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ABSTRACT  

A new method for designing PID Controllers using Bode’s 

ideal transfer function and constrained Particle Swarm 

Optimization (PSO) is proposed in this paper. Bode’s ideal 

transfer function is introduced using fractional calculus and 

Carlsson’s approximation is used for converting the transfer 

function from fractional to integer domain. The PID controller 

is designed by minimizing a hybrid objective function using 

PSO. Simulation examples confirming the effectiveness of the 

resulting controller are also discussed in detail and a 

performance comparison, highlighting the enhanced capability 

of PSO over other conventional mathematical optimization 

approaches, is also made in the paper. 
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1. INTRODUCTION 

The last decade has seen a revival of  interest in the field of 

fractional calculus and its applications [1-4]. Even though the 

application of the field in the areas of control engineering 

remains largely unexplored, preliminary results can be found 

in [1,9]. 

In the industrial arena more than 90 % of all controller used 

are PID as reported in [5]. Designing of PID controllers 

involves a search for four parameters so that the desired 

response and performance is obtained. As per standard 

notations used in the literature they are called proportional 

gain (Kp), Integral gain (Ki), Derivative gain (Kd) and 

derivative filter time constant (N).In search of more flexibility 

and better performance a number of different forms of PID 

control algorithms has been designed and implemented [5-7]. 

Of which notable variants are the two degree freedom PID 

controller by Araki et all [8] resulting in a six parameter 

tuning problem and the Fractional order PID controller [9]  

resulting in five parameter tuning problem. In this paper when 

we talk about PID controllers, the algorithm being referred to 

is the standard parallel non interacting form of PID better 

known as PID controllers with filtered derivative [7]. 

The reason for ongoing research in the field of PID controller 

is that there is no one absolute method to tune the controller. 

In the last five decades a large number of analytical, 

experimental and computational methods has been published 

in peer reviewed literature but none of them are as simple and 

popular as the Ziegler-Nichols[10] method of tuning. A very 

good account of the published tuning methodologies can be 

found in O’Dwyer [7].The reason for so many types of tuning 

methodologies stem from the fact that the tuning methodology 

derived for a particular form of process is unable to achieve 

the required level of performance in a different process.  

In this paper we propose to design a process independent PID 

controller with the purpose of minimizing an objective 

function described later in section 4. The adopted strategy is 

known as model reference tuning where the open loop transfer 

function and hence the loop response is modified using the 

four tuning parameters Kp, Ki, Kd ,N so as to match the 

performance of the model reference transfer function[11]. The 

model reference transfer function used is the Bode’s ideal 

transfer function which is introduced using the concepts of 

fractional calculus[12]. The optimization problem is solved 

using Particle Swarm Optimization[13] with an adaptive 

inertial weight[14] .The advantage of this method lies in the 

fact that we have direct control on the time domain 

specifications of the controlled system unlike other 

optimization based PID tuning solution. This fact is suitably 

explained with the help of detailed case studies in section V. 

The paper is organized as follows. Section 2 reviews Bode‘s 

ideal transfer function, its characteristics and its integer order 

approximation. Section 3 introduces PSO and the variant used 

in this paper. Section 4 deals with control design and the 

objective function. Section 5 presents the simulation case 

studies followed by discussions and acknowledgements. 

2. BACKGROUND THEORY ON BODE’S 

IDEAL TRANSFER FUNCTION AND 

MODEL REFERENCE TUNING 

                  In this section fractional differeintegrations are 

introduced first followed by integer order approximations for 

fractional differeintegrations. Bode’s ideal transfer function is 

presented next along with simulation results depicting its 

properties and is followed by time domain characteristics of 

Bode’s ideal transfer function. 
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2.1 Fractional Differeintegrations 

The integral-differential operator, denoted by

tD  is a 

notation for taking both fractional derivative and fractional 

integral in a single expression. When α > 0 it is called 

fractional derivative and when α < 0 it is called fractional 

integral. The unified integral-differential operator is shown in 

equation (1) 
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                   There are several different definitions of fractional 

derivatives and integral [3]. One of the most common 

definitions, the Caputo definition is given below in Eq (2) 
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The Laplace transformation of the Caputo derivative with 

initial conditions set to zero is given by equation (3): 
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2.2 Carlsson’s Approach to Integer order 

Approximations of Fractional Order 

Elements 

              Carlsson and Halijack [15][16] proposed a simple 

method to find the integer order approximations of fractional 

order elements. The proposed approach used Newton’s 

approximation to find arbitrary  th (0≤ ≤1) root of 

polynomial. According to Carlsson’s approach the first order 

approximations to Fractional Order (FO) integrator is given 

by Eq (4) 
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For Fractional Order Differentiation similarly 
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Thus Right Hand Side (RHS) of Eq (5,6)   
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common first order approximate transfer function of FO 

differintegrals and the knowledge of the parameter β ( <1 or 

>1) is sufficient to transfer a fractional order transfer function 

to integer domain. 

2.3 Bode’s Ideal Transfer Function and Its 

Properties 

               Bode proposed that the ideal shape of the Nyquist 

plot for the open loop frequency response is a straight line in 

the complex plane, which provides theoretically infinite gain 

margin. Ideal open-loop transfer function is given by: 
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                 If    < 0 then a fractional order derivative is formed 

while if  > 0 a fractional order integral is formed. The 

constant  is the slope of the magnitude curve of L(s) on a log-

log scale and can take any real number as its value. The effect 

of  is shown in Fig.1 where step response of closed loop 

Bode’s transfer function to varying   (1 <  <2) is shown.  

Fig1: Effect of    (1<<2) on closed loop system having 

integer approximated Bode’s  ideal  transfer function 

From the figure it is clear that all other variables remaining 

constant the maximum peak overshoot Mp is solely a function 

of   . The Bode diagrams of L(s) for changing γ (1 < γ <2) 

are very simple and are depicted in (Fig 2 a,b).  
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Fig.2a Bode plot showing the effect of  varying   (1<<2) 

on open loop system having integer approximated  Bode’s 

ideal  transfer function 

              The amplitude curve is a straight line of constant 

slope −20γ dB/dec ( the deviation in the figure is due to the 

integer order approximations), and the phase curve is a 

horizontal line at −γπ/2 rad.  

  Fig.2b Nyquist Plot showing the effect of  varying   

(1<<2) on open loop system having integer approximated 

Bode’s ideal  transfer function 

       

 

 

The Nyquist curve consists, simply, on a straight line through 

the origin with arg L(jω) = −γπ/2 rad. gcf is the desired gain 

crossover frequency which determines the bandwidth and 

speed of the system. At gcf the magnitude of L(s) is unity. 

The major benefit achieved through this structure is iso-

damping[1], i.e. overshoot being independent of the payload 

or the system gain. 

2.4 Time Domain Characteristics 

            From[11, 17] we obtain the following expressions to 

construct Bode’s ideal transfer function i.e from the time 

domain specification using the following expressions we can 

determine the value of gcf   and .  

 Mp = 0.8*(-1)*( -.75)    Where 1 <  < 2………..(8) 
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Where Mp is the maximum peak overshoot ,Tr is the rise time 

and Ts the settling time. 

Example: For a family of FOPTD it is required to design a 

control system such that Mp=5% and Ts=5 seconds. Using 

this specification we can derive the required parameters in 

Bode’s transfer function. Substituting Mp=.05 in Eq.(8) we 

get a quadratic equation with 2 real roots.  The root lying 

between 1 and 2 is chosen for obvious reasons which gives us 

=1.13.Substituting Ts=5 sec we get gcf =.9 rad/sec which 

gives us an open loop transfer function 

13.1)
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s
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The corresponding closed loop transfer function is 

12.1*12.11

1
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s
sTF


 …………………….(12) 

               Carlssons approximation is used to convert the 

fractional order transfer function to integer order. First order 

Carlssons approximation gives us the following transfer 

function which serves as the reference model for PID tuning 

methodology presented in this paper. 

1*632.1*12.1

1*77.0
)(
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ss

s
sTI

……..….(13) 

For First Order Processes with Dead Time (FOPDT) the 

reference model is given by 

)(*)()( Ls

IID esTsT  ……………………...(14) 

where L is the dead time of the process. Fig 3 shows the step 

response of the approximated transfer function with varying 

dead time.  
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Fig.3 The performance of the model reference function 

after getting integer approximated for various dead  times 

(L). 

3. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) was proposed by 

Kennedy and Eberhart[13] in 1995 based on the Swarm 

behavior exhibited by birds flocking or fishes schooling in 

nature. A good account of PSO and its variants are given in 

[18]. The algorithm is a metaheuristic methodology used for 

solving optimization problems.The PSO as it was originally 

conceived in [13] was unstable and had a tendency not to 

converge as oscillations ensued and became wider and wider, 

unless some damping was applied. The two most notable 

methods  which solved this problem are Eberhart and Shi’s 

PSO with Inertia [14] and Clerc’s [27] PSO with Constriction.   

Here in this work we have used Eberhart and Shi’s PSO with 

inertia [14] which acts as a virtual mass to stabilize the motion 

of the particle. The inertia, a constant ranging between .5 to .9 

and was scaled down from  .9 to .5 linearly as the iteration 

progressed. during the simulations.  A non zero inertial weight 

introduces a preference for the particle to move in the same 

direction it was going on the previous iteration. Decreasing 

the inertia over time makes the agents searching for the 

minima more flexible and searching more exploitative. Given 

below is the pseudocode form of the PSO algorithm used in 

simulation : 

Begin 

 

Initialize the parameters: 

 number of particles (n), 

 number of iterations allowed (bird_setp), 

 the dimension of the search space (dim),  

 initial inertia (wstart),  

 final inertia (wend).  

Current inertia (w),  

 C1= PSO constant signifying self confidence. 

 C2= PSO constant signifying Swarm confidence. 

 Current iteration number(iter),  

 R1=random(dim,n)  

 R2=random(dim,n) 

Start Iteration 

while( iter<bird_setp )  

iter = iter + 1; 

w=((bird_setp - iter)*(wstart - wend))/(bird_setp) +wend; 

for i = 1 to n, 

Evaluate fitness function for all the particles and store it in a 

variable named current_fitness(i). 

End 

 

for i = 1 : n 

ifcurrent_fitness(i)  <local_best_fitness(i)  

local_best_fitness(i)  = current_fitness(i);   

local_best_position(:,i) = current_position(:,i)     

end 

end 

 [current_global_best_fitness,g] = min(local_best_fitness) 

ifcurrent_global_best_fitness<global_best_fitness 

global_best_fitness = current_global_best_fitness; 

for i=1:n 

globl_best_position(:,i) = local_best_position(:,g); 

end 

end 

velocity = w *velocity + c1*(R1.*(local_best_position-

current_position)) + c2* (R2. * (globl_best_position-

current_position)); 

current_position = current_position + velocity;  

end 

 

End 

The algorithm presented above is an unconstrained version of 

the PSO. For better performance it is necessary to constrain 

the solution space. Various methods has been proposed to 

solve constrained PSO [20-22].The method used in this work 

is direct implementation. The simplest direct implementation 

is to check for all the new particle locations to see whether all 

the constraints are met. The new locations are discarded if all 

the constraints are not met and new locations are replaced by 

newly generated location until all the constraints are met. 

Then the new solutions are evaluated using the standard PSO 

procedure.  

4. MATHEMATICAL OPTIMIZATION 

AND CONTROL DESIGN 

                    All optimization problem with explicit objectives 

can in general be expressed as a nonlinearly constrained 

optimization problem [23] in the following generic form: 
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Maximize/minimize: 

     f(x)   ,where x= (x1,x2, x3 …xn)
T    x ε Rn……..…….(15) 

 Subject to       j(x) = 0,          (j=1,2,3……M) 

                        k(x)  > 0        (k=1,2,3……N) 

Where f(x) is the objective function being minimized and 

j(x), k(x) are constraint equality and inequality 

respectively. The components of x (x1, x2, x3 ……..xn) are 

called the design variables and the vector x is often called the 

decision vector which varies in a n dimensional search space 

Rn. The space spanned by the decision variables is called the 

search space and the space formed by the objective is called 

the solution space. The optimization problem basically maps 

the search space Rn into the solution space R. Traditionally for 

PID optimization the objective functions used are given in 

Table 1 [24] along with their properties: 

               We propose to use a weighted combination of ISE 

and ITAE. The chosen objective function therefore is 

dttetWdtteWxf  
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 where W1+W2=1……(16) 

and e(t) is the difference between output of the model 

reference Bode’s Ideal Transfer function and the plant output. 

The transfer function for  PID used is given by the Eq (17) 
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Where Ki=Kp/Ti and Kd=Kp*Td are integral action and the 

derivative action respectively. PID equation has 4 unknowns 

Kp ,Ki ,Kd and N so the search space has 4 dimensions. This 

four dimensional space is searched by the PSO algorithm in a 

manner that minimizes the objective function. Putting the 

control problem down formally 

Minimize  :   

dttetWdtteWxf  
 


0 0

2

2

1 )(*)(*)(    

 where x=(Kp,Ki,Kd,N)    R4  and W1+W2=1 

 Subject to the condition   0< (Kp, Ki, Kd ,N) <100  

                   This optimization problem is solved by  

constrained PSO and the results are compared with that 

obtained by active set algorithm [25] and Ziegler-Nichols 

Method for a family of First Order Processes with Dead Time 

(FOPDT).  

Table:1  Summary of objective functions 

Performance 

Index 
Equation Properties 

Integral 

Squared  Error 

(ISE) 



0

2 )( dtte  

Penalizes large 

control errors. 

Settling time longer 

than ITSE. 

Suitable for highly 

damped systems 

Integral Time 

Squared 

Error(ITSE) 



0

2 *)( tdtte  

Penalizes long 

settling time and 

large control errors. 

Suitable for highly 

damped systems. 

Integral 

Absolute Error 

(IAE) 



0

)( dtte  
Penalizes control 

errors 

Integral Time 

Absolute 

Error(ITAE) 



0

*)( tdtte  
Penalizes long 

settling time and 

control errors. 

 

5. CASE STUDIES AND OBSERVATION 

                        In this section we take a family of FOPDT and 

evaluate the effectiveness of the proposed methods against 

methods like Ziegler-Nichols, PSO without the Bode’s Ideal 

Transfer Function and Active-set algorithm [25]. The 

processes used in simulation purpose are taken from[26].L 

stands for the dead time and τ the time constant of the 

process. 

5.1 FOPTD Plant with A Balanced Lag And 

Delay (L  τ) 

             A balanced lag and delay process is chosen as 

15.1

5
)(






s

e
sG

s

p
 where lag  L is 1 second and the time 

constant  τ is 1.5 second. The results of the tuning procedure 

are given in Table:2 and Fig:4          

Table2: Tuning results for a plant with balanced lag and 

delay 

 

PSO & Bode’ 

s Ideal 

Transfer  

Function 

PSO Active-set 
Ziegler -

Nichols 

Kp .14 .3381 .2440 .375 

Ki .09 .1203 .1104 .22 

Kd 1.8525 .1500 .0686 .16 

N .0023 70.3118 10 10 

 

                  From Fig 4 it is evident that the proposed tuning 

methodology shows a better performance than its 

counterparts. It is observed that the designed system is well 

within the performance specifications given in Section 2. 
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Fig.4 Step responses of the plant with balanced lag and 

delay 

5.2 Delay Dominated FOPTD Plant(L >>τ  ) 

                    A delay dominated plant is chosen with transfer 

function 
105.

)(





s

e
sG

s

p
 where lag  L is .05 second 

and the time constant  τ is 0.05 second.  The simulation 

results are shown in Table 3 and Fig.5 

Table3: Tuning results for a plant with dominant delay 

 

PSO & Bode’ 

s Ideal 

Transfer  

Function 

PSO 
Active-

set 

Ziegler -

Nichols 

Kp .0561 .2026 .2067 .54 

Ki .5168 .5876 .5874 .64 

Kd .2838 .1.7854 .1554 .11 

N .0014 .0029 .01 10 

                  

For a delay dominated plant the Active Set algorithm and PSO 

outperforms the proposed methodology. The Active Set 

algorithm outperforms the proposed methodology only 

because the initial values supplied to the function are very 

close to the actual values thereby reducing the nature of 

search from global to local. It is also observed that though the 

proposed methodology is outperformed it is still within the 

performance specifications 

Fig.5  Step responses of the plant with a dominant delay 

5.3   Lag Dominated FOPTD Plant(L << τ  ) 

        A lag dominated plant is chosen with transfer function 

111.1
)(

105.






s

e
sG

s

p
. where lag  L is0 .105 second and the 

time constant  τ is 1.11 second. The simulation results are 

shown in Table 4 and Fig.6 

 

Table 4: Tuning results for a plant with dominant lag 

 

PSO & Bode’ s 

Ideal Transfer  

Function 

PSO Active-set 
Ziegler 

-Nichols 

Kp .43 2.1907 3.17 1.75 

Ki .64 .6389 .67 1 

Kd .0 .5219 .4784 .38 

N .64 7.42 11.1158 10 

 

        Fig.6 Step responses of the plant with a dominant lag 

It is observed that the proposed methodology is within the 

performance specifications mentioned in Section 2. 
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6.  CONCLUSION 

In this paper we have explored the potentialities of Bode’s 

Ideal Transfer function in the field of PID controller tuning 

using Particle Swarm Optimization .A new methodology is 

proposed and simulation  results validating the proposed  

methodology was presented. The proposed methodology 

performed satisfactorily when compared to other standard 

techniques. 
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