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ABSTRACT 
This paper presents hardware implementation of multistage 

trapdoor knapsack public key cryptosystem which is primarily 

based on Merkle-Hellman scheme. So far,   multistage 

knapsack is not broken and there has not been known a 

specific attack against this system. Modular multiplier is the 

critical and fundamental part of the hardware implementation. 

In this paper, Montgomery’s multiplication algorithm is 

modified with great hardware reduction. An efficient and 

optimized architecturefor modular multiplication is proposed.  

Three stages knapsack public cryptosystem are implemented 

on DE2-115 FPGA development kit.The either implemented 

stages (encryption or decryption) take <1% of available FPGA 

resources. The required clock cycles for encryption process of 

a one stage is equal to the encryption key length plus one, 

whereas decryption process of a one stage requires twice 

decryption key length. The stages can be easy operated in 

pipeline to speedup cryptosystem operations. 

General Terms 
Security, Public key cryptosystem, FPGA 

Keywords  
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1. INTRODUCTION 
Cryptograph is a practical way by which secure private 

communication can be conducted while using untrusted media. 

In 1976, Diffie and Hellman [1] introduced the idea of public 

key cryptosystem (PKC), in which two different keys are used: 

one for encryption and the other for decryption. Each user keeps 

his decryption key secret while making the encryption key 

public, it can be used by everyone wishing to send message to 

him. Two years later, one of the well-known additive trapdoor 

knapsack public key cryptosystem was discovered by Merkle 

and Hellman [2]. Later, it was shown to be insecure [3] and 

attacks have alsobeen developed on stronger variants of Merkle 

Hellman scheme,  

 

 

 

 

 

such as Graham-Shamir [4], iterated knapsack, multiplicative 

knapsack [5], Chor-Rivest cryptosystem [6], Goodman-

McAuley cryptosystem   and Naccache-Stern[7], knapsack 

based probabilistic encryption scheme [8]. As it is seen, most of 

knapsack cryptosystems were insecure and broken. Despite this, 

Hussian A.H. et al. [9] proposed and published multistage 

trapdoor knapsack public cryptosystem. At this moment, no 

attack capable of breaking this system in reasonable amount of 

time is known. There has not been known a specific successful 

attack on this scheme [7]. This system is formed by cascading 

multistage of the well-known scheme of trapdoor knapsack 

cryptosystem. It offers much greater security than single stage 

trapdoor knapsack cryptosystem of the same length [9]. In this 

paper, multistage knapsack public key cryptosystem is 

implemented using DE2-115 FPGAdevelopment kit. The next 

sections of the paper are devoted to overview of knapsack and 

multistage knapsack algorithms, modified Montgomery 

modular multiplication, hardware design of multistage knapsack 

cryptosystem, hardware implementation of three stages 

knapsack cryptosystem and finally conclusions.   

2. OVERVIEW OFMULTISTAGE 

KNAPSACK AND KNAPSACK 

ALGORITHMS 

In this section, the multistage Knapsack and algorithms of 

additive trapdoor Knapsack cryptosystem are introduced. 

2.1 Multistage knapsack 

Figure (1) illustrates the concept of multistage trapdoor 

knapsack public key cryptosystem consisting of k–stage. There 

is a hard knapsack vector (encryption key) of length  Ni for each 

stage and the output ( cipher text ) of each stage is treated as a 

plain text to the next stage. Again the cipher text is decrypted 

using k   decryption stages. These stages are arranged in 

reversed order as shown in Fig. (1). 
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Fig1:  Block diagram of k- multistage public key cryptosystem 

 

The security of   multistage knapsack as compared to single 

stage knapsack of length N under the condition that the length 

of single stage is equal to the overall length of the k-stage: 

N = N1 + N2 + N3 +...    + Nk(1) 

is given by  [9] : 

Ø = N1.N2.N3...Nk/N    (2) 

W*here Ø   represents how many times the security is increased 

and 

If N1 = N2 = N3 = ... = No 

Then   

Ø   = No
k-1/k             (3) 

Where  No is the length of one stage   (No = N/k). 

As an example, using 10 multistage of length No = 30 instead 

of using single stage of length N = 300, the security is increased 

by    19683×108. This means that if one hour is required to 

attack and break the single stage (N = 300), the  10 multistage  

(No = 30) requires   19683×108 hours (224.6  million  years). 

2.2 Keys generation of the j
th

 stage 

The keys generation of Merkle – Hellman trapdoor Knapsack 

public key cryptosystem for the jth stage involves the following 

steps: 

1- Generate anNj-integer vector Aj’ = {𝛼0
𝑗
, 𝛼1

𝑗
, 𝛼2

𝑗
, … , 𝛼𝑁𝑗−1

𝑗
} 

theeasily solved problem with property that each element is 

greater than the sum of preceding elements. 

2-Choose two large numbers mj and wj such that 

mj> 𝛼𝑖
𝑗

𝑁𝑗−1

𝑖=0
and GCD (wj,mj)=1. The secret (decryption) key 

of the jth stage   Djis: Aj’, mj and wj. 

3-Computewj
-1from the two secret integers such that    

𝑤𝑗
−1 .   𝑤𝑗𝑚𝑜𝑑 𝑚𝑗  = 1 

4- Compute the public key Aj = {𝑎0
𝑗
, 𝑎1

𝑗
, 𝑎2

𝑗
, … , 𝑎𝑁𝑗−1

𝑗
}, the hard 

knapsack via 

𝑎𝑗 = 𝛼𝑗 . 𝑤𝑗𝑚𝑜𝑑 𝑚𝑗  i =0,1,2,...,Nj-1    ( 4 )     

The public (encryption ) key of the jth stage Ejis  :  Aj. 

2.3Encryption 

The plain text (message) is converted into string of binary 

numbers which is segmented into Nj-bits and each block  Xj = 

{ 𝑥0
𝑗
, 𝑥1

𝑗
, 𝑥2

𝑗
, … , 𝑥𝑁𝑗−1

𝑗
} is enciphered in the jthstage by 

performing dot product with the knapsack public key  Aj that is 

 

𝑦𝑗 =  𝑥𝑖
𝑗
𝑎𝑖

𝑗
𝑁𝑗−1

𝑖=0
        (5) 

2.4Decryption 

Cipher text yj is decrypted in the jth stage by computing  𝛾j from 

γ𝑗 = 𝑦𝑗 . 𝑤𝑗
−1𝑚𝑜𝑑  𝑚𝑗       (6) 

The message is recovered by comparing 𝛾 j  with  𝛼𝑁𝑗−1
𝑗

, if   

𝛾j>𝛼𝑁𝑗−1
𝑗

  then 𝑥𝑁𝑗−1
𝑗

is equal to 1 , otherwise 𝑥𝑁𝑗−1
𝑗

  is equal to 

zero. If  𝑥𝑁𝑗−1
𝑗

 = 1  then 𝛼𝑁𝑗−1
𝑗

  is subtracted from  𝛾j  and a 

new value is found, then comparing this value with  𝛼𝑁𝑗−2
𝑗

, if 

this new value of  𝛾j  is greater than 𝛼𝑁𝑗−2
𝑗

, then 𝑥𝑁𝑗−2
𝑗

  is equal 

to  1  otherwise 𝑥𝑁𝑗−2
𝑗

   is equal to zero. This process is repeated 

until 𝑥0
𝑗
 is computed. 

3. MODIFIED MONTGOMERY 

MODULARMULTIPLICATION 

The most widely used algorithm for efficient modular 

multiplication is Montgomery’s algorithm [10]. The binary 

Montgomery modular multiplication algorithm employs only 

simple addition and shift operation to avoid trial division, a 

critical and time consuming operation in conventional modular 

multiplication [11]. Montgomery multiplication, in fact, 

computes  𝑥. 𝑦. 𝑤−1𝑚𝑜𝑑 𝑚  instead of 𝑥. 𝑦𝑚𝑜𝑑 𝑚 . Some 

conditions are necessary for the application of Montgomery’s 

algorithm: the modulus m needs to be relatively prime to the 

factor wand the multiplicand x and the multiplier y need to be 

smaller than m.In knapsack public key cryptosystem, 

decryption of cipher text in the jth stage involves computation of 

𝑦𝑗𝑤𝑗
−1𝑚𝑜𝑑 𝑚𝑗  . In this paper, Montgomery’s algorithm is 

modified with great computational reduction to compute 𝛾j if 

wjin the key design is chosen to be wj = 2k. Now, the only 

condition for application of the modified algorithm is that m 

must be odd number. Modified Montgomery’s algorithm 

becomes: 
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4. HARDWARE DESIGN OF 

    MULTISTAGE KNAPSACK 

    CRYPTOSYSTEM 
The hardware design of multistage knapsack cryptosystem 

consists of two parts, as early mentioned, encryption and 

decryption parts. Each part consists of k semi similar stages.  In 

the following sections, the hardware design and implementation 

of a one stage of each parts of the cryptosystem are presented.  

4.1 Hardware design of the j
th 

stage of  

Encryption part 
Each encryption stage in the multistage knapsack cryptosystem 

has five types of signals, as shown in the Fig.(2). 

 

 

 

 

Fig2:  Encryption stage 

These signals are data input (xj), data output (yj), clock, 

command (start j), and status (ready j). xj and yj correspond to 

plain data and encrypted data, respectively. Start j signal 

initiates the logic circuit of stage j to start encryption process. 

At the end of encryption process, ready j signal is activated. In 

multistage cryptosystem, start and ready signal are used for 

synchronization between stages. Ready signal of the jth stage is 

connected to the start signal of the next stage. Therefore, 

construction of multistage cryptosystem is very easy. The 

function of any stage in the encryption part  is  to compute  yj 

according to Eq.(7)  

𝑦𝑗 =  𝑥𝑖
𝑗
𝑎𝑖

𝑗
𝑁𝑗−1

𝑖=0
(7) 

Where 𝑎𝑖
𝑗
 is the ith element of a pre computed encryption key 

vector Aj  of the jth stage , 

𝑥𝑖
𝑗
is the ith bit of input data (plain text) of  the jth stage, 

𝑦𝑗 is the cipher text of the jth stage.  

The hardware design for performing the above function consists 

of two main parts: the first part is  data path and  the second 

part is the control logic, as shown in the Fig.(3). Data path is 

made up counter, summer, register,  ROM, and a shift register. 
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Fig 3: Hardware of the jth encryption stage 
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The summer with the register is used to implement the function 

of the summer in Eq.(7). Up counter is used for summer index, 

i.e., keeping track the index of jth element and bit of encryption 

key and input data, respectively. Shift register is used for 

addressing individual bits of the input plain text.  ROM is used 

as lookup table for storing encryption key elements. The control 

part of the designed circuit is used for coordination the 

activities of the data path in such a way that realizes Eq.(7). 

State machine approach is used for designing the control 

circuit.  

4.2  Hardware design of j
th 

stage of 

decryption part of a multistage 

knapsack cryptosystem 

As in encryption part, decryption part consists of k semi similar 

stages. The stages in the decryption part are arranged in the 

reverse order of the stages in the encryption part. Each stage of 

decryption part has also five types of signals, as shown in the 

Fig.(4). 

 

 

 

 
Fig4:  Decryption stage 

 
These signals are data input (yj), data output (xj), clock, 

command (start j), and status (ready j). yj and xj correspond to 

encrypted data and plain data, respectively. Start j signal 

initiates the logic circuit of stage i to start decryption process. 

At the end of decryption process, ready j signal is activated. 

Start and ready signals ease the process of synchronization 

between stages, as in encryption part. Therefore, construction of 

multistage is very simple and easy.The function of the 

jthdecryption  stageis to computexj from yj according to 

algorithm (1). 

Algorithm 1 

INPUT: y, m, w-1 

OUTPUT: X 

 y w
1-

 mod m( )

  
i

-

x
i

1

 
i

if

i n 1- 0for

return X( )  

Where αi is the jth element of the decryption key, 

w-1 and m are predefined parameters (constants), 

y encrypted data, 

Xplain data. 

 

The hardware design for implementing algorithm (1) for a one 

stage requires two parts circuit. In the first part, y.w-1 mod m  is 

computed. For this purpose, modified  Montgomerymodular 

multiplication  algorithm presented in section 3 is  directly 

implemented. The hardware implementation of this algorithm 

requires data path consisting of shift register, multiplexers, 

counter, and an adder. The coordination of the different parts of 

the data path is done using a control unit, that can be 

implemented using state machine approach. The complete logic 

circuit for calculating y.w-1 mod m  is shown in Fig.(5). 
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In the second part of the algorithm (1), the plain data (X) is 

calculated from output of first part. As shown in the algorithm 

(1), hardware design consists of data path and a control unit 

also. Data path consists of down counter, ROM, registers, 

subtractor, and multiplexers. Down counter is used for 

indexing the loop in the algorithm. ROM is for storing and 

retrieving decryption keyof that stage. Subtractor is for 

subtraction and comparing process. Multiplexers are for direct 

date through different parts of the data path of the circuit. As 

in the previous circuits, coordination of the different parts of 

data path is done using the control unit, which is designed 

using state machine approach. The complete circuit of the 

second part is shown in the Fig.(6). 

5. HARDWARE IMPLEMENTATION OF 

THREE STAGES KNAPSACK 

CRYPTOSYSTEM 

As an example, using the hardware design of the previous 

section three stages knapsack public key cryptosystem is 

implemented using Cyclone IV FPGA used DE2-115 

development kit. The public and the secret keys of these three 

stages are computed usingthe procedure of section 2 and as 

follows:  

First stage:N1  =  10 

m1 = 4093    w1 = 512   &w1
-1= 1367 

E1 (public or encryption key) A1= {1536, 2560,1539, 512, 

2066, 551, 2126, 3231, 5908,  3726} 

D1 (secret or decryption key) A1’ = {3, 5,11, 25, 52, 105, 212, 

430, 871, 1750} 

Second stage:N2 = 15 

m2= 44357       w2=  8192&w2
-1 = 3395 

E2 (public key or encryption key)  A2 = {8192, 24576, 40960, 

1398, 38961,  5592,42149,  39941, 35525, 26693, 9029, 6469, 

1349, 7493 } 

D2 (secret key)  A2’ = {1, 3, 5, 11, 21, 44, 87, 173, 346, 692, 

1384, 2768, 5540, 11084,  22174} 

Third stage:N3 = 19 

m3= 680337        w3 = 16384       w3
-1  = 5938 

E3 (public or encryption key)   A’3 = {1, 2, 5, 9, 20, 39, 79, 

163, 329, 661, 1325, 2653, 5311, 10627, 21257, 42519,  

85041, 170085, 340173} 

D3 (secret or decryption key)  A3 = {16384, 32768, 147456, 

327680, 638976, 613999, 629581, 627977, 624769, 618353,  

605521, 612625, 626833, 622481, 646545, 661905, 12288, 

73728} 

5.1 Hardware implementation of encryption 

part  

Three similar encryption stages of Fig.(3) with different 

encryption key of length 10, 15 & 19  are designed and 

implemented on DE2-115  development kit using Quartus II 

software. In each stage, all parts of the data path, except 

ROM, are implemented using built-in megafunctions of 

Quartus II software. The ROM is implemented using VHDL. 

State machine tool of Quartus II is used to implement the 

function of control circuit. The three encryption stages are 

compiled using Quartus II software. They used <1% of 

available resources of DE2-115 kit. The circuit is functionally 

simulated using ModelSim-Altera software using keys length 

of 10, 15 and 19 elements. Simulation result is shown in the 

Fig.(7). The first, second and third stage require   11, 16 and 

20 clock cycles to complete their operation respectively.  

To verify the hardware implementation of the encryption part 

of the three stages cryptosystem, the following message is 

applied to this system: 

Message is {30, 843} 

Output of 1stEncryption Stage {6686, 14377} 

Output of 2ndEncryption Stage {156918, 32029} 

Output of 3rdEncryption Stage{4204879, 4287230} 

5.2 Hardware implementation of decryption 

Part  
Three similar decryption stages of different decryption key are 

implemented. They are arranged in reverse order to encryption 

stages. Each stage consists of circuit of Fig(5)  and Fig.(6) 

which are implemented using Quartus II. Most parts of the 

two circuits (except control units and the ROM) are 

implemented using built in megafunctions of Quartus II 

software. ROM for storing decryption key is implemented 

using VHDL. Control units of the two parts of each stage of 

decryption part are implemented using state machine tools of 

Quartus II software. The compiled circuits of the three 

decryption stages require < 1% of available resources of DE2-

115 kit. The circuit is functionally simulated using ModelSim-

Altera tool. The simulation result is shown in the 

Fig.(8).Encrypted message is applied to the three stage 

decryption part and the result is : 

Output of 3rddecryption Stage {156918, 32029} 

Output of 2ndDecryption Stage {6686, 14377}  

Output 1stDecryption Stage {30, 843} which is the original 

message 

6. CONCLUSIONS 
Efficient and optimized implementation of multistage 

trapdoor knapsack public key cryptosystem on DE2-115 

FPGA development kit has been presented. Multistage 

Knapsack is very secure and so far, it is not broken in a 

contrary to single stage which is insecure. Moreover, 

hardware implementation of multistage requires smaller word 

length than single stage. Montgomery’s 

modularmultiplication algorithm is modified with great 

computational reduction. Three stages knapsack public 

cryptosystem are implemented on DE2-115 FPGA 

development kit. The either implemented stages (encryption 

or decryption) take <1% of available FPGA resources. The 

required clock cycles for encryption process of a one stage are 

equal to the encryption key length plus one. Whereas 

decryption process of a one stage requires twice decryption 

key length. The stages can be easy operated in pipeline to 

speedup cryptosystem operations.
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Fig 7 : Hardware simulation result of first encryption stage 

Fig 6:  Hardware implementation of second part of algorithm 1 
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Fig8:  Hardware simulation result of first decryption stage 
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