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ABSTRACT 
This paper presents an efficient denoising technique for 

removal of noise from digital images by combining filtering in 

both the transform (wavelet) domain and the spatial domain. 

The noise under consideration is AWGN and is treated as a 

Gaussian random variable.  In this work the Karhunen-Loeve 

transform (PCA) is applied in wavelet packet domain that 

spreads the signal energy in to a few principal components, 

whereas noise is spread over all the transformed coefficients. 

This permits the application of a suitable shrinkage function on 

these new coefficients and elimination of noise without blurring 

the edges. The denoised image obtained by using the above 

algorithm is processed again in spatial domain by using total 

variation regularization. This post processing results in further 

improvement of the denoised results. Experimental results show 

better performance in terms of PSNR as compared to the 

performance of the methods when incorporated individually. 
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1. INTRODUCTION 
Real world images do not exist without the noise. Principal 

sources of noise in the digital images arise during image 

acquisition and transmission. The amount of noise depends on 

the different factors such as CCD cameras, light levels and 

sensor temperature. During transmission, images are corrupted 

mainly due to interference in the channel used for transmission. 

The mathematical model of noisy image is given by 

                  𝑓  = 𝑓 + 𝜂                                                                 

(1)  

Where 𝑓  is the noisy image, 𝑓 is the original image and 𝜂 is the 

additive white Gaussian noise with zero mean and standard 

deviation 𝜎.  All denoising methods are a type of low pass 

filtering. Filtering can be done in the spatial domain or in the 

transform domain. Filtering in the transform domain is more 

efficient and introduces fewer artifacts. The traditional linear 

filtering methods in spatial domain are Wiener filtering and 

mean filtering, whereas nonlinear filtering can be done through 

median filtering [1,2]. The drawback of these filtering methods 

is that they do not preserve the edges in the denoised image. 

Donoho and Johnstone introduced denoising via wavelet 

thresholding [3,4,5] and it is now widely applied in science and 

engineering applications. It is based on thresholding (adaptive 

or nonadaptive)  

 

of the wavelet coefficients obtained from the orthogonal 

discrete wavelet transform (DWT) of data. The wavelet 

coefficients in the frequency detail subbands can be thresholded 

by means of soft/hard thresholding operator. Another image 

denoising scheme is by using Principal Component Analysis 

(PCA) [6,7]. It transforms the original data set in to PCA 

domain and by preserving only the most significant principal 

components, the noise and trivial information can be removed. 

In [8], PCA based method was proposed for image denoising 

using local pixel grouping. Drawback of this scheme is that due 

to its computational complexity it is very slow.  

The proposed work combines the good properties of wavelet 

packet analysis with those of principal component analysis, 

realized using the Karhuen-loeve (KL) transform in wavelet 

domain. The KL transform in wavelet packet domain fully 

decorrelate the frequency subbands, wherein the energy of the 

signal is clustered in few principal components while the noise 

energy spread over all transformed coefficients. This allows to 

apply a suitable shrinkage function to these new coefficients, 

thus removing noise without blurring the edges. The resulting 

image is processed again in spatial domain by using total 

variation regularization. 

Rest of the paper is organized as follows:  Section 2 presents 

the general theory of wavelet packet decomposition. Section 3 

briefly reviews the procedure of PCA. Image denoising using 

total variation regularization is presented in Section 4. Section 5 

is devoted for the description of the proposed algorithm and 

Section 6 presents the experimental results and comparison. 

Finally, Section 7 concludes the paper.                                        

2. WAVELET PACKET 

DECOMPOSITION 
Wavelet packet decomposition (WPD) [9], also known as 

wavelet packets or subband tree is a wavelet transform where 

the discrete-time signal is passed through a larger number of 

filters than the discrete wavelet transform (DWT). In DWT, 

each level of decomposition is calculated by passing only the 

previous wavelet approximation coefficients  𝑐𝐴𝑗  through 

discrete-time low and high pass quadrature mirror filters. 

However, in WPD at any scale j both the approximation 

coefficients and the detail coefficients, {Horizontal 𝑐𝐻𝑗  , 

Vertical 𝑐𝑉𝑗  , and Diagonal 𝑐𝐷𝑗  } are decomposed to create a 

full binary tree. The wavelet packet decomposition at the first 

level (j=1) is shown in Fig.1. In the figure, 𝑓 is the input signal 

(2D) and g, h are the low pass and high pass quadrature mirror 

filters respectively. 
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Fig 1:  First level wavelet packet decomposition 

3. PRINCIPAL COMPONENT ANALYSIS 
PCA [6,10,11] is a classical decorrelation technique which is 

mostly used for data compression, patter recognition and noise 

reduction. A remarkable property possessed by PCA is that the 

energy of signal concentrates on a small subset of PCA 

transformed data set while the noise energy spreads over the 

whole dataset. Therefore, signal and noise can be distinguished 

in the PCA transform domain. 

Assume z = [𝑧1,𝑧2, 𝑧3 … . . 𝑧𝑚  ] to be an m- component vector 

variable. Z, the 𝑚 × 𝑛  sample matrix of z, is given   by 

            Z =    

 
 
 
 
𝑧1

1 𝑧1
2 …

𝑧2
1 𝑧2

2 …
⋮ ⋮ ⋮

𝑧1
𝑛

𝑧2
𝑛

⋮
𝑧𝑚

1 𝑧𝑚
2 … 𝑧𝑚

𝑛  
 
 
 

                                               

(2)  

 For i = 1, 2, 3 ………m and j = 1, 2, 3 ……n,𝑧𝑖
𝑗
 is the discrete 

sample of variable 𝑧𝑖 . The ith row of sample matrix given by Zi  

= [𝑧𝑖
1     𝑧𝑖   

2  …… . 𝑧𝑖
𝑛 ], is the sample vector of 𝑧𝑖 .The mean value 

of 𝑧𝑖  is estimated as µ𝑖 = 𝐸 𝑧 𝑖 ≈   
1

𝑛
  Zi

𝑛
𝑗  =1  j . Thus the 

mean value vector of z is given by 

            µ =  𝐸[z]  =  [µ1   µ2 … . . . µm ]𝑇                                   
(3) 

Centralized vector z = z − µ, and the element of z  is𝑧 𝑖=  𝑧𝑖 −

µ𝑖  . The sample vector of 𝑧 𝑖  isZ i = Zi − µ𝑖= [𝑧 𝑖
1𝑧 𝑖

2 … . 𝑧 𝑖
𝑛 ], where 

𝑧 𝑖
𝑗  

= 𝑧𝑖
𝑗
− µ𝑖 . Accordingly the centralized matrix Z  of Z is given 

by 

           Z  =

 
 
 
 

Z 1

Z 2

⋮
Z m  

 
 
 
=  
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(4)  

The co-variance matrix of Z  is calculated as  

                           Ω ≈ (1/n)Z  Z T                                                   

(5) 

   In PCA transformation, an orthonormal transformation matrix 

P is calculated to decorrelate Z , i.e. X = PZ  such that the co-

variance matrix of X  is diagonal. The co-variance matrix Ω of Z  

is symmetrical so it can be written as             

                                      Ω = ФᴧФT                                           (6)   

where, Ф = [ɸ1ɸ2 ……… . .ɸ𝑚 ] is the 𝑚 × 𝑚  orthonormal 

eigenvector matrix and ᴧ = 𝑑𝑖𝑎𝑔{𝜆1 , 𝜆2,…… . , 𝜆𝑚 } is the 

diagonal eigenvalue matrix with  𝜆1 ≥ 𝜆2 …………  ≥ 𝜆𝑚  . The 

terms ɸ1 ,ɸ2 ,……… ,ɸm  and 𝜆1 , 𝜆2,…… . , 𝜆𝑚  are the 

eigenvectors and eigenvalues of Ω respectively. By putting  

                                       P = ФT                                                
(7)   

Z  can be decorrelated, i.e. X  = PZ  and ᴧ= (1/n ) X  X 𝑇 . 

4. TOTAL VARIATION 

REGULARIZATION 
Total variation, also known as the total variation regularization 

process is based on the principle that the signals with excessive 

and possible spurious details have high total variation, that is, 

integral of absolute gradient of the signal is high. By using this 

principle, upon reducing the total variation of the signal results 

in a close match to the original signal, thus removing undesired 

details (noise) while preserving the important details such as 

edges. For an input image𝑓   the goal of total variation is to 

estimate𝑓"that has a smaller total variation than 𝑓 (noisy image) 

but is close to 𝑓 . One measure of closeness is sum of square 

error.  
Total variation denoising problem is of the form proposed in 

[12]. 

          min𝑓"     
𝑙𝑚

2
 𝑓 − 𝑓" 

2
+ 𝑣(𝑓")                                (8) 

Where 

       𝑣 𝑓" =    𝑓𝑖+1,𝑗
" − 𝑓𝑖 ,𝑗

"  
2

+  𝑓𝑖 ,𝑗+1
" − 𝑓𝑖 ,𝑗

"  
2

𝑖 ,𝑗        

(9) 

and lm is the regularization parameter, which plays an important 

role in denoising. If 𝑙𝑚= 0, there is no denoising. Depending 

upon the noise level, 𝑙𝑚  can have a value between 0 and 1. 

5. PROPOSED DENOISING ALGORITHM 
In this section the proposed denoising algorithm is discussed. 

The original image 𝑓, of size 𝑚 × 𝑚  is corrupted by additive 

white Gaussian noise (𝜂) with zero mean and standard 

deviation σ. The noisy image is represented by 𝑓  𝑓  = 𝑓 + 𝜂 .  
Denoising is performed in two steps; Step 1: Wavelet packet 

denoising using PCA, Step 2: Post processing of the denoised 

image of step1 through the Total Variation Regularization in the 

spatial domain. The block diagram of the proposed technique is 

shown in Fig. 2. 

Step 1: In the first step, the wavelet packet decomposition of 

noisy image is obtained by using the well-known tensor product 

technique. The l level decomposition of the noisy image (𝑓 ) of 

size 𝑚 × 𝑚turns out in to T = 2𝑙 × 2𝑙  subband images 

represented by𝑐𝑗   (𝑗 = 1, 2,…2𝑙 × 2𝑙 ), each of size of 𝑘 =

𝑚/2𝑙 ×  𝑚/2𝑙 . Each sub image is arranged in the form of a 

singlerow of matrixZ. Thus,2𝑙 × 2𝑙  subbands when arranged in 

the matrix Z, makes the dimension of the matrix to be  (2𝑙 ×
2𝑙) × ( 𝑚/2𝑙 ×  𝑚/2𝑙). Then KL (PCA) transform is applied to 

the matrix Z and the transformed matrix is represented by X. 

The PCA transformed wavelet packet coefficients are 

represented by 𝑐 𝑗 ,𝑘 .  The KL transform separates the signal and 

𝑓 
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noise energy, thus allowing to apply a new thresholding rule as 

proposed in [13]. All the frequency sub bands whose mean 

energy is less than the Gaussian noise variance (𝜎2) are 

discarded and an exponential shrinkage function as proposed in 

[14] is applied to the retained coefficients. 

     𝐹𝑡(𝑥) =   𝑎−
𝑡2

𝑥2 if 𝑥 ≠ 0 with
 0                otherwise

  𝑎 ≥ 1 & ≥ 0                (10) 

The threshold t is band dependent which means that each 

subband (𝑐𝑗 ) has an individual threshold depending on the mean 

energy of subband (i.e., 𝜆𝑗 ) and is given by 𝑡𝑗  for j =1, 2, 3……. 

(2𝑙 × 2𝑙  ). 

                                         𝑡𝑗 =  
𝜆𝑗𝜎

2

𝜆𝑗−𝜎
2
                                    

(11)      

The thresholded coefficient is given by𝑐 𝑗 ,𝑘   𝑗 = 1, 2,… 2𝑙 ×

2𝑙 𝑎𝑛𝑑 𝑘=1, 2,…𝑚/2𝑙× 𝑚/2𝑙. 

                      𝑐 𝑗 ,𝑘 =       
𝐹𝑡𝑗  𝑐 𝑗 ,𝑘 × 𝑐 𝑗 ,𝑘  if  1

k 𝑐 𝑗  𝑐 𝑗
𝑇 ≥ 𝜎2

0                           otherwise
    (12) 

Application of inverse PCA and then the inverse wavelet packet 

transform to the thresholded coefficients results in the denoised 

image of step 1. 

Step 2: In the second step, the resulting denoised image 𝑓  of 

step 1 is treated as input image for denoising in the spatial 

domain by using the total variation regularization using 

Equation (8), and Chambolle‟s minimization algorithm 

proposed in [15]. 

STEP 1: WAVELET DOMAIN DENOISING 

 

STEP 2: SPATIAL DOMAIN DENOISING 

Fig 2: Block diagram of proposed denoising algorithm. 

6. EXPERIMENTAL RESULTS AND 

COMPARISON 

The performance of the proposed denoising algorithm is tested 

on four gray-scale images shown in Fig. 3, each having a size of 

512×512. These test images have been corrupted with Gaussian 

noise with different values of standard deviation (σ = 5, σ = 10, 

σ = 15, σ =25, σ =35). In the first step of the proposed 

denoising algorithm, 3 level (l=3) wavelet packet 

decomposition is performed using „sym8‟ wavelet for 

decomposition instead of „db4‟ used by the authors in [13]. The 

near symmetry property of „sym8‟ wavelet finds advantage over 

„db4‟ in image processing applications as symmetry is a 

desirable property for the human visual system.  For 

exponential shrinkage, a possible choice for the parameters h 

and a is h=4 and a=2 (generally these values depend on the 

amount of noise). In the second step of denoising, the denoised 

images obtained from the first step are further processed with 

TV regularization with differing values of regularization 

parameter 𝑙𝑚 . Each image with standard deviation of noise (σ = 

35, 25, 15, 10, 5) were tested for all possible values of 

𝑙𝑚 ranging from 0.1 to 0.9. Experiments show that, higher value 

of 𝑙𝑚  is required for post-processing of images that were 

suffering from low noise levels and vice-versa. TV 

regularization parameter taken is 𝑙𝑚 = 0.1, 0.2, 0.5, 0.7, 0.9 for 

the noise deviation σ = 35, 25, 15, 10, 5 respectively. Table 1 

shows the experimental results in terms of root mean square 

error (RMSE) and peak signal to noise ratio (𝑃𝑆𝑁𝑅 =
20 log10(255/RMSE)). Table 2 shows the comparison of 

denoised results of proposed method with the soft thresholding 

(using the universal threshold) method, TV regularization 

method and PCA in wavelet domain method in terms of RMSE 

and PSNR. It is very clear from the comparative table that  only 

for the low noise deviation (σ = 5) , PSNR of denoised Lena 

image of proposed method is low as compared to TV 

regularization method while  for  higher noise deviations, it is 

the highest as compared to  all the methods under comparison. 

The PSNR of denoised cameraman and MRI image of proposed 

method for all noise deviations is high as compared to all the 

methods under comparison. For the denoised peppers image of 

proposed method, the PSNR is low as compared to TV 

regularization method for low noise deviation (σ = 5, σ = 10, σ 

= 15), but for higher noise deviations (σ = 25, σ = 35), the 

proposed method provide the best results. Denoised images of 

Lena, Cameraman, MRI, and Pepper by using different methods 

(TV regularization, PCA in wavelet domain, and proposed 

method) are shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 

respectively. 

 

 

 

 

 

 

 

 

 

Fig3: Test images (a) Lena; (b) Cameraman; (c) MRI;           

(d) Peppers 
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Table 1. Numerical results on the test images with several noise standard deviation values. 

 

Table 2. Comparison between the soft thresholding with universal threshold method [4], TV regularization method [15], PCA 

in wavelet domain method [13], and proposed method in terms of RMSE and PSNR. 

 

 

 

 

 

    Noise deviation 

(σ) and TV 

regularization 

parameter (lm) 

                 Lena           Cameraman                 MRI           Peppers 

 

  RMSE 

 

 PSNR 

 

   RMSE 

 

   PSNR 

 

   RMSE 

 

  PSNR 

 

  RMSE 

 

  PSNR 

 

σ = 5 

 

lm = 0.9 

 

   3.35              37.63 

 

    2.56                39.97 

 

    2.50             40.17    

 

   3.40             37.50 

 

σ = 10  

 

lm = 0.7 

 

   4.99              34.16 

 

    4.11                35.86 

 

    3.82             36.49 

 

   5.00             34.15 

 

σ = 15 

 

lm = 0.5 

 

   6.27              32.19 

 

    5.41                33.47 

 

    4.94             34.26 

 

   6.22             32.26 

 

σ = 25 

 

lm = 0.2 
 

   8.22              29.83 
 

    7.60                30.52 
 

    6.87             31.39 
 

   7.90             30.18 

 

σ = 35 

 

lm = 0.1 

 

   9.76              28.34 

 

    9.43                 28.64 

 

    8.50             29.54 

 

   9.31             28.75 

Methods Soft thresholding with 

Universal threshold [4] 

TV regularization Method 

[15] with regularization   

parameter ( 𝑙𝑚 ) 

PCA in wavelet 

domain method [13] 

Proposed method 

 RMSE PSNR RMSE PSNR 𝑙𝑚  RMSE PSNR RMSE PSNR 

Lena 

σ = 5 

σ = 10 

σ = 15 

σ = 25 

σ = 35 

 

4.44 

6.45 

8.85 

10.43 

12.20 

 

35.18 

31.94 

29.46 

27.76 

26.40 

 

3.14 

5.11 

6.10 

11.88 

20.19 

 

38.19 

33.96 

32.42 

26.63 

22.03 

 

0.4 

0.1 

0.1 

0.1 

0.1 

 

3.67 

5.41 

6.70 

8.78 

10.44 

 

36.83 

33.46 

31.61 

29.26 

27.75 

 

3.35 

4.99 

6.27 

8.22 

9.76 

 

37.63 

34.16 

32.19 

29.83 

28.34 

Cameraman 

σ = 5 

σ = 10 

σ = 15 

σ = 25 

σ = 35 

 

4.06 

6.10 

8.31 

11.09 

12.99 

 

35.96 
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29.73 
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5.83 
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20.23 
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0.1 
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0.1 

 

2.62 
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Fig 4: (a) Lena noisy image with σ = 25; (b) denoised image with TV regularization algorithm, PSNR=26.63; (c) denoised image 

with PCA in wavelet domain, PSNR=29.26; (d) denoised image with proposed algorithm, PSNR=29.83. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: (a) Cameraman noisy image with σ = 25; (b) denoised image with TV regularization algorithm, PSNR=26.68; (c) 

denoised image with PCA in wavelet domain, PSNR=29.90; (d) denoised image with proposed algorithm, PSNR=30.52. 
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Fig 6: (a) MRI noisy image with σ = 25; (b) denoised image with TV regularization algorithm, PSNR=26.64; (c) denoised image 

with PCA in wavelet domain, PSNR=30.85; (d) denoised image with proposed algorithm, PSNR=31.39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: (a) Peppers noisy image with σ = 25; (b) denoised image with TV regularization algorithm, PSNR=26.80; (c) denoised 

image with PCA in wavelet domain, PSNR=29.29; (d) denoised image with proposed algorithm, PSNR=30.18. 
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7. CONCLUSION   
This paper presents a denoising algorithm which is a 

combination of denoising in both the wavelet domain and the 

spatial domain. The first stage of denoising is performed by 

applying PCA on the wavelet packet transform coefficients. 

PCA owns the property of decorrelation and thus energy of 

signal concentrates on a small subset of PCA transformed data 

set while the noise energy spreads over the whole dataset. By 

applying a suitable shrinkage function, signal and noise are 

separated in the PCA domain. The second stage of denoising is 

a post processing step performed in spatial domain using total 

variation regularization. Experimental results demonstrated that 

the proposed method can effectively suppress the noise and at 

the same time effectively preserve the edges without blurring. 
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