
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

29

Structured Query Language Injection (SQLI) Attacks:
Detection and Prevention Techniques in Web

Application Technologies

 Wisdom Kwawu Torgby

Computer Science Department
 School of Applied Sciences, Accra Polytechnic,

Accra, Ghana

Nana Yaw Asabere
Computer Science Department

School of Applied Sciences, Accra Polytechnic,

Accra, Ghana

ABSTRACT

This paper investigates and reports on web application

vulnerabilities with a specific focus on Structured Query

Language Injection (SQLI) attacks and measures and how to

counter such threats. SQLI attacks cause very serious dangers

to web applications, they make it possible for attackers to get

unhindered access to the primary source of data which is in

the database and possibly the very sensitive information that

the database contains. Even though practitioners and

researchers in the web application security field have

proposed a range of techniques to get to the bottom of the

SQLI attack challenge, presently adopted approaches have

either resolved the problem to some extent or have

inadequacies that prevent their use and adoption. To help

address this challenge, this paper presents a broad review of

SQL injection attacks. An appraisal of current detection and

prevention techniques against SQL injection attacks are also

presented. Furthermore, a vulnerability assessment was

conducted on the Centre for Computational Intelligence (CCI)

Website as a case study. A snippet code that can be used to

redesign the CCI website as a protective measure to counter

threats of SQLI was proposed. An examination of this paper

indicates that current solutions being promoted may not

address the problem, and that web application firewalls

provides the answer to SQLI attacks.

General Terms

Attacks, Threats

Keywords

Web Application, Website, Security, Structured Query

Language Injection (SQLI), Vulnerabilities

1. INTRODUCTION
Currently, web applications are playing a magnificent role in

providing vital information to all manner of users on a global

scale. Web applications usually consist of a three tier

architecture. The database, which is the most valuable assets

in any organization, is found in the third tier. Due to the rapid

adaptation of web applications, various attacks against web

applications are possible. Most organizations are mapping

their business from a room to the world with the help of

these web apps [1]. More and more web applications suffer

the presence of cross-site scripting vulnerabilities that could

be exploited by attackers to access sensitive information (such

as credentials or credit card numbers). Hence proper tests are

required to assess the security of web applications [2].

The Internet, and in particular the World Wide Web (WWW),

have become one of the most common communication media

in the world. Millions of users connect every day to

different web-based applications such as Google and Yahoo to

perform financial operations, search for information, interact

with each other, conduct business, pay taxes, exchange

messages and many more. Some of these critical web-based

services are targeted by several malicious users intending to

exploit possible weaknesses and vulnerabilities, which could

cause not only the disruption of the service, but also

compromise the information belonging to users and

organizations. Most of the time, these malicious users succeed

in exploiting different types of vulnerabilities and the

consequences can be disastrous. Most of these vulnerabilities

are directly related with the web-based application‟s lack of

quality as a result from a poorly implemented Software

Development Life Cycle (SDLC) [3].

According to Tian et al. [4] web application software security

becomes more and more important as a result information

access through web applications. Recent investigations show

that web application vulnerabilities have become the largest

security threat. The Web Sense Security Report shows that in

the first half of year 2008, the most popular websites that have

been utilized by various hackers to run malicious code were

above 75%. Detecting and solving vulnerability is the

effective way to enhance web security [4].

Much effort in the past decade has been spent on mitigating

web application vulnerabilities. According to Scholte et al. [5]

current techniques focus mainly on sanitization: either on

automated sanitization, the detection of missing sanitizers, the

correctness of sanitizers, or the correct placement of

sanitizers. However, these techniques lack precision and

require significant modifications to the client and/or server

infrastructure. Additionally, these techniques are either not

able to prevent new forms of input validation vulnerabilities

such as HTTP Parameter Pollutions that‟s are accompanied

with large runtime overhead [5]. Generally, people are

unaware of the wide variety of techniques at the disposal of

attackers who are always making efforts to take advantage of

SQLI vulnerabilities.

This paper presents a research analysis of SQLI attacks and

countermeasures and the attack techniques that are used to

take advantage of the security design flaws. The purpose of

this paper is to specifically focus on SQLI attacks. The simple

reason that web application attacks are directed at websites

almost on daily basis makes this research interesting,

especially because it appears not many people are well

informed of the SQLI attack, which is the most devastating

attack in web application technologies. Consequently, this

paper proposes a snippet of suggested codes for redesigning

the web firewall of the CCI Website as a case study for

protection against SQL injection attack. The paper is

presented in five sections. After the Introduction in Section 1,

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

30

Section 2 presents a Literature Review of the SQLI Attacks,

Section 3 discusses the Importance and Benefits of Web

Firewalls in Prevention of SQLI Attacks, Section 4 elaborates

on Related Work, Section 5 presents the Vulnerability

Assessment of the CCI Website as a Case Study. The paper is

finally concluded in Section 6.

2. SQLI ATTACKS
Basically SQLI attacks are deceptive ploys used to introduce

input provided by the user. The term SQL stands for

Structured Query Language. SQL is an exceptional coding

language which is used to send queries to databases. In most

cases web applications regularly make use of input provided

by the user to produce SQL statements for dynamic web page

demands. In situations where an application fails to accurately

cleanse input provided by the user it is likely that a web

attacker can change the database statements at the background

[6][7].

SQLI attack can also be described as the process of sending

SQL code to a web application that is not planned by the

developer of the application with the express purpose of

causing harm. This attack technique takes advantage of the

security flaw occurring in the database level of a web

application. The attacker takes advantage of the weakness

inherent in the application and executes illegal SQL

commands by exploiting insecure codes. SQL injection makes

it feasible for the attacker to transmit crafted user name and

password fields which will modify the query [6][7].

This vulnerability has been described largely as one of the

most grave security dangers for web applications. When an

application becomes susceptible to SQLI attack, there is the

possibility for a wicked attacker to get total control and to

obtain access to the database. Usually these databases hold in

storage sensitive customer or user information. Consequently,

the security breaches may include losing confidential

information, stealing of identity and situations where people

can commit fraud [1][2][4][6].

The following are some of the features of web application that

may be liable to SQL injection attacks:

Login pages, search pages, support and product request

forms, shopping carts, feedback forms etc.

Input is taken from the user in a web form and sent to a

server-side script through Hypertext Transfer Protocol

(HTTP) methods such as Power On Self-Test (POST) and

GET. A process is initiated that establishes connection to the

database. A query is generated for the database and the result

is retrieved. The outcome is then transmitted back to the

attacker.

Example: A web based authentication form may have a code

which will appear similar to the following:

SQLQuery = “SELECT Username FROM Users WHERE

Username = „ “ & strUsername & “ „ AND Password =

& srPassword & “ „ “ strAuthCheck =

GetQueryResult(SQLQuery)

In this script, the person who developed the code is taking

user input from the form and inserting it straight into an SQL

query. Assuming an attacker presents a login and password

that seem to be like the following:

Login: „OR “=‟

Password: „OR “=‟

This will make the ensuing SQL query turn out to be:

SELECT Username FROM Users WHERE Username = OR

“=” AND Password = “ OR “=”

2.1 Types of SQLI Attacks
Basically there are two main types of SQL injection attacks,

these are:

 Normal SQL injection attack

 Blind SQL injection attack

2.1.1 Normal SQL Injection Attack
By adding a union select statement to the perimeter, the

attacker can then attempt to see if it is possible to get access to

the database.

2.1.2 Blind SQL Injection Attack
With this type of SQL injection attack, rather than displaying

a database error, the server presents a user friendly error page

notifying the user that an error has occurred. In this case, SQL

injection attack is possible even though it is not simple to

discover. A simple way to discover Blind SQL injection

attack is to insert a TRUE and FALSE statement into the

parameter value.

2.2 SQLI Attack Objectives

SQLI attacks can be categorized according to their aim, goal

or the intentions of the attacker. Some SQLI attack objectives

are as follows [6]:

2.2.1 Identifying Injectable Parameters

In this instance the attacker intends to investigate the web

application to determine which of the parameters and user

input fields are susceptible to SQL injection attack.

2.2.2 Performing Database Finger-Printing

In this instance the aim is to ascertain the type and version of

the database that the web application is utilizing. Some brands

of databases react in a different way to other different queries

and attacks, this vital information can be used to pinpoint the

database. Being aware of the type and version of the database

used by a web application makes it possible for an attacker to

design exact and precise attacks.

2.2.3 Determining Database Schema

In order to accurately dig out data from a database, the

attacker will need to have some knowledge of the database

schema, for instance table name, column names, and column

data types. An attacker with the intention of getting the

database schema crafts such attacks to gather these sorts of

information.

2.2.4 Extracting Data

This attack mechanism makes use of methods that help to take

out data values from the database. Based on the kind of the

web application, the information extracted can be very

confidential and very much attractive to the attacker. These

objective are the most common form of SQLI attacks.

2.2.5 Adding or Modifying Data

The main aim of this type of attack is to put into operation a

technique whereby information can be appended to the

database or transformed.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

31

2.2.6 Performing Denial of Service

This attacking technique is implemented by employing

mechanisms to shut down the database of the web application.

As a result of such an attack, service is denied to potential

users of the application. Attacks that entail locking or

dropping database tables come under this grouping.

2.2.7 Evading Detection

This class of attack mechanism puts into operation certain

techniques to steer clear of auditing and detection by system

protection measures that have been instituted to ensure that

the application is safe.

2.2.8 Bypassing Authentication

The purpose of this kind of attack is to permit the attacker to

evade the database and mechanisms implemented to verify

authentication for the application. Employing bypassing

techniques can make it possible for the malicious attacker to

take control of the rights and privileges related to the

application and the system.

2.2.9 Executing Remote Commands

The goal of this kind of attack is to use techniques that tries to

perform arbitrary commands on the database. The commands

employed to achieve this type of attack could be functions or

stored procedures which is accessible to users of the database.

2.2.10 Performing Privilege Escalation

The main objective of this type of attack is to exploit the

implementation mistakes or logical errors in the database with

the express purpose of escalating the privileges of the

attacker. In contrast to bypassing authentication attacks,

performing privilege escalation attacks centre attention on

taking advantage of user privileges of the database.

2.3 SQL Injection Attack Input Methods

Harmful SQL codes can be presented to a web application that

is susceptible to errors by way of making use of assortment of

input mechanisms. This section of the paper generally

explains in some of the different input mechanisms available.

2.3.1 Insertion of Data via User Input

In this instance, the malicious attacker inserts SQL commands

by supplying a well-crafted input by the user. The applications

can interpret input by the user in many different ways

depending on the setting in which the application has been

deployed. Generally attackers, who aim to use SQL injection

attacks in web applications, usually make use of user input

which comes from form submissions transmitted to the web

application through HTTP, GET or POST demands. In

general web applications have the capability to access user

input [6].

2.3.2 Insertion via Cookies

Cookies can be described as files that include the state of the

information created by the web application which is held in

storage of the client‟s computer. As soon as a client goes back

to the application, the cookies are then used to bring back the

state information of the client. In view of the fact that the

client exercises control in terms of the storage of the cookie, a

client with criminal intent can possibly corrupt the cookie‟s

content to construct SQL queries. This could result in a

situation where an attacker can very simply present an attack

by implanting it in the cookie [6].

2.3.3 Injection Through Server Variables

Server variables can be described as a set of items that are

flexible and changeable. They include HTTP, network

headers, and environmental variables. Usually web

applications make use of server variables in many different

ways. For instance taking down statistics for using the

application, and making out and classifying browsing trends.

When it happens that these variables are logged to a database

with no cleansing mechanism in place, there could be

resulting situation in which SQL weakness is generated.

Consequently, attackers can create fake values that are

positioned in HTTP and network headers, the attacker can

then take advantage of the weakness by the insertion of SQL

injection attacks straight into the headers. As a result of such

scenarios, whenever the query to log the server variable is

presented to the database, the attack is activated due to the

fake values positioned in the headers [6].

2.3.4 Second-Order Injection

In regard to second-order injections, the criminal attacker

plants wicked and harmful inputs to the database to indirectly

activate an attack in situations where that particular input is

used at a later time. It is important to note that the main

purpose of this type of attack differs considerably from first-

order injection attack. As a matter of fact, second-order

injections usually do not try to make the attack occur when

the harmful input at the outset gets to the database. In this

scenario, attackers depend on the information of where the

input will be consequently used and design the attack so that it

gets activated when it is being used [6].

2.4 How SQL Injection Works

The process of checking if a web application is susceptible to

SQL injection attack can be started with a simple input ploy.

Example

hi‟ or 1=1 --

Login: hi‟ or 1=1 --

Password: hi‟ or 1=1 --

The above depiction is an example of how SQLI is seeking to

gain access through the login page of the web application.

This example below is to attempt to get access to the web

application through the Uniform Resource Locator (URL)

http://duck/index.asp?id=hi‟ or 1=1 --

Another method is to attack through the HTML source code:

<FORM action=http://duck/Search/search.asp method=post>

<input type=hidden name=A value=”hi‟ or 1=1 --“>

</FORM>. To do this, the attacker must download the HTML

source code from the website and then save it on a hard dive,

make changes to the URL and hidden field after which he/she

can reload.

2.5 Consequences of SQLI Attacks

 Loss of Confidentiality: In view of the fact that

SQL databases usually store data of sensitive nature,

failure to maintain confidentiality of the database is

a recurrent problem associated with SQLI

weaknesses.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

32

 Problems of Authentication: When it happens that

poor SQL commands are utilized to verify names of

users and password, it then becomes feasible to link

up the system to another user without any prior

knowledge of the password.

 Authorization: When information about

authorization is stored in an SQL database, it

becomes feasible to modify the information by

means of successfully taking advantage of the SQL

weakness.

 Integrity: Even though it is very likely to read and

interpret sensitive information, it is possible to alter

or alternatively erase the information through an

SQL injection attack.

2.6 SQLI Countermeasures

The following guidelines are the recommended

countermeasures to incorporate when designing web

applications. It is expected that these recommended measures

will be implemented at initial stage of developing the web

application to ensure that it is secure [6][8]

2.6.1 Validate Input and Output Data
Majority of the most common attacks on web applications can

be prevented or the chances of this looming danger happening

can be considerably reduced, by incorporating the proper data

validation techniques. Data validation is one of the very vital

aspects of building a secure web application. Validation in

this context refers to both input and output of a web

application [8].

The input and output data, respectively coming into and out of

a system is the route of the malicious attacks of the system.

Every user input and output must be examined to guarantee it

is suitable and anticipated. The most appropriate strategy for

handling system input and output is to permit only clearly

defined features and drop all other data. For instance, if an

input field must accept a Social Security Number, then any

data that is not a string of nine (9) digits is not legal and must

be rejected. There are three (3) key models to consider when

designing a data validation strategy [8][9]

 Accept Only Known Valid Data

 Reject Known Bad Data

 Sanitize Bad Data

The point must be emphasized that “Accept Only Known

Valid Data” is the best strategy. Nevertheless, the fact must be

recognized that this is always not possible for financial and

other technical reasons. All these three methods should be

examined:

 Data Type

 Syntax

 Length

Examining the data type is extremely vital. The web

application must be examined to make sure a string is

submitted and not a different object.

 Accept Only Known Valid Data: This is the ideal

way to validate data that has been inputted. Web

applications must allow only input that is known to

be secure and anticipated. Assuming that a

password reset system allows usernames as input,

the valid and applicable usernames would be

defined as ASCII A-Z and 0-9. Checks must be

done by the web application to ensure that the input

is of the right type of string, is composed of A-Z

and 0-9 and is of a valid length [8].

 Reject Known Bad Data: The idea of disallowing

the bad data approach depends on the application

knowing about particular malicious payloads.

Although it is true that this approach can limit

exposure, it is very hard for any application to

maintain an update database of web application

attack signatures [9].

 Sanitize All Data: Cleaning the data is a key

solution. Every data that is supplied to the client

requires that it should be cleaned of any characters

that may be exploited by the malicious attacker. The

most excellent way to disinfect data is to make use

of default deny and regular expressions to get rid of

characters that may be causing problems. Below are

some of the very important measures to incorporate

during input validation [9].

- Escape Quotes: Substitute every apostrophe with

two apostrophes (one back slash with two back

slashes for MySQL).

- Ensure that numeric fields in actual fact appear like

numbers.

- The steps above should not only be implemented on

users direct input, but also on all variables that are

not constant.

- Verify to ensure that inputs are within expectation

(e.g. 0<age <120, login id with no space etc.).

- Avoid making use of SQL power characters in user

data with no proper encoding. Example of SQLI

power characters.

 Never Depend on Client-Side Data Validation:

Data Validation on the client-side can at all times be

evaded. Every data validation should be done on the

server which is trusted or under control of the web

application. Through client-side processing an

attacker can very simply watch the return value and

change it as and when he wants to. This appears

amazingly clear, yet many still validate users,

including login and using only client-side code like

JavaScript. Validation of data on the client-side, for

reasons of ease of use or user friendliness, is

acceptable, but must not be considered a true

validation process. Every validation must be done

on the server-side, even if it is necessary to hasty

validation performed on the client-side [9].

 Fail Securely (Closed): The designing of security

mechanism employed by the web application should

be done in a way that, in an event that it fails, that

failure is closed. Meaning that it should fail to state

where all successive security requests are rejected

rather than allowing them. An example could be a

user authentication system. If it is not able to

process a request to authenticate a user or entry and

the process crashes, further authentication requests

should not return negative or null authentication

criteria. Another example is a firewall, if a firewall

fails it should drop all successive packets [9].

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

33

2.6.2 Encoding of Inputs

The introduction of malicious characters into a string

parameter is time and again achieved via the use of meta-

characters that normally outwits the SQL parser into

interpreting user input as SQL tokens. Despite the fact

that it is feasible to disallow the utilization of these meta-

characters, implementation of such a measure would

limit and make it difficult for a user who has no

malicious intentions to be able to specify legitimate

inputs that include such characters. A good way for a

solution to these problems is to make use of functions

that encode a string in a way that every meta-character is

encoded in a special way and then interpreted by the

database as standard characters [9].

2.6.3 Positive Pattern Matching

When developing web applications, the person doing the

development should institute input validation mechanisms

which will spot and single out good input as opposed to bad

input. This method of approach is normally referred to as

positive validation. Since designers of the application may not

be able to foresee every kind of attack that may well be

initiated against web applications being developed, it is only

proper to specify all forms of authorized input. Positive

validation is a secure approach to confirm and ensure that

inputs are checked [6].

2.6.4 Identification of All Input Sources

During the process of development, the developer must

examine every input to the application. The fact must be noted

that there are many potential sources of input to an

application. If used to create a query, these input sources

could be a very important means of launching an SQL

injection attack. For these reasons, every source of input must

be critically examined [6].

2.6.5 Enforce Less Privileges

System Administrators must put into force measures that will

give users the precise lowest amount of the right of access

whenever establishing connection between databases and

other backend systems [9].

2.6.6 Use Stored Procedures

Web application users must make use of stored procedures in

view of the fact that they are usually protected by SQLI

attacks. Nevertheless, care must be taken as they can be

injected through the use of exec () or linking together

arguments used inside the stored procedure. In order to protect

an application against SQLI attacks, the person who develops

the application should in no way permit data supplied by the

client to alter the syntax of SQL statements. As a matter of

fact, the best means of providing defense is to separate the

web application from SQL altogether. Every SQL statement

that the application needs should be in stored procedures and

reserved on the database server [6].

2.6.7 Use of Prepared Statement
A prepared statement must be used in an event where stored

procedures cannot be used for whatever motive and dynamic

SQL commands have to be used. Usually, prepared statements

are used to transmit precompiled SQL statements by means of

one or more parameters. In general prepared statements are

resistant to SQL injection attacks as the database will use the

worth of the bind variable exclusively and not interpret the

contents of the variable in any way [6].

2.6.8 Avoid Detailed Error Messages

Try as much as possible to keep away from giving

comprehensive and exhaustive error messages that might be

of much use for an attacker who has the intention of

compromising an application.

2.6.9 Additional Recommended Measures

to Guarantee Security

 Create or operate the target infrastructure in such a

way that reverse proxy servers are used and direct

sockets cannot be established with the real server

hosts from the public internet. This will in addition

take into account the implementation of some

tightly configured web application firewall. In

situations where web services are involved, they

have to be uniquely safeguarded.

 Separate the web servers: It is always likely that

something is either wrongly or deliberately left open

on a web server. Architectures must be planned

assuming that the bad guys will have full access to

web servers through violations. With that guess, one

must segregate the web servers in using a very rigid

approach.

 The system must be made tight, and customized for

error handling used. This is due to the fact that the

default error handling for the majority of web

structures involves the needless disclosure of

sensitive data. Implementing such measures will

prevent needlessly exposing data. For instance,

picture how easy it is going to be for an attacker in a

situation where a full SQL query displayed a result

as an error.

3. WHAT IS A WEB APPLICATION

 FIREWALL?

A Web Application Firewall can be described as an

intermediary device, which sits between a client and a web

server. The main central role of a web application firewall is

analyzing and examining network message transmissions to

determine whether there has been a breach in the security

policy of the application. It is a tool which is used to secure

the web server as well as the applications from harmful

attacks [12]. Web application firewall can also be referred to

as „Deep Packet Inspection Firewall‟ for the simple reason

that this security technology examines every request and

response inside the HTTP. Several web application firewalls

seek to look for particular attack signatures and try to identify

the nature of attack being initiated by those intending to harm

the application, whereas others search for odd behavior

patterns that do not fall in line with a website‟s usual traffic

flow. This security technology can either be software or

hardware based, under normal circumstances it is installed at

the front of a web server.

The purpose for setting up the firewall is to try and protect the

application from incoming attacks launched by wicked and

dangerous attackers. The inherent features of web application

firewalls have the capability of stopping attacks that network

firewalls and intrusion detection and prevention systems

cannot, without having to modify the source code of the

application. The web application firewall performs its role

independently of the application in use [12]. Essentially the

web application firewall protects very important business

applications and servers from both known and unknown

attacks. The firewall also provides protection against the harm

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

34

a security violation could cause to a company either through

loss of name and status as well as loss in cost terms. For web

applications already in production, the applications firewall in

this case is very good in making the site secure [12].

3.1 Importance and Necessity of Developing

Web Application Firewalls
One significant subject bothering many business organizations

and attracting the attention of top management on a daily

basis is the issue of developing secure web applications. The

leadership of most corporate business organizations are

generally doing everything feasible to give confidence and

assurance to customers and suppliers so that proper security

procedures are employed to deal with the problem of gaining

unlawful access to confidential information on the web. The

economic cost of violating the security of the web

applications is unbelievable, and is a matter that has serious

economic implications for businesses doing business on the

web. As a result of the coming into being of the internet,

many businesses are setting-up and making use of web

applications to help increase revenues, reduce the cost of

conducting business, and ensuring that customer services

improves [10].

To guarantee security of web applications, businesses would

have to take steps to put into operations secure coding

practices, engage dealers to scan vulnerabilities and assess

their web applications, set up a network intrusion detection

and intrusion prevention systems or implement other

technologies that guarantees the security of the applications.

The greatest dilemma confronting web applications presently

is the issue of vulnerabilities which is widespread. These

faults can make it feasible for attackers to execute queries in

the application‟s database, and most probably assume control

of the web server. The danger confronting web applications

are real and occur daily, this is coming about basically due to

errors in the applications. An additional difficulty confronting

the applications is the cost of late detection of the

vulnerabilities. Majority of businesses leave the detection and

exposure of web application faults to a group of devoted

security staff who examine the application for any errors

before putting it into production [11]. Rectifying the error,

demands that the code is analyzed line by line from beginning

to the end by those who developed the web application as well

as quality assurance testing employees. Detecting and

correcting an error of a web application already in production

can be very expensive. The longer it takes for errors to go

undetected, the higher the cost of developing the application.

According to a Report by the National Institute of Standards

and Technology (NIST) [11], when a design error is

discovered or detected the expenditure level is 30 times what

it would have been used to correct the error during the period

of design. A point must be noted that this cost is only for the

rectification of the error.

Additional expenses like losing customers as well as

suppliers, lost market share, and name and status of the

business must be taken into account. When the web

applications are tested early enough, it will go a long way to

reduce the cost significantly, but the real concern is how to

expose the faults without bringing development to a crushing

stop. Due to the critical nature of business transactions going

on the internet, and for customers to have access to constant

information, the web application must always be available day

and night and throughout the course of the year. Business

organizations simply do not have the luxury of taking down

web applications to rectify errors uncovered after addition of

new features. Clearly businesses cannot endure a situation

where vulnerabilities keep on plaguing their applications, this

will not create confidence in customers as well as partners.

Table 1: Relative Costs Based on Time Lapse between

Error Creation and Discovery

 Found

in

Design

Found

in

Coding

Found

in

Integrat

ion

Found

in

Beta

Found

in

GA

Design

Errors

1x 5x 10x 15x 30x

Coding

Errors

 1x 10x 20x 30x

Integratio

n Errors

 1x 10x 20x

Source: [11]

3.2 Benefits of Web Application Firewalls
The drawbacks of secure web programming as well as the

inability of vulnerability scanners, intrusion detection and

prevention systems to provide the required protection for web

applications, several corporate business institutions have

incorporated web application firewalls as balancing

procedures to help in their efforts to achieve a better security

level for their applications. The applications firewall is built

with the expressed purpose of safeguarding a business‟s web

application from malicious attacks and disclosing very private

information.

In order to achieve these objectives, the web application

firewall employs two security mechanisms. The first which is

positive security mechanism makes it possible for genuine and

lawful traffic to come into the web application. The second is

negative security mechanism, which disallows codes or

attacks which are harmful from getting to the application, and

as a result stops the application from leaking any sensitive

information. These two security techniques makes it possible

for businesses to secure important data from known and

unknown attacks, thereby enhancing the security level of the

applications. This application security technology presents a

number of different benefits to business organizations. Below

is a brief summary of the benefits that will accrue to

businesses owing to the deployment of a web application

firewall [13].

 Good Return on Investment (RoI): A web

application firewall is a tool that helps to reduce

cost appreciably in an efficient way once it is

deployed by the business organization. For example,

with the web application firewall installed there will

be no need to conduct regular secure code reviews

as well as scanning for vulnerabilities; this will

result in major savings for the business. In cost

terms it is particularly advantageous to business

entities with several applications in operation with

each having its own peculiar security needs.

 Cost of Maintenance is Low: One of the most

important elements for the implementation of any

technological security initiative is the cost of

maintenance. A web application firewall has certain

in-built mechanisms which ensure that maintenance

effort reduces significantly. As a result of such

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

35

initiatives the cost of deployment of the web

application firewall becomes lower in the long run.

 Shut Down Access on Web Attacks: One of the

very significant advantages of a web application

firewall is getting rid or reducing the dangers of

malicious attacks usually by means of a business

organization‟s web application. Essentially web

application firewalls are able to secure web

applications already installed and running live.

Normally these applications are made of several

parts and in events where errors are discovered, and

changes cannot be made quickly by the designers of

the application, or in situation where the application

has been poorly documented, or applications

developed by third parties, a web application

firewall can be employed to quickly shield and shut

down the application from web attacks.

 Speed of Developing Applications Improves:

Apart from stopping malicious attacks, web

application firewalls can as a matter of fact speed up

the development of new web applications. Currently

the deployments of fresh applications are hindered

by this idea of scan and repair mentality. This

means a code is written, scanned to identify errors,

and then returned to those who developed it, to

rewrite it again. This approach is not only slow,

expensive and time-consuming, but is also not

useful in identifying unknown vulnerabilities. It

only discovers a limited number of known security

violations. With web application firewall the team

developing the application can concentrate on quick

and fast building of new applications, with full

knowledge and assurance that the code will be

safeguarded from any wicked attacks.

 No Need to Rewrite Code: Where there is no

sufficient safeguard for an application, those who do

the development work are always under pressure to

hunt for faults and take steps to rectify these faults.

Scanners and code review can work to some extent.

As soon as a web application firewall is in place,

application designers can now pay attention to fast

deployment of new applications as well as the

addition of new features.

 Significantly Reducing Reactive Patching: Due to

the security holes normally resident in web

applications yet to be protected, developers from

time to time install patches as and when the holes

are detected in order to make the application secure.

With a web application firewall in place, it reduces

the need for the application to rely on patches to

seal the holes. This is accomplished by simply

keeping harmful traffic out, and letting in good

traffic.

 Elimination of Dangers to Businesses: Because

malicious attackers are fully aware that many

unprotected web applications are vulnerable to

attacks, they try to get access to classified

information by transmitting malicious code, to

website of companies with the intention of

compromising their system. The outcome of a

breach in security can be loss of customers, injury to

the brand name, and financial loss etc. Web

application firewall considerably reduces the danger

of getting the system compromised by incorporating

practical security protection mechanisms to guard

against dangerous attacks.

3.3 Evaluation of Web Application

Firewalls

There are three (3) major questions to consider when

evaluating web application firewalls. In situations where a

business organization makes a decision to deploy a web

application firewall, potential vendors may have to answer the

following questions:

 Has the technology been proven in real-world

environments? This answers the question of

whether the web application firewall has been

deployed in another business organization without

problems and that they will be willing to bear

witness of what the vendors have said about the web

application firewall. The web application firewall as

deployed should be able to clearly show that it is

capable of addressing the same security difficulties

that confront the new businesses.

 Does the product support or impede business

operations? This describes a situation in which it is

expected that the web application firewall would be

visible to users of the application and not interrupt

or obstruct them when conducting business

transactions online. Furthermore, it is expected that

the web application firewall must function

efficiently without having to bring in a new point of

failure which can render the applications that have

been secured inoperative.

 Does the web application firewall give actionable

information which can be used by the security,

development and testing teams? The product must

offer detailed snapshots of each secured application

that provides the security team‟s comprehensive

appreciation of transactions and the background in

which they function. In addition, the web

application firewall must give sufficient details

about vulnerabilities and application security

deficiencies so that the development and testing

group can without difficulty appreciate the measures

they need to employ to rectify the errors.

3.3.1 Reasons Why Secure Coding

Initiatives is Not the Answer to the

Prevention of SQLI Attacks

The desire of many business institutions seeking to develop an

entirely flawless secure code is a very good aspiration indeed,

but the snag is that, it is really a difficult challenge. This is

because studies have suggested that so far it has not been

possible to successfully deploy a secure code. Basically there

are two types of code, that is code developed in-house and the

one contracted out to be developed by companies outside a

business. Secure coding as a matter of fact is an option that is

best recommended, and it brings up the implementation of

good security measures early in the code development

process. Taking the case of applications developed in-house,

most of the time many business organizations employ people

in-house to develop their web applications. Such people who

design these applications are not infallible.

They are also subject to make mistakes due to pressure of

work or the enormity of the task at hand. It is possible that

they may have too many web applications to secure at the

same time or that they took charge of a website whose

original developers may have left the organization. Those

there at the time of the web application development may not

have sufficient information due to incomplete documentation

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

36

and for that reason cannot be in a position to effect the

required changes to the application. Another problem could be

that getting people with secure coding skills is not going to be

an easy issue, since secure coding is an emerging area in

application security and is generally not taught in school [10].

Another method employed by companies doing business on

the web is to give the job of code development to firms that

are outside the business organization, what is commonly

referred to as service providers, outsourcing or third parties.

Even this approach has its own unique benefits of ensuring

quicker and speedy development of applications, it brings

with its own peculiar set of difficulties. One problem with this

approach is that it is too expensive to contract other

organizations to do this, also even though the work is done

outside when it comes to testing and correcting errors it has to

be brought in-house to be done. Anytime a newer version of

the application is released the same process is repeated. In

circumstances where a business organization has several web

applications deployed, each new version released for the

application could lead to incurring and additional expenses as

well as utilizing more resources and time [10].

3.3.2 Reasons Why Vulnerability

Scanning is Not the Answer to the

Prevention of SQLI Attacks

In the attempt to look for a way to secure web applications,

several corporate businesses have resorted to vulnerability

scanners as their saviours. The belief is that the vulnerability

scanner has the capability of scrutinizing the web application

and exposing all the holes that are contained therein for the

necessary corrections to be made. It is one of the best

recommended practices; it also discovers faults faster than

line by line code review [5][14]. Even though vulnerability

scanners are very useful tool in the fight against web attacks,

they go through the same difficulties that majority of security

technologies experience. The difficulties start with getting the

person with requisite skills to appropriately set-up and

implement the tool, at the same time analyze and interpret the

findings of the scanners.

Another difficulty is that they act in response to the actions of

attackers and are not proactive at all. In a situation where

there is a modification in the code, the danger is the website

may become insecure; it does not have the ability to examine

every line in the code in order to identify faults for

rectification. With vulnerability scanners there is the danger

of inaccuracy, also findings are not consistent. In events

where errors are discovered they do not have any mechanisms

in place to correct those errors. For instance, taking a case

where a business entity has several web applications

deployed, it would be very costly for such businesses to

employ vulnerability scanners to secure their applications. In

the case of new and unforeseen vulnerabilities it is not

possible for vulnerability scanners to detect them since no

new signatures would have been created for that purpose [14].

3.3.3 Reasons Why Deploying Network

IDS/IPS is Not the Answer to the

Prevention of SQLI Attacks

The quest for business organizations to put in place suitable

and acceptable defense for their network security is a laudable

objective that needs to be pursued with all strength they can

command. These defensive techniques employed for

protection of network security does not take into consideration

the safeguarding of the web applications that runs on the

network. Many business organizations may be under the

mistaken impression that once they deploy intrusion detection

and prevention technologies then everything is secure and

foolproof. Nevertheless, network security does not have the

capacity to offer the sort of protection needed by web

applications. The kind of security technology used to provide

security solutions for protecting networks differs from that of

web applications. The network security solutions cannot offer

any safeguards to the applications, because each and every

application has its own peculiar vulnerability. Network

security technologies do not have the ability to scrutinize

secure socket layer traffic which is what most web

applications use to send private information over the web. It is

also imperative to appreciate the fact that a good number of

intrusion detection and prevention security technologies are

not configured in the correct way and for that reason do not

work as expected. They do not provide any defense against

web application security defects as a result of poor coding. To

address this situation, a web application firewall as described

above, is the answer to solving this problem. With the

deployment of web application firewall, businesses can

quickly put their applications into production, because they

have the confidence and assurance that there will be instant

and uninterrupted security.

4. RELATED WORK
In this section we present some related work involving

various techniques used by the researchers to prevent SQLI

vulnerabilities and attacks.

Singh and Roy [1] presented a network

based vulnerability scanner approach for SQLI which

provides a better coverage and with no false positive within a

short span of time.

Avancini and Ceccato [2] took advantage of static analysis to

detect candidate cross-site scripting vulnerabilities. Input

values that expose these vulnerabilities were searched by a

genetic algorithm and, to help the genetic algorithm escape

local optima, symbolic constraints were collected at run-time

and passed to a solver.
Teodoro and C. Serrao [3] discussed the direct implication of

the lack of security and the importance of quality of the

Software Development Life Cycle (SDLC), and the major

factors that influence them. Furthermore, they proposed a set

of security automated tools and methodologies that can be

used throughout the SDLC as a means to improve

critical web-based applications security and quality.

Tian et al. [4] focused on the regression test

in web vulnerability detection, and presented a strong-

association rule based algorithm to make the detection more

efficient.

Scholte et al. [5] presented IPAAS, a novel technique for

preventing the exploitation of cross-site scripting and SQL

injection vulnerabilities based on automated data type

detection of input parameters. IPAAS automatically and

transparently augments otherwise insecure web application

development environments with input validators that result in

significant and tangible security improvements for real

systems. They implemented IPAAS for PHP and evaluated it

on five real-world web applications with known cross-site

scripting and SQL injection vulnerabilities.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

37

Table 2. Discovered Vulnerability in the CCI Website

Assessment Criticality

Assessment URL

Assessment Summary

Assessment Implication

Assessment

Recommendations

Assessment Solution

Assessment References

SQL Injection Possible

http://www.cci.dmu.ac.uk/

A possible SQLI flaw was spotted in the CCI web application. When it happens that the SQL

injection is successful, this will enable the attacker to gain access to contents of the database.

The potential to implement system commands in a remote fashion or in certain conditions

paves the way to assume control of the Windows server that hosts the database. SQLI is

possible. User parameters submitted will be formulated into a SQL query for database

processing. If the query is built by simple 'string concatenation', it is possible to modify the

meaning of the query by carefully crafting the parameters. Depending on the access rights

and type of database used, tampered query can be used to retrieve sensitive information from

the database or execute arbitrary code.

SQL injection weaknesses can make it possible for an attacker to modify, alter and amend

information from the database. Based on how severe the disclosure, data may be harmed,

lost, or in other instances, system level executables may be uncovered unnecessarily.

Recommendations consist of implementing secure and safe coding mechanisms to

appropriately cleanse input and to make sure that only data that is anticipated is allowed by

an application. The server for the database should as matter of urgency be toughened in order

to put a stop to data from being accessed improperly. SQLI attacks can be averted by making

use of secure and safe coding mechanisms that foils client supplied values from meddling

with SQL statement syntax. Mechanisms for input validation should be employed on input to

check inappropriate characters. Instituting measures to make sure that the web application

gives as little information as possible to users in events where database error takes place is

necessary. The complete error message must not be revealed. Furthermore, it is very much

recommended that database permissions be evaluated and that the SQL script be moved to

stored procedures wherever feasible.

Do not trust client side input even if there is client side validation. In general,

 If the input string is numeric, type check it.

 If the application used JDBC, use PreparedStatement or CallableStatement with

parameters passed by.

 If the application used ASP, use ADO Command Objects with strong type

checking and parameterized query.

 If stored procedure or bind variables can be used, use it for parameter passing into

query. Do not just concatenate the string into a query in the stored procedure.

 Do not create dynamic SQL query by simple string concatenation.

Use minimum database user privilege for the application. This does not eliminate SQL

injection but minimizes its damage. For example, if the application requires reading one

table, access should be granted only to such an application. Avoid using „sa‟ or „db-owner‟.

 The OWASP Developer guide at
www.owasp.org/index.php/Category:OWASP_Guide_Project

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

38

5. VULNERABILITY ASSESSMENT ON

WEBSITE
Table 2 depicts information about the discovered vulnerability

in the CCI website. The findings of the vulnerability

assessment on the CCI are depicted in Tables 3 and 4 and

Figure 1.

Table 3. Findings of the Assessment
Severity Findings

Critical 2

High 2

Medium 3

Low 0

Informational 0

Table 4: Interpretations of Findings in Percentages

Terms

Severity Findings

Critical 29%

High 29%

Medium 42%

Low 0%

Informational 0%

Total 100%

5.1 Proposed Snippet of Code That Can be

Used to Redesign the CCI Website
Based on the above vulnerability assessment this paper

proposes a suggested code for redesigning of the CCI website

to protect itself against SQL injection attack as follows:

BETTER process_form.php Preventing SQL Injection with

PHP1

<?php

$name = mysql real escape string($_POST[„name‟]);

$pwd = mysql real escape string($_POST[„pwd‟]);

$str_sql = “SELECT * from „tbl_users‟ WHERE “ .

 “usr_name=‟” . $name . “‟ AND “ .

 “usr_pwd=‟” . $pwd . “‟”;

1
 http://www.digifuzz.net/archives/2007/07/preventing-sql-injection-

with-php/

$result = mysql query($str_sql) or die (mysql error());

?>

The mysql_real_escape_string() function breaks out any

characters that could possibly modify the query.

[mysql_real_escape_string…] breaks out special characters in

the unescaped_string, this takes into consideration the current

character set of the connection so that it is harmless to put in a

mysql_query(). When it happens that binary data is to be

included, then this function must be used.

mysql_real_escape_string() calls MySQL‟s library function

mysql_real_escape_string, which prepends backslahes to the

following characters: \x00, \n, \r, \, „, and \xla.

This function must constantly be used to make data safe prior

to transmitting a query to MySQL. The graphical

representation of the findings of the SQLI attacks and scans

performed using web vulnerability assessment tools such

“Paros Proxy” and “WebScarab” is depicted in Figure 1

below.

6. CONCLUSION
The proliferation of ICT coupled with the internet has paved

the way for enormous amount of information for

individuals/organizations in both developing and developed

countries worldwide. The resultant use of the World Wide

Web to access information through web applications has

introduced various vulnerabilities and attacks. This paper

focused on of SQLI, in terms of types, detection and

prevention techniques. Furthermore, importance, benefits and

evaluation of web application firewalls, efficient methods of

preventing SQLI attacks in web applications and other

solutions of the related work were discussed and elaborated.

Through the vulnerability assessment and analysis conducted

in this paper, we are confident that, although web application

firewalls may have their disadvantages, they are more reliable

as compared to other methods such as secure coding,

vulnerability scanners and network intrusion detection

techniques and as such should be implemented by

organizations in order to prevent SQLI attacks on their web

applications.

Fig 1: Graphical Representation of

Assessment Findings

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.11, May 2013

39

7. REFERENCES
[1] A.K. Singh and S. Roy, “A Network Based Vulnerability

Scanner for Detecting SQLI Attacks in Web

Applications,” in Proceedings of the IEEE International

Conference on Recent Advances in Information

Technology, pp. 585-590, 15-17 March, 2012.

[2] A. Avancini and M. Ceccato, “Security Testing of Web

Applications: A Search-Based Approach for Cross-Site

Scripting Vulnerabilities,” in Proceedings of the 11th

IEEE International Working Conference on Source Code

Analysis and Manipulation (SCAM), pp. 85-94, 25-25

Sept. 2011.

[3] N. Teodoro and C. Serrao, “Web Application Security:

Improving Critical Web-based Applications Quality

Through In-depth Security Analysis,” in Proceedings of

the IEEE International Conference on Information

Society (i-Society), pp. 457-462, 27-29, June, 2011.

[4] H. Tian, J. Xu, K. Lian and Y. Ying, “Research on

Strong-Association Rule Based Web Application

Vulnerability Detection,” in Proceedings of the 2nd

IEEE International Conference on Computer Science

and Information Technology, (ICCSIT), pp. 237-241,

2009.

[5] T. Sccolte, W. Robertson. D. Balzarotti and E. Kirda,

“Preventing Input Validation Vulnerabilities in Web

Analysis Applications Through Automated Type

Analysis,” in Proceedings of the 36th IEEE Annual

Computer Software and Applications Conference

(COMPSAC), pp. 233-243, 16-20 July, 2012.

[6] W.G.J. Halfond, J. Viegas, and A. Orso, “A

Classification of SQL Injection Attacks and

Countermeasures”, in IEEE Proceedings, 2006,

Available [Online]

http://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.v

iegas.orso.ISSSE06.pdf (Accessed 29/04/2013).

[7] A. Ciampa, C.A. Visaggio and M.D. Penta, “ A

Heuristic-based Approach for Detecting SQL-Injection

Vulnerabilities in Web Applications,” in ACM

Proceedings of the ICSE Workshop on Software

Engineering for Secure Systems, pp. 43-49, 2010.

[8] J. Scambray, M. Shema and C. Sima, “Hacking Web

Applications Exposed - 2nd ed. San Francisco”, McGraw-

Hill, 2006.

[9] M. Curphey, D. Endler, W. Hau, S. Taylor, T. Smith, A.

Russel, G. Mckenna, R. Parke, K. Mclaughlin, N.

Tranter, A. Klein, D. Grooves, I. By-Gad, S. Huseby, M.

Eizner, M. Hill and R. McNamara”, A Guide to Building

Secure Web Applications: The Open Web Application

Security Project, 2002 Available [Online]

http://www.rootsecure.net/content/downloads/pdf/owasp

_guide.pdf (Accessed 09/05/2013).

[10] M. Dermann, M. Dziadzka, B. Hemkemeier, A.

Hoffmann, A. Miesel, M. Rohr and T. Schreiber, “Best

Practices: Use of Web Application Firewalls”, The Open

Web Security Application Project, OWASP Papers

Program, 2008, Available [Online]

http://www.owasp.org/images/a/a6/Best_Practices_Guid

e_WAF_v104.en.pdf (Accessed 07/05/2013).

[11] Planning Report 02-03 - The Economic Impacts of

Inadequate Infrastructures for Software Testing”,

National Institute of Standards & Technology, US

Department of Commerce, 2002, Available [Online]

http://www.nist.gov/director/planning/upload/report02-

3.pdf (Accessed 05/05/2013).

[12] J.D. Meier, A. Mackman, M. Dunner, S. Vasireddy, R.

Escamilla and A. Murukan, “Improving Web Application

Security: Threats and Countermeasures,” Microsoft

Corporation, 2003.

[13] K. Tyminski, “The Business Case for Web Application

Firewalls,” 2008, Available [Online]

www.scanarmor.dk/UserFiles/File/WP_BusinessCaseFo

rWAF_FINAL_092408.pdf (Accessed 05/05/2013).

[14] R. Barnet, “Why Organizations Need Web Application

Firewalls,” 2007, Available [Online]

www.scanarmor.dk/UserFiles/File/WP_Why_WAF.pdf

(Accessed 03/05/2013).

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063701
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063701
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063701
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063701

