
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.18, June 2013

30

RegressAid – A CASE Tool for Minimization of Test Suite
for Regression Testing

A.Charan Kumari

Department of Physics &
Computer Science

Dayalbagh Educational Institute
Dayalbagh, Agra, India

K.Srinivas
Department of Electrical

Engineering
Dayalbagh Educational Institute

Dayalbagh, Agra, India

M.P.Gupta
Department of Management

Studies
Indian Institute of Technology

Delhi, India

ABSTRACT

Software evolution is a natural phenomenon. As the software

undergoes changes, it needs to be tested for the changes made

along with the unchanged parts for consistency. This activity

gradually increases the size of the test suite and becomes a

challenging task for a software engineer to perform regression

testing in a constrained environment of limited time. The

activities of test case selection, test case prioritization or test

suite minimization assists software engineers in regression

testing by reducing the number of test cases. This paper

presents a regression testing tool called ‘RegressAid’ to

support software engineers in regression testing by

minimizing the test suite while ensuring maximum code

coverage and minimum execution time. This paper describes

the tool along with its features. The efficacy of the tool is also

demonstrated on two real world applications.

General Terms

Software Engineering, Testing.

Keywords

Multi-objective optimization, Regression testing, Test suite

minimization

1. INTRODUCTION
Enhancements to the software are common during evolution.

Every enhancement adds new test cases to the test suite.

Regression testing ensures that the software is thoroughly

tested with the complete test suite in order to ensure that the

changes made to the software are consistent with the

objectives of the software. Thus regression testing becomes a

difficult task for the software engineer when size of the test

suite increases, as it involves more time and effort.

Methodologies like test case selection, test case prioritization

and test suite minimization [1] assists software engineers in

regression testing by reducing the number of test cases. Test

case selection approaches select a subset of test cases for

testing the changed portions of the software [2], while test

case prioritization [3] orders the test cases as per some

predefined performance goals. Test suite minimization

reduces the size of the test suite by identifying the redundant

test cases.

The NP-hard nature of the test suite minimization approach

attracted many researchers to experiment with different

metaheuristic search techniques. Tallam and Gupta [4]

proposed a new greedy heuristic approach for selecting the

minimal subset of test suite that covers all the requirements

covered by the original test suite. In their experiments they

found that their approach produced same size or smaller size

test suites than prior heuristic approaches and had comparable

time performance. In 2007, Zhong et al. [5] conducted an

experimental study on four test suite reduction techniques –

Harrold et al. heuristic, Chen and Lau’s GRE heuristic,

Mansour and EI-Fakin’s genetic algorithm based approach

and Balck et al. ILP-based approach . They also provided an

insight for choosing an appropriate test suite reduction

technique.

Smith and Kapfhammer [6] try to reduce and prioritize the

test cases based on cost and ratio of code coverage to cost

using greedy approaches. They experimented on eight real

world applications and found that greedy approaches aid in

identifying smaller and faster test suites. Recently, Shin Yoo

and Mark Harman [7] introduced a multi-objective test suite

minimization problem and instantiated this with two versions

- two-objective formulation that caters for code coverage and

execution cost and a three-objective formulation that caters

for code coverage, execution cost and fault-history. They

experimented on five non-trivial real-world programs using

two algorithms: a re-formulation of the single-objective

greedy algorithm and a hybrid variant of NSGA-II. Their

empirical study investigated the relative effectiveness of two

algorithms for Pareto efficient multi-objective test suite

minimization and found that the multi-objective approach can

lead to more efficient testing decisions.

By considering the size and complexities involved in the

software and the radical increase in the size of the test suites,

this paper presents a tool to assist software engineers in

regression testing by minimizing the size of the test suite,

while ensuring maximum code coverage and minimum

execution time. The tool uses a Multi-objective Quantum-

inspired Hybrid Differential Evolution (MQHDE) [8, 9] for

optimizing the test suite. The tool also provides an option to

minimize the test suite using the state-of-the-art multi-

objective evolutionary optimization algorithm NSGA-II [10].

The rest of the paper is organized as follows. Section 2

describes the multi-objective test suite minimization problem

and brief descriptions of the algorithms are provided in

section 3. Section 4 explains the tool along with the results

obtained by the tool on a real-world application data.

Concluding remarks are given in Section 5.

2. MULTI-OBJECTIVE TEST SUITE

MINIMIZATION PROBLEM
This section describes the multi-objective test suite

minimization problem as formulated by Shin Yoo and Mark

Harman [7]. The multi-objective test suite minimization

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.18, June 2013

31

problem is to select a subset of test suite, based on multiple

test criteria. That is, given a test suite S, a vector of M

objective functions, the problem is to find a subset Sʹ of S

such that Sʹ is a Pareto optimal set with respect to M. The

objective functions are the mathematical elucidations of the

test criteria.

The developed tool is based on the two-objective formulation

of test suite minimization problem with statement code

coverage as a measure of test adequacy and execution time as

a measure of cost. Thus, code coverage is taken as one of the

objective functions which is to be maximized for a given cost

and time is the second objective that is to be minimized for a

given code coverage. Therefore, the problem can be stated as

to find a subset of the test suite S with code coverage C and

execution time T such that the following two conditions are

satisfied simultaneously [7].

T1: No other subset of S can achieve more coverage than C

without spending more time than T.

T2: No other subset of S can finish in less time than T while

achieving a coverage that is equal to or greater than C.

3. THE ALGORITHMS
This section briefly describes the two algorithms used in the

tool for optimization of test suite.

3.1 Multi-objective Quantum-inspired

Hybrid Differential Evolution (MQHDE)
The Multi-objective Quantum-inspired Hybrid Differential

Evolution was designed by Charan Kumari et al. A detailed

description of the algorithm can be found in [8, 9]. The

algorithm integrates the features of differential evolution and

genetic algorithm into the quantum paradigm for a fast and

effective search. In the beginning, the quantum population is

initialized in the range [-1, 1]. After observing and evaluating

the quantum population, half of the quantum population is

updated using the mutation operator of differential evolution

and the remaining half of the quantum population is updated

using the uniform crossover operator of genetic algorithm.

The updated population is observed, its fitness is evaluated

and both the populations are combined and sorted based on

fast non dominated sorting [10]. The quantum population for

the next iteration is obtained by picking up the quantum

individuals from good fronts, while giving importance to the

crowding distance measure to ensure good diversity in the

quantum population. The pseudo code of MQHDE is given

in Algorithm 1.

Algorithm 1: Multi-objective Quantum-inspired Hybrid

Differential Evolution (MQHDE)

1: t = 0

2: Initialize Q(t) a population of ‘N’ qubit individuals

 with ‘m’ qubits in each.

3: Obtain P(t) by observing the states of Q(t).

4: Evaluate fitness of P(t).

5: Perform fast non-dominated sort on P(t)

6: while not termination condition do

7: t = t +1

8: Obtain half of the offspring population Q(t)

 using the quantum mutation operator applied

 on parent population Q(t-1) and elites of Q(t-1)

 as shown below:

 qi(t)
 = qelite(t-1) + F * (qr1(t-1) – qr2(t-1)),

 where r1 ≠ r2 ≠ i and F ϵ [0,2].

9: Obtain the remaining offspring population Q(t)

 using Quantum uniform crossover.

10: Obtain P(t) by observing the states of Q(t).

11: Evaluate the fitness of P(t).

12: Perform fast non-dominated sort on P(t-1) U

 P(t)

13: Form Q(t) by accommodating distinct

 Quantum individuals pertaining to the different

 Pareto-fronts starting from the best front

 by taking crowding distance into consideration.

14: end while

3.2 Non-Dominated Sorting Genetic

Algorithm-II (NSGA-II)
The Non-dominated Sorting Genetic Algorithm was proposed

by Deb et al. [10]. NSGA-II incorporates an explicit

diversity and elite preserving mechanism to retain the best

solutions found in all the iterations. After the population is

initialized, it is sorted based on non-domination into different

fronts based on the goodness of the solutions. In addition to

the fronts found, a parameter called crowding distance (a

measure of how close an individual is to its neighbors) is

calculated for each individual. Large average crowding

distance will result in better diversity in the population.

Parents are selected from the population by using binary

tournament selection based on the front and crowding

distance. The selected population generates offspring using

crossover and mutation operators. The parent and offspring

populations are combined and sorted again based on non-

domination. The individuals equal to the size of the

population is selected based on the front and crowding

distance. The main procedure [11] is outlined in Algorithm 2.

Algorithm 2: Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) [11]

1: Combine parent and offspring populations and create Rt =

Pt U Qt . Perform a non-dominated sorting on Rt and identify

different fronts Fi , i = 1, 2, ……. , etc.

2: Set new population
pt 1

. Set a counter i = 1.

Until |Pt+1| + |Fi| < N, perform Pt+1 = Pt+1 U Fi and i = i + 1

3: Perform the crowding sort procedure and include the most

widely spread (N-|Pt+1|) solutions by using the crowding

distance values in the sorted Fi to Pt+1.

4: Create offspring population Qt+1 from Pt+1 by using the

crowded tournament selection, crossover and mutation

operators.

4. THE TOOL – REGRESSAID
This section gives a detailed description of the tool along with

its features.

4.1 The user interface
Figure 1 depicts a snapshot of the user interface of

RegressAid. This window collects information necessary to

perform test suite minimization. It is divided into three

sections. The first section accepts number of test cases in the

test suite along with the lines of code of the software. The

second section collects the text file names of execution cost

file, containing the data regarding the cost of execution of

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.18, June 2013

32

Figure 1 The user Interface of RegressAid tool

each test case and code coverage file, containing the data

pertaining to statement coverage by each test case. The

general parameters related to the optimization algorithm of

population size and number of generations is gathered in the

third section. The tab at the bottom of the window is used to

clear the data entered.

4.2 Optimization
The optimize option opens a window with an option to select

an algorithm for optimization between MQHDE and NSGA-

II. Figure 2 depicts the features of the tool during the

optimization process. The tool also provides a what-if

analysis of the two objectives of code coverage and execution

cost using a slider. The position of the pointer on the slider is

described by the execution cost, code coverage and the

selected test cases. An instance of such an analysis is shown

in Figure 3.

Figure 2 Optimization window (during optimization)

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.18, June 2013

33

Figure 3 Optimization window (after optimization)

4.3 Results

The results after optimization process can be viewed in three

different ways.

4.3.1 Pareto fronts

Pareto front is obtained by plotting all the Pareto efficient

solutions in the objective space. As the test suite minimization

is a multi-objective optimization problem, the Pareto front

contains a number of non-dominated solutions rather than a

single solution. The efficiency of the algorithm is determined

by the distribution of these solutions on the Pareto front along

with their closeness to the actual or true solutions. The

solutions obtained are plotted against code coverage and

execution cost.

4.3.2 Detailed view

Each solution obtained by the selected algorithm is presented

in a detailed fashion. For each solution, the execution cost,

amount of code coverage (in percentage) along with the

selected test cases for that particular solution are listed.

4.3.3 Statistics

The overall statistics of the result obtained by the selected

optimization algorithm are provided. These statistics mainly

include the boundaries of the solutions achieved by the

algorithm (minimum and maximum values obtained for code

coverage and execution cost), size of the obtained Pareto

front, execution time of the algorithm, along with the value of

hypervolume metric, which measures convergence and

diversity of the obtained solutions.

All these three forms of results are provided with save and

print options.

4.3.4 Performance of RegressAid

The efficacy of the tool is tested using two real-world

application data sets from the software industry. The first

application consists of 28 test cases with 2487 lines of code

and the second application is having 57 test cases with 9672

lines of code. The Pareto fronts obtained by MQHDE and

NSGA-II for the first application are presented in Figure 4

and Figure 5 and for the second application in Figure 6 and

Figure 7 respectively.

Figure 4 Pareto front obtained by MQHDE for the first

application

The visual analysis of the Pareto fronts obtained in the two

applications reveals that the size of the Pareto frontier

obtained by MQHDE is greater than that of NSGA-II. The

boundaries of the solutions and also the spread of the

solutions obtained by MQHDE reveal the exploration and

exploitation capabilities of MQHDE. The quality of the

solutions obtained by MQHDE is also found to be better.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.18, June 2013

34

Figure 5 Pareto front obtained by NSGA-II for the first

application

Figure 6 Pareto front obtained by MQHDE for the second

application

Figure 7 Pareto front obtained by NSGA-II for the second

application

5. CONCLUSION

This paper presented the frame work of RegressAid, a tool for

test suite minimization to assist the software engineers in

regression testing. The tool has a user friendly interface. It

provides an option between two algorithms (MQHDE and

NSGA-II) for optimization. The tool also provides a what-if

analysis on the objective function values of code coverage

and execution cost. The RegressAid provides the results in the

form of Pareto fronts, a detailed report of each obtained

solution and also brief statistics indicating the quality of the

solutions obtained. A help facility is also included to assist

the user in the usage of the tool. The results obtained by the

tool clearly indicate the efficacy of MQHDE over NSGA-II.

Rich features, intuitive user interface and efficient algorithms

makes RegressAid a useful tool for minimizing test suite for

regression testing.

6. ACKNOWLEDGMENTS

The authors are extremely grateful to Revered Prof.

P. S. Satsangi, Chairman, Advisory Committee on Education,

Dayalbagh, for continued guidance and support.

7. REFERENCES

[1] Shin Yoo and Mark Harman. 2012. Regression testing

minimization, selection and prioritization: a survey.

Software: Testing, Verification and Reliability, vol. 22,

no. 2, pp. 67–120.

[2] G. Rothermel and M. J. Harrold. 1997. A safe, efficient

regression test selection technique. ACM Transactions

on Software Engineering and Methodology, vol. 6, no. 2,

pp. 173-210.

[3] Zheng Li, Mark Harman, and Robert M. Hierons. 2007.

Search Algorithms for Regression Test Case

Prioritization. IEEE Transactions On Software

Engineering, vol. 33, no. 4, pp. 225-237.

[4] S. Tallam and N. Gupta. 2006. A Concept analysis

inspired greedy algorithm for test suite minimization.

SIGSOFT Software Engineering Notes, vol. 31, no. 1,

pp. 35-42.

[5] Hao Zhong, Lu Zhang , Hong Mei. 2008. An experimental

study of four typical test suite reduction techniques.

Information and Software Technology, vol. 50, pp. 534-

546.

[6] Adam M. Smith and Gregory M. Kapfhammer. 2009. An

Empirical Study of Incorporating Cost into Test Suite

Reduction and Prioritization. Symposium on Applied

Computing. pp. 461-467.

[7] Shin Yoo and Mark Harman. 2010. Using hybrid

algorithm for Pareto efficient multi-objective test suite

minimisation. The Journal of Systems and Software,

vol. 83, pp. 689–701.

[8] A. Charan Kumari, K. Srinivas and M. P. Gupta. 2013.

Software Requirements Optimization Using Multi-

Objective Quantum-Inspired Hybrid Differential

Evolution. EVOLVE – A Bridge between Probability,

Set Oriented Numerics, and Evolutionary Computation

II Advances in Intelligent Syatems and Computing,

vol. 175, pp. 107-120.

[9] A. Charan Kumari and K.Srinivas. 2013. Search-based

Software Requirements Selection: A Case Study.

International Journal of Computer Applications, Volume

64– No.21, pp. 28-34.

[10] Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. A

Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II. IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182-197.

[11] Deb, K., 2001, Multi-Objective Optimization using

Evolutionary Algorithms. Wiley Chichester, UK.

IJCATM : www.ijcaonline.org

