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ABSTRACT 

This paper examines the study of various feed forward back-

propagation neural network training algorithms and 

performance of different radial basis function neural network 

for angle based triangular problem. The training algorithms in 

feed forward back-propagation neural network comprise of 

Scale Gradient Conjugate Back-Propagation (BP), Conjugate 

Gradient BP through Polak-Riebre updates, Conjugate 

Gradient BP through Fletcher-Reeves updates, One Secant BP 

and Resilent BP. The final result of each training algorithm 

for angle based triangular problem will also be discussed and 

compared.   

General Terms 

Artificial Neural Network (ANN), Feed Forward 

Backpropogation (FFB), Training Algorithm.  

Keywords 

Feed-forward back-propagation neural network, radial basis 

function, generalized regression neural network. 

1. INTRODUCTION 
Artificial Neural Network (ANN) learns by adjusting the 

weights so as to be able to correctly categorize the training 

data and hence, after testing phase, to classify unknown data. 

It needs long time for training. It has a high tolerance to noisy 

and incomplete data. 

Some Salient Features of ANN are as follow: 

 Adaptive learning, Self-organization  

 Real-time operation, Massive parallelism  

 Error acceptance by means of redundant 

information coding  

 Learning and generalizing ability 

 Distributed representation  

 

There are many different definitions of neural networks that 

are quoted by some famous researcher as follow: 

 

DARPA Neural Network (NN) Study:   

 A NN is a taxonomy collected of various straightforward 

dispensations of fundamentals in commission of parallel 

whose purpose is unwavering by network configuration, 

connection strengths, as well as the dispensation executed at 

computing fundamentals or nodes. 

According to Haykin (1994):  

A Neural Network is a vast analogous scattered processor 

which has an expected tendency for storing practical 

knowledge and making it available for use. It is similar to the 

brain in two aspects [1]:  

• Knowledgebase is acquired by the network through 

a training process.  

• Inter-neuron connection strengths known as 

synaptic weights are used to accumulate the 

knowledge.  

According to Nigrin (1993):  

• A NN is a circuit composed of a very large number 

of simple processing elements that are neurally 

based. Each element operates only on local 

information.  

According to Zurada (1992):  

• Artificial neural systems, or neural networks, are 

physical cellular systems which can acquire, store 

and utilize experiential knowledge.  

This paper examines how the artificial neural network is 

implemented for angle based triangle problem. The 

performance (speed processing and high accuracy result) of 

training algorithm that been used in this problem is the 

research target. The following figure (Fig. 1) shows the 

system architecture for angle based triangular problem. 

System structural design 

System structural design starts with creating training database. 

After that neural network model such as training function, 

design and constraint were initialized. 
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Fig 1: Block Diagram for Angle Based Triangular 

Problem 
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Fig 2: Block diagram for neural network 

2. LITERATURE REVIEWED 
In this section of paper, the various types of neural networks 

are discussed. 

Basic Models of Artificial Neural Networks: 

 Single-Layer Feed-Forward Network:  

When a layer of the processing nodes is formed, the inputs 

can be connected to these nodes with various weights, 

resulting in a series of outputs, one per node. 

 Multilayer Feed-Forward Network: 

A Multilayer feed-forward network is formed by the 

interconnection of several layers. The input layer is that 

which receives the input and this layer has no function 

except buffering the input signal.  

 Single Node with its own Feedback: 

Single node with its own feedback is simple recurrent neural 

network having a single neuron with feedback itself. 

 Single-Layer Recurrent Network: 
Single-layer recurrent network with a feedback connection in 

which a processing element’s output can be directed back 

to the processing element itself or the other processing 

element or to both. 

 Multilayer Recurrent Network: 

In Multilayer recurrent network, a processing element output 

can be directed back to the nodes in a preceding layer, 

forming a Multilayer recurrent network: 

 

Fig 3: Basic Models of ANN 

Feed-forward Back-Propagation (FFBP) Neural Network 

This neural network was trained and validated for various 

feed-forward backprop training algorithms available in Matlab 

Neural Network toolbox [2].  

SUPPORTED TRAINING FUNCTIONS   IN FFBP 

NEURAL NETWORK [10] 

There are many supported training functions as follow : 

Trainb (Batch training with weight and bias learning rules) , 

Trainbfg (BFGS quasi-Newton BP ), Trainbr (Bayesian 

regularization) , Trainc ( Cyclical order incremental update) , 

Traincgb ( Powell-Beale conjugate gradient BP), Traincgf 

(Fletcher-Powell conjugate gradient BP ), Traincgp (Polak-

Ribiere conjugate gradient BP), Traingd (Gradient descent 

BP), Traingda (Gradient descent with adaptive learning rate 

BP), Traingdm (Gradient descent with momentum BP), 

Traingdx (Gradient descent with momentum & adaptive 

linear BP), Trainlm (Levenberg-Marquardt BP), Trainoss 

(One step secant BP), Trainr (Random order incremental 

update), Trainrp (Resilient backpropagation (Rprop)), 

Trains (Sequential order incremental update), Trainscg 

(Scaled conjugate gradient BP)  

SUPPORTED LEARNING FUNCTIONS IN FFBP 

NEURAL NETWORK [10] 

There are many supported learning functions as follow : 

learncon (Conscience bias learning), learngd (Gradient 

descent weight/bias learning), learngdm (Gradient descent 

with momentum weight/bias learning),  learnh (Hebb weight 

learning),  learnhd (Hebb with decay weight learning rule ), 

learnis (Instar weight learning), learnk (Kohonen weight 

learning), learnlv1 (LVQ1 weight learning), learnlv2 (LVQ2 

weight learning),  learnos (Outstar weight learning), learnp 

(Perceptron weight and bias learning) learnpn (Normalized 

perceptron weight and bias learning), learnsom (Self-

organizing map weight learning), learnwh (Widrow-Hoff 

weight and bias learning rule). 

TRANSFER FUNCTIONS IN FFBP NEURAL 

NETWORK [10] 

There are many transfer functions as follow :  compet 

(Competitive), hardlim (Hard limit transfer), hardlims 

(Symmetric hard limit), logsig (Log sigmoid), poslin (Positive 

linear),purelin (Linear), radbas (Radial basis),satlin 

(Saturating linear)satlins (Symmetric saturating linear), 

tansig (Hyperbolic tangent sigmoid), tribas   (Triangular 

basis) 

TRANSFER DERIVATIVE FUNCTIONS [10] 

There are many transfer derivative functions as follow :  

dhardlim (Hard limit transfer derivative), dhardlms 

(Symmetric hard limit transfer derivative ), dlogsig  (Log 

sigmoid transfer derivative), dposlin  (Positive linear transfer 

derivative), dpurelin (Hard limit transfer derivative), 

dradbas (Radial basis transfer derivative), dsatlin  

(Saturating linear transfer derivative), dsatlins (Symmetric 

saturating linear transfer derivative), dtansig (Hyperbolic 

tangent sigmoid transfer derivative), dtribas (Triangular basis 

transfer derivative ). 

WEIGHT & BIAS INITIALIZATION FUNCTIONS [10] 

There are many weight and bias initialization functions as 

follow:  initcon (Conscience bias initialization), initzero 

(Zero weight/bias initialization), midpoint (Midpoint weight 

initialization), randnc (Normalized column weight 

initialization), randnr (Normalized row weight initialization), 

rands (Symmetric random weight/bias initialization) 

WEIGHT DERIVATIVE FUNCTIONS [10]  

The weight derivative function in ANN is Ddotprod (Dot 

product weight derivative function). 
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In this paper, fifteen training algorithms and two learning 

function namely “learngd” and “learngdm” are used.  

 RBF Neural Network 

RBF’s are embedded in a two layer neural network where 

each hidden unit implements a radial activated function. The 

output units implement a weighted sum of hidden unit 

outputs. The input into an RBF network is non linear while 

the output is linear. In order to use RBF network it need to 

specify the hidden unit activation function, the number of 

processing units, a criterion for modeling a given task and a 

training algorithm for finding the parameters of the network. 

After training the RBF network can be used with data whose 

underlying statistics is comparable to that of the training set. 

RBF networks have been successfully applied to a large 

diversity of applications including interpolation, time series 

modeling, speech recognition etc. 

 

HIDDEN UNIT 

 

 

INPUT     OUTPUT 

 

 

 

Fig 4: Network topology of RBF 

GRNN Generalized Regression Neural Network 

GRNN is consists of a RBF layer with a unique linear layer 

used for function approximation with adequate amount of 

unseen neurons. The MATLAB Neural Network Toolbox 

Function (newgrnn) has been used for testing and training the 

network performance via measure of GRNN for 

corresponding to validation data. 

Fig 5 shows architecture of GRNN. It is comparable to the 

RBF network, but it has a somewhat dissimilar second layer. 

 

 

Fig. 5:   GRNN Network Topology 

Some researcher use these neural network fundamental to 

propose their own metrics regarding to their research areas. 

Khoshgoftarr et al. [3] introduced to apply the concept of the 

NN as a tool for predicting software quality. They presented a 

discriminated model and a NN representation of the large 

telecommunications system, classifying modules as not fault-

prone or fault-prone. They compared the neural-network 

model with a non parametric disciminant model, and found 

the neural network model had better predictive accuracy. 

Specht [4] has stated that it is a memory-based network that 

provides estimates of continuous variables and converges to 

the underlying (linear or nonlinear) regression surface. This is 

a one-pass learning algorithm with a highly parallel structure. 

Even with sparse data is a multidimensional measurement 

space; the algorithm provides smooth transitions from one 

observed value to another. 

3. RESEARCH METHODOLOGY 
 

In this section of paper, the research methodology for the 

implementation of the problem is provided.  

Feed-forward Back-propagation Neural Networks 

Backprop implements a gradient descent search through a 

space of possible network weight, iteratively reducing the 

error E, between training example and target value and 

network output. It guaranteed to converge only towards some 

local minima. A training procedure which allows multilayer 

feed forward Neural Networks to be trained. 

 

Fig 6: Architecture of Feed Forward Network 

However, the major disadvantages of BP are its  

convergence rate relatively slow [11] and being trapped at 

the local minima. 

many powerful optimization algorithms have been devised, 

most of which have been based on simple gradient descent 

algorithm as explain by C.M. Bishop [12] such as 

conjugate gradient decent, scaled conjugate gradient 

descent, quasi-Newton BFGS and Levenberg-Marquardt 

methods. 
For feed forward networks: 

A continuous function can be  

 differentiated allowing  

 Gradient-descent. 

 Back propagation is an example of a gradient-

descent technique. 

 

Uses sigmoid (binary or bipolar) activation function. 
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In multilayer networks, the activation function is usually more 

complex than just a threshold function, like 1/[1+exp(-x)] or 

even 2/[1+exp(-x)] – 1 to allow for inhibition, etc. 

Gradient Descent 

 Gradient-Descent(training_examples, ) 

 Each training example is a pair of the form 

<(x1,…xn),t> where (x1,…,xn) is the vector of input 

values, and t is the target output value,  is the 

learning rate (e.g. 0.1) 

 Initialize each wi to some small random value 

 Until the termination condition is met, Do 

• Initialize each wi to zero 

• For each <(x1,…xn),t> in 

training_examples Do 

• Input the instance (x1,…,xn) to the linear 

unit and compute the output o 

• For each linear unit weight wi Do 

 wi= wi +  (t-o) xi 

 For each linear unit weight wi Do 

 wi=wi+wi 

 

Sigmoid Activation Function 

  

 

             W1                  X0=1 

 

                W2                                                            O=σ(net)=1/(1+e-net) 

   . 

   . 

   .             Wn                             net=∑i=0
nWiXi 

 

 

Fig. 7:   Sigmoid Activation Function 

 

Derive gradient decent rules to train: 

•  one sigmoid function 

    E/wi = -d(td-od) od (1-od) xi 

•  Multilayer networks of sigmoid units 

backpropagation  

 

Conjugate gradient 

This is the well accepted iterative technique for solving huge 

systems of linear equations [6]. In the 1st iteration, the 

conjugate gradient algorithm will find the steep descent 

direction.  

Description of 3 types of conjugate Gradient Algorithms:- 

 Scaled Gradient Conjugate Backpropogation(SCG), 

 Conjugate Gradient BP with Polak-Riebre 

Updates(CGP) and  

 Conjugate Gradient BP with Fletcher-Reeves 

updates(CGF).  

 

Approximate solution, xk for conjugate gradient iteration is 

described as formulas below [7]: 

Xk=Xk-1+αkdk-1 

Scaled Gradient Conjugate Backpropogation (SCG) 

SCG calculate the second order Conjugate Gradient 

Algorithm that will help to reduce goal functions for some 

variables. Moller [7] proved this theoretical foundation in 

which remain its first order techniques in first derivatives like 

standard backpropogation. This helps to find way for local 

minimum in second order techniques in second derivatives.  

Conjugate Gradient Backpropagation with Fletcher-

Reeves Updates (CGF) 

The 2nd edition for Conjugate Gradient algorithm was 

projected by Fletcher-Reeves. As with the Polak and Ribiére 

algorithm, the explore path at per iteration is computed by 

equation below. 

 

Conjugate Gradient Backpropagation with Polak-Riebre 

Updates (CGP) 

One more edition of the Conjugate Gradient algorithm was 

projected by Polak along with Ribiére. The explore path at per 

iteration is same like SCG search direction equation. However 

for the Polak-Ribiére update, the constant beta, βk is 

computed by equation below. 

 

Quasi-Newton Algorithms (One-Step Secant 

Backpropagation (OSS)) 

An alternative way to speed up the conjugate gradient 

optimization is Newton’s method. The fundamental footstep 

of Newton's technique shows in equation following. 

 

Heuristics Algorithms (Resilent Backpropagation(RP)) 

The reason for resilient backpropagation training algorithm is 

to get rid of these destructive sound effects of the magnitudes 

of the fractional derivatives [5]. 

Performance evaluation Using Feed-Forward Back-

propagation Neural Networks [8]:  

The first examination was to contrast the predictive accuracy 

of Feed – Forward Neural Network trained with various back-

propagation training algorithms. This neural network was 

trained and validated for various feedforward backprop 

training algorithms available in Matlab Neural Network 

toolbox [2]. 

The predictive accuracy of training algorithms was compared: 

Mean Absolute relative error (MARE) [9]: This is the 

preferred measure used by software engineering researchers 

and is given as 

 

Mean Relative Error (MRE) [9]: This measure is used to 

estimate whether models are biased and tend to overestimate 

or underestimate and is designed as follows 

 

X1 

X2 

Xn 

∑  ƒ O 
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Radial Basis Function (RBF) Neural Network 

The RBF is a classification and functional approximation 

neural network developed by M.J.D. Powell. The network 

uses the most common nonlinearities such as sigmoidal and 

Gaussian kernel functions. The Gaussian functions are also 

used in regularization networks. The Gaussian function is 

generally defined as 

 

  

Fig 8: Gaussian function 

 Performance evaluation using Radial Basis Function 

(RBF) Neural Networks [8]: 

The second investigation was to construct performance 

prediction models and compare their predictive accuracy 

using different radial basis function neural networks available 

in Matlab Neural Network toolbox [2]. Three radial basis 

functions are available in the toolbox. They are 

i. Exact design radial basis networks 

ii. Efficient design radial basis networks 

iii. Generalized Regression Neural Network 

   

4. PROBLEM STATMENT 
 

This part of paper will explore the problem statement for the 

implementation of neural network in feed-forward 

backpropogation and radial basis function. In this problem 

triangle is identified based on their angle input. In this 

problem different types of angle based triangle is identified 

using radial basis function neural networks and feed-forward 

back-propagation neural network. 

For neural networks the training data, test data and target 

data is given to as input. Input is given in form of matrices. 

For this problem the training data is given as learning set for 

the network. The learning data can be changed according to 

different problem statement. 

  

5. IMPLIMENTATION 
 

Feed-forward backpropogation NN using Matlab  

On Training Info, choose Inputs and Targets.  

lying on Training Parameters, specify:  

epochs = 1000 (as the learning would be better when there are 

large no. of epochs and long durations of training)  

goal = 0.000000000000001  

max_fail = 50  

This will give you a learning and performance graph. 

Once graph is decomposed (since you are trying to minimize 

the error) similar to that in figure 9. 

 

Fig 9: Train Network 

Radial basis function Neural Networks using Matlab 

Make sure the parameters are as follows:  

Network Type = radial basis function (exact fit) 

Spread constant = 1.0 

 

Network Training: 

on clicking the Create button, the network is automatically 

trained which concludes the network implementation phrase. 

Network Simulation: 

Now, test the test_data S on the NN Network Manager and 

track the identical method indicated before (like for input P). 

Now perform the same steps with radial basis function 

(fewer neurons) neural network and Generalized 

Regression Neural Network (GRNN). 

6. OBSERVATIONS AND RESULTS 
 

The Observations through Different Training Functions is 

formulated in form of table.  Here all training algorithms with 

“LEARNGDM” Adaption Learning Function, Performance 

Function is “MSE” and Numbers of Layers = 2 are used : 

 No. of neurons= 10 

 Transfer function=tansig 
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Training function No. of 

iterations 

MARE MRE 

TRAINBFG 1 0.36 -0.192 

TRAINBR 6 1.3 -0.21 

TRAINCGB 2 0.07 0.09 

TRAINCGF 3 0.14 -0.24 

TRAINGD 7 1.03 0.16 

TRAINGDM 8 35.7 -0.06 

TRAINGDA 7 0.07 0.12 

TRAINGDX 6 8.5 0.34 

TRAINLM 1000 39.3 0.18 

TRAINOSS 2 0.58 0.15 

TRAINRP 6 0.3 -0.29 

TRAINR 1000 0.36 -0.12 

TRAINSCG 206 67.2 0.091 

TRAINCGP 3 8.59 -0.4 

 

TABLE 1: Results of error Prediction with different 

training function 

 

Adaption Learning Function = LEARNGD 

 No. of neurons= 10 

 Transfer function= pure liner 

 

Training function No. of 

iterations 

MARE MRE 

TRAINBFG  2 0.0018 0.2 

TRAINBR  7 0.27 0.005 

TRAINCGB  27 48.05 0.028 

TRAINCGF  5 55.9 88.7 

TRAINGD  68 0.38 0.14 

TRAINGDM  6 1.18 0.14 

TRAINGDA  6 8.3 0.42 

TRAINGDX  6 3.1 0.14 

TRAINLM  1000 416.4 0.28 

TRAINOSS  3 1.0 -0.38 

TRAINRP  8 0.26 -0.15 

TRAINR  1000 0.14 -0.2 

TRAINSCG  22 8.0 0.27 

TRAINCGP 4 124.89 0.15 

 

TABLE 2: Performance of training functions after change 

in parameters. 

 

 

RBF Network MARE MRE 

Generalized Regression 0.18 0.27 

RBF (Exact Fit) 0.5 -0.33 

RBF(Fewer neurons) 0.49 -0.14 

 
TABLE 3: Performance with different RBF Networks 

 

7.  CONCLUSION 
 

In this paper, the performance of RBF network is observed, 

the simulated neural network for the prediction accuracy using 

radical basis function neural network. The simulated network 

for prediction of errors by changing any metric can analyze 

the effect of change in that metric. MARE and MRE value can 

be predicted by increasing or decreasing different metric. This 

concludes that radial basis function (exact fit) has better 

accuracy than any other radial basis network. This work can 

be applied to predict MARE and MRE by using feed-forward 

backpropogation neural network. Using feed-forward 

backpropogation neural network, it concludes that the 

performance of TRAINCGB (Powell-Beale conjugate 

gradient back-propagation) training function predicts better 

accuracy than any other training functions. Several different 

algorithms for training the networks were evaluated : classical 

backpropagation with variable learning rates, scale gradient 

conjugate, conjugate gradient with Polak- Riebre Updates, 

conjugate gradient with Fletcher-Reeves updates, one secant 

and resilent were tested as well, but were found to require too 

much RAM memory to allow PC compatible computers to be 

used efficiently. All tested Artificial Neural Network (ANN) 

were feedforward networks in which the neurons were 

processed by a hidden layer of units, which used the so-called 

tan-sigmoid output function [13] that fed into a linear output 

layer that predicted the errors. The conjugate gradient 

algorithms, in mainly trainscg, appear to execute fine more 

than a extensive diversity of problems, mainly for networks 

with a huge no. of weights. The SCG algorithm is 

approximately as quick as the LM algorithm on function 

approximation problems (more rapidly for large networks) 

plus is approximately as quick as RP on pattern recognition 

problems. The performance of SCG algorithm does not 

degrade as quickly as RP performance does when the error is 

minimized. The conjugate gradient algorithms have 

comparatively humble memory necessities [5]. 

 

Fig 10: Graphical comparison of some training functions  
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8. FUTURE SCOPE 
In the future work, The RP function is the fastest algorithm 

and can be used for wide varieties of problems such as pattern 

recognition. The main drawback of this algorithm is as it does 

not perform well on function approximation problems and 

performance also degrades as the error goal is reduced. The 

memory necessities for this algorithm are comparatively less 

in contrast with other algorithms considered. In this work  

neural networks (based on neural networks algorithms), 

further can design by own training algorithm for better results 

focusing on accuracy, those may be based on Fuzzy Logic 

algorithms, Artificial Intelligence based algorithms or Support 

vector based algorithms etc.  
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