
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

30

A Study of Various Training Algorithms on Neural

Network for Angle based Triangular Problem

Amarpal Singh
M.Tech (CS&E)
Amity University

Noida, India

Piyush Saxena
M.Tech (CS&E)
Amity University

Noida, India

Sangeeta Lalwani
M.Tech (CS&E)
Amity University

Noida, India

ABSTRACT

This paper examines the study of various feed forward back-

propagation neural network training algorithms and

performance of different radial basis function neural network

for angle based triangular problem. The training algorithms in

feed forward back-propagation neural network comprise of

Scale Gradient Conjugate Back-Propagation (BP), Conjugate

Gradient BP through Polak-Riebre updates, Conjugate

Gradient BP through Fletcher-Reeves updates, One Secant BP

and Resilent BP. The final result of each training algorithm

for angle based triangular problem will also be discussed and

compared.

General Terms

Artificial Neural Network (ANN), Feed Forward

Backpropogation (FFB), Training Algorithm.

Keywords

Feed-forward back-propagation neural network, radial basis

function, generalized regression neural network.

1. INTRODUCTION
Artificial Neural Network (ANN) learns by adjusting the

weights so as to be able to correctly categorize the training

data and hence, after testing phase, to classify unknown data.

It needs long time for training. It has a high tolerance to noisy

and incomplete data.

Some Salient Features of ANN are as follow:

 Adaptive learning, Self-organization

 Real-time operation, Massive parallelism

 Error acceptance by means of redundant

information coding

 Learning and generalizing ability

 Distributed representation

There are many different definitions of neural networks that

are quoted by some famous researcher as follow:

DARPA Neural Network (NN) Study:

 A NN is a taxonomy collected of various straightforward

dispensations of fundamentals in commission of parallel

whose purpose is unwavering by network configuration,

connection strengths, as well as the dispensation executed at

computing fundamentals or nodes.

According to Haykin (1994):

A Neural Network is a vast analogous scattered processor

which has an expected tendency for storing practical

knowledge and making it available for use. It is similar to the

brain in two aspects [1]:

• Knowledgebase is acquired by the network through

a training process.

• Inter-neuron connection strengths known as

synaptic weights are used to accumulate the

knowledge.

According to Nigrin (1993):

• A NN is a circuit composed of a very large number

of simple processing elements that are neurally

based. Each element operates only on local

information.

According to Zurada (1992):

• Artificial neural systems, or neural networks, are

physical cellular systems which can acquire, store

and utilize experiential knowledge.

This paper examines how the artificial neural network is

implemented for angle based triangle problem. The

performance (speed processing and high accuracy result) of

training algorithm that been used in this problem is the

research target. The following figure (Fig. 1) shows the

system architecture for angle based triangular problem.

System structural design

System structural design starts with creating training database.

After that neural network model such as training function,

design and constraint were initialized.

 Input an

Fig 1: Block Diagram for Angle Based Triangular

Problem

INPUT
ANGLE

OF
TRIANGLE

NEURAL

NETWORK

CLASSIFICATION

OUTPUT

(MARE

& MRE)

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

31

Fig 2: Block diagram for neural network

2. LITERATURE REVIEWED
In this section of paper, the various types of neural networks

are discussed.

Basic Models of Artificial Neural Networks:

 Single-Layer Feed-Forward Network:

When a layer of the processing nodes is formed, the inputs

can be connected to these nodes with various weights,

resulting in a series of outputs, one per node.

 Multilayer Feed-Forward Network:

A Multilayer feed-forward network is formed by the

interconnection of several layers. The input layer is that

which receives the input and this layer has no function

except buffering the input signal.

 Single Node with its own Feedback:

Single node with its own feedback is simple recurrent neural

network having a single neuron with feedback itself.

 Single-Layer Recurrent Network:
Single-layer recurrent network with a feedback connection in

which a processing element’s output can be directed back

to the processing element itself or the other processing

element or to both.

 Multilayer Recurrent Network:

In Multilayer recurrent network, a processing element output

can be directed back to the nodes in a preceding layer,

forming a Multilayer recurrent network:

Fig 3: Basic Models of ANN

Feed-forward Back-Propagation (FFBP) Neural Network

This neural network was trained and validated for various

feed-forward backprop training algorithms available in Matlab

Neural Network toolbox [2].

SUPPORTED TRAINING FUNCTIONS IN FFBP

NEURAL NETWORK [10]

There are many supported training functions as follow :

Trainb (Batch training with weight and bias learning rules) ,

Trainbfg (BFGS quasi-Newton BP), Trainbr (Bayesian

regularization) , Trainc (Cyclical order incremental update) ,

Traincgb (Powell-Beale conjugate gradient BP), Traincgf

(Fletcher-Powell conjugate gradient BP), Traincgp (Polak-

Ribiere conjugate gradient BP), Traingd (Gradient descent

BP), Traingda (Gradient descent with adaptive learning rate

BP), Traingdm (Gradient descent with momentum BP),

Traingdx (Gradient descent with momentum & adaptive

linear BP), Trainlm (Levenberg-Marquardt BP), Trainoss

(One step secant BP), Trainr (Random order incremental

update), Trainrp (Resilient backpropagation (Rprop)),

Trains (Sequential order incremental update), Trainscg

(Scaled conjugate gradient BP)

SUPPORTED LEARNING FUNCTIONS IN FFBP

NEURAL NETWORK [10]

There are many supported learning functions as follow :

learncon (Conscience bias learning), learngd (Gradient

descent weight/bias learning), learngdm (Gradient descent

with momentum weight/bias learning), learnh (Hebb weight

learning), learnhd (Hebb with decay weight learning rule),

learnis (Instar weight learning), learnk (Kohonen weight

learning), learnlv1 (LVQ1 weight learning), learnlv2 (LVQ2

weight learning), learnos (Outstar weight learning), learnp

(Perceptron weight and bias learning) learnpn (Normalized

perceptron weight and bias learning), learnsom (Self-

organizing map weight learning), learnwh (Widrow-Hoff

weight and bias learning rule).

TRANSFER FUNCTIONS IN FFBP NEURAL

NETWORK [10]

There are many transfer functions as follow : compet

(Competitive), hardlim (Hard limit transfer), hardlims

(Symmetric hard limit), logsig (Log sigmoid), poslin (Positive

linear),purelin (Linear), radbas (Radial basis),satlin

(Saturating linear)satlins (Symmetric saturating linear),

tansig (Hyperbolic tangent sigmoid), tribas (Triangular

basis)

TRANSFER DERIVATIVE FUNCTIONS [10]

There are many transfer derivative functions as follow :

dhardlim (Hard limit transfer derivative), dhardlms

(Symmetric hard limit transfer derivative), dlogsig (Log

sigmoid transfer derivative), dposlin (Positive linear transfer

derivative), dpurelin (Hard limit transfer derivative),

dradbas (Radial basis transfer derivative), dsatlin

(Saturating linear transfer derivative), dsatlins (Symmetric

saturating linear transfer derivative), dtansig (Hyperbolic

tangent sigmoid transfer derivative), dtribas (Triangular basis

transfer derivative).

WEIGHT & BIAS INITIALIZATION FUNCTIONS [10]

There are many weight and bias initialization functions as

follow: initcon (Conscience bias initialization), initzero

(Zero weight/bias initialization), midpoint (Midpoint weight

initialization), randnc (Normalized column weight

initialization), randnr (Normalized row weight initialization),

rands (Symmetric random weight/bias initialization)

WEIGHT DERIVATIVE FUNCTIONS [10]

The weight derivative function in ANN is Ddotprod (Dot

product weight derivative function).

CREATE

TRAINING

DATA

NETWORK
PARAMETER

AND
DESIGNING

TRAIN AND

SIMULATE

NETWORK

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

32

In this paper, fifteen training algorithms and two learning

function namely “learngd” and “learngdm” are used.

 RBF Neural Network

RBF’s are embedded in a two layer neural network where

each hidden unit implements a radial activated function. The

output units implement a weighted sum of hidden unit

outputs. The input into an RBF network is non linear while

the output is linear. In order to use RBF network it need to

specify the hidden unit activation function, the number of

processing units, a criterion for modeling a given task and a

training algorithm for finding the parameters of the network.

After training the RBF network can be used with data whose

underlying statistics is comparable to that of the training set.

RBF networks have been successfully applied to a large

diversity of applications including interpolation, time series

modeling, speech recognition etc.

HIDDEN UNIT

INPUT OUTPUT

Fig 4: Network topology of RBF

GRNN Generalized Regression Neural Network

GRNN is consists of a RBF layer with a unique linear layer

used for function approximation with adequate amount of

unseen neurons. The MATLAB Neural Network Toolbox

Function (newgrnn) has been used for testing and training the

network performance via measure of GRNN for

corresponding to validation data.

Fig 5 shows architecture of GRNN. It is comparable to the

RBF network, but it has a somewhat dissimilar second layer.

Fig. 5: GRNN Network Topology

Some researcher use these neural network fundamental to

propose their own metrics regarding to their research areas.

Khoshgoftarr et al. [3] introduced to apply the concept of the

NN as a tool for predicting software quality. They presented a

discriminated model and a NN representation of the large

telecommunications system, classifying modules as not fault-

prone or fault-prone. They compared the neural-network

model with a non parametric disciminant model, and found

the neural network model had better predictive accuracy.

Specht [4] has stated that it is a memory-based network that

provides estimates of continuous variables and converges to

the underlying (linear or nonlinear) regression surface. This is

a one-pass learning algorithm with a highly parallel structure.

Even with sparse data is a multidimensional measurement

space; the algorithm provides smooth transitions from one

observed value to another.

3. RESEARCH METHODOLOGY

In this section of paper, the research methodology for the

implementation of the problem is provided.

Feed-forward Back-propagation Neural Networks

Backprop implements a gradient descent search through a

space of possible network weight, iteratively reducing the

error E, between training example and target value and

network output. It guaranteed to converge only towards some

local minima. A training procedure which allows multilayer

feed forward Neural Networks to be trained.

Fig 6: Architecture of Feed Forward Network

However, the major disadvantages of BP are its

convergence rate relatively slow [11] and being trapped at

the local minima.

many powerful optimization algorithms have been devised,

most of which have been based on simple gradient descent

algorithm as explain by C.M. Bishop [12] such as

conjugate gradient decent, scaled conjugate gradient

descent, quasi-Newton BFGS and Levenberg-Marquardt

methods.
For feed forward networks:

A continuous function can be

 differentiated allowing

 Gradient-descent.

 Back propagation is an example of a gradient-

descent technique.

Uses sigmoid (binary or bipolar) activation function.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

33

In multilayer networks, the activation function is usually more

complex than just a threshold function, like 1/[1+exp(-x)] or

even 2/[1+exp(-x)] – 1 to allow for inhibition, etc.

Gradient Descent

 Gradient-Descent(training_examples,)

 Each training example is a pair of the form

<(x1,…xn),t> where (x1,…,xn) is the vector of input

values, and t is the target output value, is the

learning rate (e.g. 0.1)

 Initialize each wi to some small random value

 Until the termination condition is met, Do

• Initialize each wi to zero

• For each <(x1,…xn),t> in

training_examples Do

• Input the instance (x1,…,xn) to the linear

unit and compute the output o

• For each linear unit weight wi Do

 wi= wi + (t-o) xi

 For each linear unit weight wi Do

 wi=wi+wi

Sigmoid Activation Function

 W1 X0=1

 W2 O=σ(net)=1/(1+e-net)

 .

 .

 . Wn net=∑i=0
nWiXi

Fig. 7: Sigmoid Activation Function

Derive gradient decent rules to train:

• one sigmoid function

 E/wi = -d(td-od) od (1-od) xi

• Multilayer networks of sigmoid units

backpropagation

Conjugate gradient

This is the well accepted iterative technique for solving huge

systems of linear equations [6]. In the 1st iteration, the

conjugate gradient algorithm will find the steep descent

direction.

Description of 3 types of conjugate Gradient Algorithms:-

 Scaled Gradient Conjugate Backpropogation(SCG),

 Conjugate Gradient BP with Polak-Riebre

Updates(CGP) and

 Conjugate Gradient BP with Fletcher-Reeves

updates(CGF).

Approximate solution, xk for conjugate gradient iteration is

described as formulas below [7]:

Xk=Xk-1+αkdk-1

Scaled Gradient Conjugate Backpropogation (SCG)

SCG calculate the second order Conjugate Gradient

Algorithm that will help to reduce goal functions for some

variables. Moller [7] proved this theoretical foundation in

which remain its first order techniques in first derivatives like

standard backpropogation. This helps to find way for local

minimum in second order techniques in second derivatives.

Conjugate Gradient Backpropagation with Fletcher-

Reeves Updates (CGF)

The 2nd edition for Conjugate Gradient algorithm was

projected by Fletcher-Reeves. As with the Polak and Ribiére

algorithm, the explore path at per iteration is computed by

equation below.

Conjugate Gradient Backpropagation with Polak-Riebre

Updates (CGP)

One more edition of the Conjugate Gradient algorithm was

projected by Polak along with Ribiére. The explore path at per

iteration is same like SCG search direction equation. However

for the Polak-Ribiére update, the constant beta, βk is

computed by equation below.

Quasi-Newton Algorithms (One-Step Secant

Backpropagation (OSS))

An alternative way to speed up the conjugate gradient

optimization is Newton’s method. The fundamental footstep

of Newton's technique shows in equation following.

Heuristics Algorithms (Resilent Backpropagation(RP))

The reason for resilient backpropagation training algorithm is

to get rid of these destructive sound effects of the magnitudes

of the fractional derivatives [5].

Performance evaluation Using Feed-Forward Back-

propagation Neural Networks [8]:

The first examination was to contrast the predictive accuracy

of Feed – Forward Neural Network trained with various back-

propagation training algorithms. This neural network was

trained and validated for various feedforward backprop

training algorithms available in Matlab Neural Network

toolbox [2].

The predictive accuracy of training algorithms was compared:

Mean Absolute relative error (MARE) [9]: This is the

preferred measure used by software engineering researchers

and is given as

Mean Relative Error (MRE) [9]: This measure is used to

estimate whether models are biased and tend to overestimate

or underestimate and is designed as follows

X1

X2

Xn

∑ ƒ O

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

34

Radial Basis Function (RBF) Neural Network

The RBF is a classification and functional approximation

neural network developed by M.J.D. Powell. The network

uses the most common nonlinearities such as sigmoidal and

Gaussian kernel functions. The Gaussian functions are also

used in regularization networks. The Gaussian function is

generally defined as

Fig 8: Gaussian function

 Performance evaluation using Radial Basis Function

(RBF) Neural Networks [8]:

The second investigation was to construct performance

prediction models and compare their predictive accuracy

using different radial basis function neural networks available

in Matlab Neural Network toolbox [2]. Three radial basis

functions are available in the toolbox. They are

i. Exact design radial basis networks

ii. Efficient design radial basis networks

iii. Generalized Regression Neural Network

4. PROBLEM STATMENT

This part of paper will explore the problem statement for the

implementation of neural network in feed-forward

backpropogation and radial basis function. In this problem

triangle is identified based on their angle input. In this

problem different types of angle based triangle is identified

using radial basis function neural networks and feed-forward

back-propagation neural network.

For neural networks the training data, test data and target

data is given to as input. Input is given in form of matrices.

For this problem the training data is given as learning set for

the network. The learning data can be changed according to

different problem statement.

5. IMPLIMENTATION

Feed-forward backpropogation NN using Matlab

On Training Info, choose Inputs and Targets.

lying on Training Parameters, specify:

epochs = 1000 (as the learning would be better when there are

large no. of epochs and long durations of training)

goal = 0.000000000000001

max_fail = 50

This will give you a learning and performance graph.

Once graph is decomposed (since you are trying to minimize

the error) similar to that in figure 9.

Fig 9: Train Network

Radial basis function Neural Networks using Matlab

Make sure the parameters are as follows:

Network Type = radial basis function (exact fit)

Spread constant = 1.0

Network Training:

on clicking the Create button, the network is automatically

trained which concludes the network implementation phrase.

Network Simulation:

Now, test the test_data S on the NN Network Manager and

track the identical method indicated before (like for input P).

Now perform the same steps with radial basis function

(fewer neurons) neural network and Generalized

Regression Neural Network (GRNN).

6. OBSERVATIONS AND RESULTS

The Observations through Different Training Functions is

formulated in form of table. Here all training algorithms with

“LEARNGDM” Adaption Learning Function, Performance

Function is “MSE” and Numbers of Layers = 2 are used :

 No. of neurons= 10

 Transfer function=tansig

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

35

Training function No. of

iterations

MARE MRE

TRAINBFG 1 0.36 -0.192

TRAINBR 6 1.3 -0.21

TRAINCGB 2 0.07 0.09

TRAINCGF 3 0.14 -0.24

TRAINGD 7 1.03 0.16

TRAINGDM 8 35.7 -0.06

TRAINGDA 7 0.07 0.12

TRAINGDX 6 8.5 0.34

TRAINLM 1000 39.3 0.18

TRAINOSS 2 0.58 0.15

TRAINRP 6 0.3 -0.29

TRAINR 1000 0.36 -0.12

TRAINSCG 206 67.2 0.091

TRAINCGP 3 8.59 -0.4

TABLE 1: Results of error Prediction with different

training function

Adaption Learning Function = LEARNGD

 No. of neurons= 10

 Transfer function= pure liner

Training function No. of

iterations

MARE MRE

TRAINBFG 2 0.0018 0.2

TRAINBR 7 0.27 0.005

TRAINCGB 27 48.05 0.028

TRAINCGF 5 55.9 88.7

TRAINGD 68 0.38 0.14

TRAINGDM 6 1.18 0.14

TRAINGDA 6 8.3 0.42

TRAINGDX 6 3.1 0.14

TRAINLM 1000 416.4 0.28

TRAINOSS 3 1.0 -0.38

TRAINRP 8 0.26 -0.15

TRAINR 1000 0.14 -0.2

TRAINSCG 22 8.0 0.27

TRAINCGP 4 124.89 0.15

TABLE 2: Performance of training functions after change

in parameters.

RBF Network MARE MRE

Generalized Regression 0.18 0.27

RBF (Exact Fit) 0.5 -0.33

RBF(Fewer neurons) 0.49 -0.14

TABLE 3: Performance with different RBF Networks

7. CONCLUSION

In this paper, the performance of RBF network is observed,

the simulated neural network for the prediction accuracy using

radical basis function neural network. The simulated network

for prediction of errors by changing any metric can analyze

the effect of change in that metric. MARE and MRE value can

be predicted by increasing or decreasing different metric. This

concludes that radial basis function (exact fit) has better

accuracy than any other radial basis network. This work can

be applied to predict MARE and MRE by using feed-forward

backpropogation neural network. Using feed-forward

backpropogation neural network, it concludes that the

performance of TRAINCGB (Powell-Beale conjugate

gradient back-propagation) training function predicts better

accuracy than any other training functions. Several different

algorithms for training the networks were evaluated : classical

backpropagation with variable learning rates, scale gradient

conjugate, conjugate gradient with Polak- Riebre Updates,

conjugate gradient with Fletcher-Reeves updates, one secant

and resilent were tested as well, but were found to require too

much RAM memory to allow PC compatible computers to be

used efficiently. All tested Artificial Neural Network (ANN)

were feedforward networks in which the neurons were

processed by a hidden layer of units, which used the so-called

tan-sigmoid output function [13] that fed into a linear output

layer that predicted the errors. The conjugate gradient

algorithms, in mainly trainscg, appear to execute fine more

than a extensive diversity of problems, mainly for networks

with a huge no. of weights. The SCG algorithm is

approximately as quick as the LM algorithm on function

approximation problems (more rapidly for large networks)

plus is approximately as quick as RP on pattern recognition

problems. The performance of SCG algorithm does not

degrade as quickly as RP performance does when the error is

minimized. The conjugate gradient algorithms have

comparatively humble memory necessities [5].

Fig 10: Graphical comparison of some training functions

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.13, May 2013

36

8. FUTURE SCOPE
In the future work, The RP function is the fastest algorithm

and can be used for wide varieties of problems such as pattern

recognition. The main drawback of this algorithm is as it does

not perform well on function approximation problems and

performance also degrades as the error goal is reduced. The

memory necessities for this algorithm are comparatively less

in contrast with other algorithms considered. In this work

neural networks (based on neural networks algorithms),

further can design by own training algorithm for better results

focusing on accuracy, those may be based on Fuzzy Logic

algorithms, Artificial Intelligence based algorithms or Support

vector based algorithms etc.

9. REFERENCES
[1] S. Haykins, “A Comprehensive Foundation on Neural

Networks,” Prentice Hall, 1999 .

[2] Neural network specification, available at URL:

http://www.mathworks.in/products/neuralnetwork/descri

ption3.html

 [3] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J.

Aud, “Application of neural networks to software quality

modeling of a very large telecommunications system”,

IEEE Transactions on Neural Network, vol. 8, pp. 902-

909, 1997.

 [4] D.F, Specht, “A general regression neural network”.IEEE

Transactions on Neural Networks, vol. 2, Issue: 6, pp.

568-576, 1991.

[5] Mathworks Online. Available: http://www.

www.mathworks.com, 2009.

[6] Jonathan Richard Shewchuk, an Introduction to the

Conjugate Gradient Method without the Agonizing Pain,

August 1994.

[7] Martin Fodslette Moller, A Scaled Conjugate Gradient

Algorithm for Fast Supervised Learning. Neural

Networks, 6:525-533, 1993.

[8] S.N. Sivanadam, S. Sumathi, S.N. Deepa ,“Introduction to

Neural Networks Using Matlab 6.0 “ , Tata McGraw Hill

, NewDelhi, 2006.

[9] G.Finnie and G. witting, “AI tools for software

Devlopment Effort Estimation”, International

Conference on Software Engineering: Education and

practice, 1996.

[10] S.N. Sivanandam & S.N. Deepa, Principles of Soft

Computing, Wiley Publications

[11] Zweiri, Y.H., Whidborne, J.F. and Sceviratne, L.D. A

Three-term Backpropagation Algorithm.

Neurocomputing. 50: 305-318. 2002.

[12] 10. C.M. Bishop. Neural Networks for Pattern

Recognition. Chapter 7, pp.253-294. Oxford University

Press. 1995.

[13] Demuth, H., Beale, M. Neural Network Toolbox

(Mathworks, Natick,Massachusetts, 1998). World

Academy of Science, Engineering and Technology

IJCATM : www.ijcaonline.org

