT Press

[2] Neapolitan, R and Naimipour, K. 2003 Foundations of

Algorithms using C++ pseudocode.

[3] Nvidia Corp. 2011 Nvidia CUDA programming guide

version 4.1.

[4] Nvidia Corp. 2011 CUDA C Best Practices Guide

version 4.1.

[5] W. W. Hwu. 2011 GPU Computing Gems Emerald

Edition. Morgan Kaufmann,.

[6] D. Man, K. Uda, Y. Ito, and K. Nakano. Dec. 2011 “A

GPU implementation of computing euclidean distance

map with efficient memory access,” in Proc. of

International Conference on Networking and Computing,

, pp. 68–76.

[7] A. Uchida, Y. Ito, and K. Nakano. Dec. 2011 “Fast and

accurate template matching using pixel rearrangement on

the GPU,” in Proc. of International Conference on

Networking and Computing , pp. 153–159.

[8] AMD. 2011 Introduction to OpenCL programming.

