
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

15

FPGA Implementation of Multistage Knapsack Public Key

Cryptosystem

Thamir Rashed Saeed
 (PhD)

Electrical Eng.Dept.
University of Technology

Baghdad - Iraq

Bassim Sayed Mohammed
 (PhD)

Electrical Eng.Dept.
University of Technology

Baghdad - Iraq

Oday Abdul Lateef Abdul
Ridha(PhD)

Communications Eng. Dept.
University of Baghdad

Baghdad - Iraq

Jafar Wadi Abdul Sadah (PhD)

Communications Eng. Dept.
University of Baghdad

Baghdad - Iraq

ABSTRACT
This paper presents hardware implementation of multistage

trapdoor knapsack public key cryptosystem which is primarily

based on Merkle-Hellman scheme. So far, multistage

knapsack is not broken and there has not been known a

specific attack against this system. Modular multiplier is the

critical and fundamental part of the hardware implementation.

In this paper, Montgomery’s multiplication algorithm is

modified with great hardware reduction. An efficient and

optimized architecturefor modular multiplication is proposed.

Three stages knapsack public cryptosystem are implemented

on DE2-115 FPGA development kit.The either implemented

stages (encryption or decryption) take <1% of available FPGA

resources. The required clock cycles for encryption process of

a one stage is equal to the encryption key length plus one,

whereas decryption process of a one stage requires twice

decryption key length. The stages can be easy operated in

pipeline to speedup cryptosystem operations.

General Terms
Security, Public key cryptosystem, FPGA

Keywords
Public key cryptosystem, hardware implementation,

information security, FPGA, knapsack

1. INTRODUCTION
Cryptograph is a practical way by which secure private

communication can be conducted while using untrusted media.

In 1976, Diffie and Hellman [1] introduced the idea of public

key cryptosystem (PKC), in which two different keys are used:

one for encryption and the other for decryption. Each user keeps

his decryption key secret while making the encryption key

public, it can be used by everyone wishing to send message to

him. Two years later, one of the well-known additive trapdoor

knapsack public key cryptosystem was discovered by Merkle

and Hellman [2]. Later, it was shown to be insecure [3] and

attacks have alsobeen developed on stronger variants of Merkle

Hellman scheme,

such as Graham-Shamir [4], iterated knapsack, multiplicative

knapsack [5], Chor-Rivest cryptosystem [6], Goodman-

McAuley cryptosystem and Naccache-Stern[7], knapsack

based probabilistic encryption scheme [8]. As it is seen, most of

knapsack cryptosystems were insecure and broken. Despite this,

Hussian A.H. et al. [9] proposed and published multistage

trapdoor knapsack public cryptosystem. At this moment, no

attack capable of breaking this system in reasonable amount of

time is known. There has not been known a specific successful

attack on this scheme [7]. This system is formed by cascading

multistage of the well-known scheme of trapdoor knapsack

cryptosystem. It offers much greater security than single stage

trapdoor knapsack cryptosystem of the same length [9]. In this

paper, multistage knapsack public key cryptosystem is

implemented using DE2-115 FPGAdevelopment kit. The next

sections of the paper are devoted to overview of knapsack and

multistage knapsack algorithms, modified Montgomery

modular multiplication, hardware design of multistage knapsack

cryptosystem, hardware implementation of three stages

knapsack cryptosystem and finally conclusions.

2. OVERVIEW OFMULTISTAGE

KNAPSACK AND KNAPSACK

ALGORITHMS

In this section, the multistage Knapsack and algorithms of

additive trapdoor Knapsack cryptosystem are introduced.

2.1 Multistage knapsack

Figure (1) illustrates the concept of multistage trapdoor

knapsack public key cryptosystem consisting of k–stage. There

is a hard knapsack vector (encryption key) of length Ni for each

stage and the output (cipher text) of each stage is treated as a

plain text to the next stage. Again the cipher text is decrypted

using k decryption stages. These stages are arranged in

reversed order as shown in Fig. (1).

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

16

Fig1: Block diagram of k- multistage public key cryptosystem

The security of multistage knapsack as compared to single

stage knapsack of length N under the condition that the length

of single stage is equal to the overall length of the k-stage:

N = N1 + N2 + N3 +... + Nk(1)

is given by [9] :

Ø = N1.N2.N3...Nk/N (2)

W*here Ø represents how many times the security is increased

and

If N1 = N2 = N3 = ... = No

Then

Ø = No
k-1/k (3)

Where No is the length of one stage (No = N/k).

As an example, using 10 multistage of length No = 30 instead

of using single stage of length N = 300, the security is increased

by 19683×108. This means that if one hour is required to

attack and break the single stage (N = 300), the 10 multistage

(No = 30) requires 19683×108 hours (224.6 million years).

2.2 Keys generation of the j
th

 stage

The keys generation of Merkle – Hellman trapdoor Knapsack

public key cryptosystem for the jth stage involves the following

steps:

1- Generate anNj-integer vector Aj’ = {𝛼0
𝑗
, 𝛼1

𝑗
, 𝛼2

𝑗
, … , 𝛼𝑁𝑗−1

𝑗
}

theeasily solved problem with property that each element is

greater than the sum of preceding elements.

2-Choose two large numbers mj and wj such that

mj> 𝛼𝑖
𝑗

𝑁𝑗−1

𝑖=0
and GCD (wj,mj)=1. The secret (decryption) key

of the jth stage Djis: Aj’, mj and wj.

3-Computewj
-1from the two secret integers such that

𝑤𝑗
−1 . 𝑤𝑗𝑚𝑜𝑑 𝑚𝑗 = 1

4- Compute the public key Aj = {𝑎0
𝑗
, 𝑎1

𝑗
, 𝑎2

𝑗
, … , 𝑎𝑁𝑗−1

𝑗
}, the hard

knapsack via

𝑎𝑗 = 𝛼𝑗 . 𝑤𝑗𝑚𝑜𝑑 𝑚𝑗 i =0,1,2,...,Nj-1 (4)

The public (encryption) key of the jth stage Ejis : Aj.

2.3Encryption

The plain text (message) is converted into string of binary

numbers which is segmented into Nj-bits and each block Xj =

{ 𝑥0
𝑗
, 𝑥1

𝑗
, 𝑥2

𝑗
, … , 𝑥𝑁𝑗−1

𝑗
} is enciphered in the jthstage by

performing dot product with the knapsack public key Aj that is

𝑦𝑗 = 𝑥𝑖
𝑗
𝑎𝑖

𝑗
𝑁𝑗−1

𝑖=0
 (5)

2.4Decryption

Cipher text yj is decrypted in the jth stage by computing 𝛾j from

γ𝑗 = 𝑦𝑗 . 𝑤𝑗
−1𝑚𝑜𝑑 𝑚𝑗 (6)

The message is recovered by comparing 𝛾 j with 𝛼𝑁𝑗−1
𝑗

, if

𝛾j>𝛼𝑁𝑗−1
𝑗

 then 𝑥𝑁𝑗−1
𝑗

is equal to 1 , otherwise 𝑥𝑁𝑗−1
𝑗

 is equal to

zero. If 𝑥𝑁𝑗−1
𝑗

 = 1 then 𝛼𝑁𝑗−1
𝑗

 is subtracted from 𝛾j and a

new value is found, then comparing this value with 𝛼𝑁𝑗−2
𝑗

, if

this new value of 𝛾j is greater than 𝛼𝑁𝑗−2
𝑗

, then 𝑥𝑁𝑗−2
𝑗

 is equal

to 1 otherwise 𝑥𝑁𝑗−2
𝑗

 is equal to zero. This process is repeated

until 𝑥0
𝑗
 is computed.

3. MODIFIED MONTGOMERY

MODULARMULTIPLICATION

The most widely used algorithm for efficient modular

multiplication is Montgomery’s algorithm [10]. The binary

Montgomery modular multiplication algorithm employs only

simple addition and shift operation to avoid trial division, a

critical and time consuming operation in conventional modular

multiplication [11]. Montgomery multiplication, in fact,

computes 𝑥. 𝑦. 𝑤−1𝑚𝑜𝑑 𝑚 instead of 𝑥. 𝑦𝑚𝑜𝑑 𝑚 . Some

conditions are necessary for the application of Montgomery’s

algorithm: the modulus m needs to be relatively prime to the

factor wand the multiplicand x and the multiplier y need to be

smaller than m.In knapsack public key cryptosystem,

decryption of cipher text in the jth stage involves computation of

𝑦𝑗𝑤𝑗
−1𝑚𝑜𝑑 𝑚𝑗 . In this paper, Montgomery’s algorithm is

modified with great computational reduction to compute 𝛾j if

wjin the key design is chosen to be wj = 2k. Now, the only

condition for application of the modified algorithm is that m

must be odd number. Modified Montgomery’s algorithm

becomes:

INPUT: yj, mj,k

OUTPUT: 𝛾j=𝑦𝑗𝑤𝑗
−1𝑚𝑜𝑑 𝑚𝑗

Message

1
st

 stage

Encryption

by E1

Cipher

 Text

k
th

 stage

Decryption

by Dk

3rd stage

Decryption

by D3

2nd stage

Decryption

by D2

1st stage

Decryption

by D1

Message

Receiver

Transmitter

U
n

se
cu

re

ch
an

n
el

2nd stage

Encryption

by E2

3

rd
 stage

Encryption

by E3

kth stage

Encryption

by Ek

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

17

4. HARDWARE DESIGN OF

 MULTISTAGE KNAPSACK

 CRYPTOSYSTEM
The hardware design of multistage knapsack cryptosystem

consists of two parts, as early mentioned, encryption and

decryption parts. Each part consists of k semi similar stages. In

the following sections, the hardware design and implementation

of a one stage of each parts of the cryptosystem are presented.

4.1 Hardware design of the j
th

stage of

Encryption part
Each encryption stage in the multistage knapsack cryptosystem

has five types of signals, as shown in the Fig.(2).

Fig2: Encryption stage

These signals are data input (xj), data output (yj), clock,

command (start j), and status (ready j). xj and yj correspond to

plain data and encrypted data, respectively. Start j signal

initiates the logic circuit of stage j to start encryption process.

At the end of encryption process, ready j signal is activated. In

multistage cryptosystem, start and ready signal are used for

synchronization between stages. Ready signal of the jth stage is

connected to the start signal of the next stage. Therefore,

construction of multistage cryptosystem is very easy. The

function of any stage in the encryption part is to compute yj

according to Eq.(7)

𝑦𝑗 = 𝑥𝑖
𝑗
𝑎𝑖

𝑗
𝑁𝑗−1

𝑖=0
(7)

Where 𝑎𝑖
𝑗
 is the ith element of a pre computed encryption key

vector Aj of the jth stage ,

𝑥𝑖
𝑗
is the ith bit of input data (plain text) of the jth stage,

𝑦𝑗 is the cipher text of the jth stage.

The hardware design for performing the above function consists

of two main parts: the first part is data path and the second

part is the control logic, as shown in the Fig.(3). Data path is

made up counter, summer, register, ROM, and a shift register.

γ
j

y
j



γ
j γ

j

2
 γ

0()
j

0=if

γ
j

γ
j

m
j

+





2
 otherwise

i 0..k 1-for

return γ
j()

Jth Stage 𝑥 𝑗 𝑦𝑗
Start j Ready j

Clock

Fig 3: Hardware of the jth encryption stage

Encrypt_Data[15:0

]

CLK_I

N Cloc

k

clk_en

Down counter

 Q[3:0

]

cout

reset

Address

[3:0]

Data_out[12:0]

ROM

b[12:0]

b[15]

b[14]

b[13]

b[15:0

]

Data[15:0]

Data[15:0]

A

 B

A+B

Result[15:0]

Vcc

Q

D

ENA

CLEN

load

Data[9:0]

cloc

k

enable

shiftou

t

Shift left Reg.

R

reset

clock

star

t

read

y

Counter_e

n

Counter_ld

Z

Sh_reg_l

d

Sh_reg_en

X

i

Out_reg_e

n

Out_reg_cl

r

PlainData[9:0]

reset

Start

Ready

I/P

I/P

I/P

I/P

O/P

O/P

GN

D

Encryption_control

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

18

The summer with the register is used to implement the function

of the summer in Eq.(7). Up counter is used for summer index,

i.e., keeping track the index of jth element and bit of encryption

key and input data, respectively. Shift register is used for

addressing individual bits of the input plain text. ROM is used

as lookup table for storing encryption key elements. The control

part of the designed circuit is used for coordination the

activities of the data path in such a way that realizes Eq.(7).

State machine approach is used for designing the control

circuit.

4.2 Hardware design of j
th

stage of

decryption part of a multistage

knapsack cryptosystem

As in encryption part, decryption part consists of k semi similar

stages. The stages in the decryption part are arranged in the

reverse order of the stages in the encryption part. Each stage of

decryption part has also five types of signals, as shown in the

Fig.(4).

Fig4: Decryption stage

These signals are data input (yj), data output (xj), clock,

command (start j), and status (ready j). yj and xj correspond to

encrypted data and plain data, respectively. Start j signal

initiates the logic circuit of stage i to start decryption process.

At the end of decryption process, ready j signal is activated.

Start and ready signals ease the process of synchronization

between stages, as in encryption part. Therefore, construction of

multistage is very simple and easy.The function of the

jthdecryption stageis to computexj from yj according to

algorithm (1).

Algorithm 1

INPUT: y, m, w-1

OUTPUT: X

 y w
1-

 mod m()

  
i

-

x
i

1

 
i

if

i n 1- 0for

return X()

Where αi is the jth element of the decryption key,

w-1 and m are predefined parameters (constants),

y encrypted data,

Xplain data.

The hardware design for implementing algorithm (1) for a one

stage requires two parts circuit. In the first part, y.w-1 mod m is

computed. For this purpose, modified Montgomerymodular

multiplication algorithm presented in section 3 is directly

implemented. The hardware implementation of this algorithm

requires data path consisting of shift register, multiplexers,

counter, and an adder. The coordination of the different parts of

the data path is done using a control unit, that can be

implemented using state machine approach. The complete logic

circuit for calculating y.w-1 mod m is shown in Fig.(5).

Vcc

Q

D

 ENA

CLEN

Vcc

CLKIN

En

Ydd[14:0]

C,A[14:0]

A[14:0]

C

A

B

A+B

Dataa[14:0]

Datab[14:0]

Data1x[14:0]

Data0x[14:0]

Yd[14:0]

Y0

Yd
0

data0

data1

lpm_constant0

en

Counter2

Down counter

clock

cnt_en

 cout

CLKIN

 En

CLKIN

 ResetN

Start

clock

 reset

start

mul_c

Count_ld

Count_en

reg_en

Z

 ready

Mod_control

ready

Y[14:0]

I/P

I/P

I/P

m
u

x2

m
u

x3

en_and

I/P

jth Stage 𝑦𝑗 𝑥 𝑗
Start j Ready j

Clock

Fig5: Hardware implementation of modified Montgomery modular multiplication

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

19

In the second part of the algorithm (1), the plain data (X) is

calculated from output of first part. As shown in the algorithm

(1), hardware design consists of data path and a control unit

also. Data path consists of down counter, ROM, registers,

subtractor, and multiplexers. Down counter is used for

indexing the loop in the algorithm. ROM is for storing and

retrieving decryption keyof that stage. Subtractor is for

subtraction and comparing process. Multiplexers are for direct

date through different parts of the data path of the circuit. As

in the previous circuits, coordination of the different parts of

data path is done using the control unit, which is designed

using state machine approach. The complete circuit of the

second part is shown in the Fig.(6).

5. HARDWARE IMPLEMENTATION OF

THREE STAGES KNAPSACK

CRYPTOSYSTEM

As an example, using the hardware design of the previous

section three stages knapsack public key cryptosystem is

implemented using Cyclone IV FPGA used DE2-115

development kit. The public and the secret keys of these three

stages are computed usingthe procedure of section 2 and as

follows:

First stage:N1 = 10

m1 = 4093 w1 = 512 &w1
-1= 1367

E1 (public or encryption key) A1= {1536, 2560,1539, 512,

2066, 551, 2126, 3231, 5908, 3726}

D1 (secret or decryption key) A1’ = {3, 5,11, 25, 52, 105, 212,

430, 871, 1750}

Second stage:N2 = 15

m2= 44357 w2= 8192&w2
-1 = 3395

E2 (public key or encryption key) A2 = {8192, 24576, 40960,

1398, 38961, 5592,42149, 39941, 35525, 26693, 9029, 6469,

1349, 7493 }

D2 (secret key) A2’ = {1, 3, 5, 11, 21, 44, 87, 173, 346, 692,

1384, 2768, 5540, 11084, 22174}

Third stage:N3 = 19

m3= 680337 w3 = 16384 w3
-1 = 5938

E3 (public or encryption key) A’3 = {1, 2, 5, 9, 20, 39, 79,

163, 329, 661, 1325, 2653, 5311, 10627, 21257, 42519,

85041, 170085, 340173}

D3 (secret or decryption key) A3 = {16384, 32768, 147456,

327680, 638976, 613999, 629581, 627977, 624769, 618353,

605521, 612625, 626833, 622481, 646545, 661905, 12288,

73728}

5.1 Hardware implementation of encryption

part

Three similar encryption stages of Fig.(3) with different

encryption key of length 10, 15 & 19 are designed and

implemented on DE2-115 development kit using Quartus II

software. In each stage, all parts of the data path, except

ROM, are implemented using built-in megafunctions of

Quartus II software. The ROM is implemented using VHDL.

State machine tool of Quartus II is used to implement the

function of control circuit. The three encryption stages are

compiled using Quartus II software. They used <1% of

available resources of DE2-115 kit. The circuit is functionally

simulated using ModelSim-Altera software using keys length

of 10, 15 and 19 elements. Simulation result is shown in the

Fig.(7). The first, second and third stage require 11, 16 and

20 clock cycles to complete their operation respectively.

To verify the hardware implementation of the encryption part

of the three stages cryptosystem, the following message is

applied to this system:

Message is {30, 843}

Output of 1stEncryption Stage {6686, 14377}

Output of 2ndEncryption Stage {156918, 32029}

Output of 3rdEncryption Stage{4204879, 4287230}

5.2 Hardware implementation of decryption

Part
Three similar decryption stages of different decryption key are

implemented. They are arranged in reverse order to encryption

stages. Each stage consists of circuit of Fig(5) and Fig.(6)

which are implemented using Quartus II. Most parts of the

two circuits (except control units and the ROM) are

implemented using built in megafunctions of Quartus II

software. ROM for storing decryption key is implemented

using VHDL. Control units of the two parts of each stage of

decryption part are implemented using state machine tools of

Quartus II software. The compiled circuits of the three

decryption stages require < 1% of available resources of DE2-

115 kit. The circuit is functionally simulated using ModelSim-

Altera tool. The simulation result is shown in the

Fig.(8).Encrypted message is applied to the three stage

decryption part and the result is :

Output of 3rddecryption Stage {156918, 32029}

Output of 2ndDecryption Stage {6686, 14377}

Output 1stDecryption Stage {30, 843} which is the original

message

6. CONCLUSIONS
Efficient and optimized implementation of multistage

trapdoor knapsack public key cryptosystem on DE2-115

FPGA development kit has been presented. Multistage

Knapsack is very secure and so far, it is not broken in a

contrary to single stage which is insecure. Moreover,

hardware implementation of multistage requires smaller word

length than single stage. Montgomery’s

modularmultiplication algorithm is modified with great

computational reduction. Three stages knapsack public

cryptosystem are implemented on DE2-115 FPGA

development kit. The either implemented stages (encryption

or decryption) take <1% of available FPGA resources. The

required clock cycles for encryption process of a one stage are

equal to the encryption key length plus one. Whereas

decryption process of a one stage requires twice decryption

key length. The stages can be easy operated in pipeline to

speedup cryptosystem operations.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

20

Fig 7 : Hardware simulation result of first encryption stage

Fig 6: Hardware implementation of second part of algorithm 1

Ym[12:0]

I/P

Vcc

 Q

D

 ENA

CLEN

 Vcc

CLKIN

En

I/P

I/P

I/P

O/P

O/P

CLKIN

READY

START

N
O

T

NCLK

Down counter

clock

Q[3:0]

Cnt_en

cout

reset

reset

clock

start

ready

Counter_en

Counter_clr

zero

S_en

S_ini

Sign

Reg_en

Mux_sel

R[12]

En

Sel

CLKIN

clock

enable

shiftin

Q[9:0]

Left shift reg.

Decrypt [9:0]

Address[3:0]

D
at

ao
u

t[
1

2
:0

]

ROM

Data1x[12:0]

 Data0x[12:0]

A

B

A-B

R[12:0]

sel

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.19, June 2013

21

Fig8: Hardware simulation result of first decryption stage

7. REFERENCES
[1] W. Diffie and M. Hellman : New direction in

cryptography,IEEE Trans. Information Theory Vol. IT-22

pp. 644-654, 1976.

[2] R.C. Merkle and M. Hellman: Hiding information

andsignatures intrapdoor knapsacks, IEEE Trans.

InformationTheory Vol. IT-24, pp 525-530, 1978.

[3] B. Chor and R.L. Rivest : A knapsack type public

keycryptosystembased on arithmetic in finite fields, IEEE

Trans.Information Theory Vol. IT-34, pp901-909, 1988.

[4] L. Adleman:On Breaking Generalized Knapsack Public

KeyCryptosytems, Proc.15th Annual ACM Symposium

onTheory of Computing, pp. 402-412,1983.

[5] A.M. Odlyzko:Cryptoanalytic attacks on the

multiplicativeknapsack cryptosystem and on Shamir’s fast

signaturescheme, IEEE Trans.Information Theory Vol. IT-

30, pp. 594-601, 1984.

[6] C.P. Schnorr and H.H. Horner: Attacking the Chor-

Rivestcryptosystem by improved lattice reduction, J.

ElectronicColloquium on Computational Complexity,

ECCC Vol.2, No.26 pp. 1-12, 1995.

[7]M.K. Lai : Knapsack cryptosystems, the past and the future,

available at http:// ww.ics.uci.edu/~ming/knapsack.html,

2001.

[8] M. S. Lee : Improved cryptanalysis of a knapsack-

basedprobabilisticencryption scheme, J. Information

Science 222,pp. 779-783, 2013.

[9] H.A. Hussain, J.W.A. Sada, S.M. Kalipha: New

multistageknapsack public-key cryptosystem, Int. J.

Systems ScienceVol. 22, No. 11 pp.2313-2320, 1991.

[10]P.L. Montgomery: Modular multiplication without

trialdivision, Math. Comput.Vol.44, No. 170, pp. 519-521,

1985.

[11]G.D.Sutter, J.P. Deschamps& J.L. Iman’a:

Modularmultiplication and exponentiation architectures

for fast RSAcryptosystem based on digital serial

computation, IEEETrans. On Industrial Electronics Vol.

58, No.7 July 2011.

IJCATM : www.ijcaonline.org

http://www.ics.uci.edu/~

