Anti-fuzzy KUS-ideals of KUS-algebras

Samy M. Mostafa
Department of Mathematics,
Faculty of Education,
Ain Shams University, Cairo, Egypt.

Areej T. Hameed Department of Mathematics, College of Education for Girls, University of Kufa, Najaf, Irag.

ABSTRACT

In this paper , we introduce the notion of anti-fuzzy KUS-ideals in KUS-algebra, several appropriate examples are provided and their some properties are investigated . The image and the inverse image of anti-fuzzy KUS-ideals in KUS-algebra are defined and how the image and the inverse image of anti-fuzzy KUS-ideals in KUS-algebra become antifuzzy KUS-ideals are studied . Moreover , the cartesian product of anti-fuzzy KUS-ideals are given .

Keywords

KUS-ideals , fuzzy KUS-ideals ,anti-fuzzy KUS-ideals , image and pre-image of anti-fuzzy KUS-ideals.

1. INTRODUCTION

After the introduction of fuzzy subsets by L.A. Zadeh [10], several researchers explored on the generalization of the notion of fuzzy subset. H.V. Kumbhojkar and M.S. Bapat [4] defined not-so-fuzzy fuzzy ideals, N. Palaniappan and K. Arjunan [7] defined the anti-homomorphism of a fuzzy and an anti-fuzzy ideals.BCK - algebras form an important class of logical algebras introduced by K. Iseki [2] and was extensively investigated by several researchers. The class of all BCK-algebras is quasi variety. Y. B. Jun, J. Meng and et al posed an interesting problem (solved in ([3], [5])) whether the class of all BCK-algebras is a variety. In ([8],[9]), C. Prabpayak and U. Leerawat introduced a new algebraic structure ,which is called KU-algebra . They gave the concept of homomorphisms of KU-algebras and investigated some related properties. S. Mostafa ,and et al (in [6]) introduced the notion of fuzzy KUS-ideals of KUS-algebras and they investigated several basic properties which are related to fuzzy KUS-ideals. they described how to deal with the homomorphism image and inverse image of fuzzy KUSideals, they have also proved that the cartesian product of fuzzy KUS-ideals in cartesian product of fuzzy KUS-algebras are fuzzy KUS-ideals. In this paper, we introduce the notion of anti-fuzzy KUS-ideals of KUS-algebras and then we study the homomorphism image and inverse image of anti-fuzzy KUS-ideals. We also prove that the cartesian product of antifuzzy KUS-ideals is an anti-fuzzy KUS-ideals.

2. Preliminaries

In this section we give some basic definitions and preliminaries lemmas of KUS-ideals and fuzzy KUS-ideals of KUS-algebras .

Definition 2.1([6]). Let (X; *, 0) be an algebra with a single binary operation (*). X is called a KUS-algebra if it satisfies the following identities: for any $x, y, z \in X$,

 (kus_1) : (z*y)*(z*x) = y*x, (kus_2) : 0*x = x, (kus_3) : x*x = 0, $(kus_4): x * (y * z) = y * (x * z).$ The what follows let (X * 0) denote a KUS-algorithm.

In what follows, let (X; *,0) denote a KUS-algebra unless otherwise specified.

For brevity we also call X a KUS-algebra. In X we can define a binary relation (\leq)

by: $x \le y$ if and only if y * x = 0.

Lemma 2.2 ([6]). In any KUS-algebra (X, *, 0), the following properties holds: for all $x, y, z \in X$;

- a) x * y = 0 and y* x = 0 imply x = y,
- b) y * [(y*z) *z] = 0,
- c) (0 * x) * (y * x) = y * 0,
- d) $x \le y$ implies that $y * z \le x * z$ and $z * x \le z * y$,
- e) $x \le y$ and $y \le z$ imply $x \le z$,
- f) $x * y \le z$ implies that $z * y \le x$.

Definition 2.3 ([6]). A nonempty subset S of a KUS-algebra X is called a KUS-sub-algebra of X if $x * y \in S$, whenever x, $y \in S$.

Definition 2.4 ([6]). A nonempty subset I of a KUS-algebra X is called a KUS-ideal of X if it satisfies: for x, y, $z \in X$, $(Ikus_1)$ $(0 \in I)$, $(Ikus_2)$ $(z*y) \in I$ and $(y*x) \in I$ imply $(z*x) \in I$.

Definition 2.5 ([9]). Let (X; *,0) and (Y; *`,0`) be nonempty sets . The mapping $f: (X; *,0) \rightarrow (Y; *`,0`)$ be called a homomorphism if it satisfying

f(x * y) = f(x) * f(y) for all $x, y \in X$. The set $\{x \in X \mid f(x) = 0'\}$ is called the Kernel of f denoted by Ker f.

Definition 2.6([10]). Let (X; *, 0) be a nonempty set, a fuzzy subset μ in X is a function $\mu: X \to [0,1]$.

Definition 2.7([6]). Let (X; *,0) be a KUS-algebra , a fuzzy subset μ in X is called a fuzzy KUS-sub-algebra of X if for all x, $y \in X$, $\mu(x*y) \geq \min \{\mu(x), \mu(y)\}$.

 $\begin{array}{ll} \textbf{Definition 2.8([6])}. & \text{Let } (X; \ ^*, 0) \ \text{ be a KUS-algebra , a} \\ \text{fuzzy subset } \mu \text{ in } X \text{ is called a fuzzy KUS-ideal of } X \text{ if it} \\ \text{satisfies the following conditions: , for all } x \text{ , } y, z \in X \text{ ,} \\ (Fkus_1) & \mu (0) \geq \mu (x) \text{ ,} \\ (Fkus_2) & \mu (z \text{ * } x) \geq \min \left\{ \mu \left(z \text{ * } y \right), \mu \left(y \text{ * } x \right) \right\} . \\ \end{array}$

3. Anti-fuzzy KUS-ideals of

KUS-algebras

In this section, we will introduce a new notion called an anti-fuzzy KUS-ideal of KUS-algebra and study several basic properties of it.

Definition 3.1. Let (X; *,0) be a KUS-algebra. A fuzzy set μ in X is called an anti-fuzzy KUS-ideal of X if it satisfies the following conditions: for all x, y and $z \in X$, $(Akus_1)$ $\mu(0) \le \mu(x)$.

(Akus₂) $\mu(z * x) \le \max \{ \mu(z * y), \mu(y * x) \}.$

Example 3.2. Let $X = \{0, 1, 2, 3\}$ in which (*) is defined by the following table:

*	0	1	2	3
0	0	1	2	3
1	3	0	1	2
2	2	3	0	1
3	1	2	3	0

Then (X; *, 0) is a KUS-algebra. Define a fuzzy set $\mu : X \to$ [0, 1] by μ (0) = t_1 ,

 $\mu(1) = \mu(2) = \mu(3) = t_2$, where $t_1, t_2 \in [0, 1]$ with $t_1 < t_2$. Routine calculation gives that μ is an anti-fuzzy KUS-ideal of KUS-algebras X.

Lemma 3.3. Let μ be an anti-fuzzy KUS-ideal of KUSalgebra X and if $x \le y$, then $\mu(x) \le \mu(y)$, for all $x, y \in X$. **Proof:** Assume that $x \le y$, then y * x = 0, and $\mu(0 * x) = \mu(x) \le \max\{\mu(0 * y), \mu(y * x)\}$ = max $\{\mu(y), \mu(0)\}=\mu(y)$. Hence $\mu(x) \le \mu(y)$. \triangle

Proposition 3.4. Let μ be an anti-fuzzy KUS-ideal of KUSalgebra X. If the inequality $y * x \le z$ hold in X, then $\mu(x)$ $\leq \max \{ \mu(y), \mu(z) \}.$

Proof: Assume that the inequality $y * x \le z$ hold in X, by lemma (3.3), $\mu(y * x) \le \mu(z) - (1)$.

By(Akus₂), $\mu(z * x) \le \max \{\mu(z * y), \mu(y * x)\}$. Put z = 0, then

 $\mu(0 * x) = \mu(x) \le \max \{\mu(0*y), \mu(y * x)\}$ $= \max \; \{ \mu(y), \, \mu(y * x) \} \; --- \; (2) \; .$

From (1) and (2), we get $\mu(x) \le \max \{\mu(y), \mu(z)\}\$, for all x, y,z ∈X. △

Theorem 3.5. Let μ be an anti-fuzzy set in X then μ is an anti-fuzzy KUS-ideal of X if and only if it satisfies: if $U(\mu, \alpha) = \{x \in X \mid \mu(x) \le \alpha\}, \text{ for all }$

 $\alpha \in [0, 1], \ U(\mu, \alpha) \neq \emptyset$ implies $U(\mu, \alpha)$ is a KUS-ideal of

Proof: Assume that μ is an anti-fuzzy KUS-ideal of X, let $\alpha \in [0,1]$ be such that $U(\mu,\alpha) \neq \emptyset$, and let $x, y \in X$ be such that $x \in U(\mu, \alpha)$, then $\mu(x) \le \alpha$ and so by $(Akus_1)$, $\mu(0) \le \alpha$ $\mu(x) \le \alpha$. Thus $0 \in U(\mu, \alpha)$.

Now let (z * y), $(y * x) \in U(\mu,\alpha)$. It follows from $(Akus_2)$

 $\mu(z * x) \le \max{\{\mu(z * y), \mu(y * x)\}} = \alpha$, so that (z * x) $\in U(\mu,\alpha)$. Hence $U(\mu,\alpha)$ is a KUS-ideal of X.

Conversely, suppose that μ satisfies (A), assume that (Akus₁) is false, then there exist

 $x \in X$ such that $\mu(0) > \mu(x)$. If we take $t = \underline{1} [\mu (x) + \mu (0)], \text{ then } \mu (0) > t \text{ and}$ $0 \le \mu(x) < t \le 1$, thus $x \in U(\mu, t)$ and $U(\mu,t) \neq \emptyset$. As $U(\mu,t)$ is a KUS-ideal of X, we have $0 \in$ $U(\mu, t)$, and so $\mu(0) \le t$. This is a contradiction. Hence μ $(0) \le \mu(x)$ for all $x \in X$. Now, assume (Akus₂) is not true then there exist $x, y, z \in X$ such that $\mu(z * x) > \max{\{\mu(z * y), \mu(y * x)\}},$ taking $\beta_0 = \frac{1}{2} \left[\mu \left(z * x \right) + max \left\{ \mu \left(z * y \right), \, \mu \left(y * x \right) \right\} \right]$, we have $\beta_0 \in [0, 1]$ and $max\{\mu\ (z\ \hbox{\bf *}\ y),\ \mu\ (y\ \hbox{\bf *}\ x)\}<\beta_0<\mu\ (z\ \hbox{\bf *}\ x),\ it\ follows\ that$ $max\{\mu\ (z\ \hbox{$\displaystyle *$}\ y),\, \mu\ (y\ \hbox{$\displaystyle *$}\ x)\}\ \in\ U(\mu,\beta_0)\ \ and$ $z * x \notin U(\mu, \beta_0)$, this is a contradiction and therefore μ is an anti-fuzzy KUS-ideal of X. △

4. Characterization of anti-fuzzy KUSideals by their level KUS-ideals

Theorem 4.1. A fuzzy subset μ of a KUS-algebra X is an anti-fuzzy KUS-ideal of X if and only if, for every $t \in [0,1]$, μ_t is either empty or a KUS-ideal of X, where $\mu_t = \{x \in X \}$ $| \mu(x) \leq t$.

Proof: Assume that μ is an anti-fuzzy KUS-ideal of X, by (Akus₁), we have $\mu(0) \le \mu(x)$ for all $x \in X$, therefore $\mu(0) \le$ $\mu(x) \le t$, for $x \in \mu$, and so

 $0 \in \mu_t$.

Let $(z * y) \in \mu_{t}$ and $(y * x) \in \mu_{t}$, then $\mu(z^*y) \le t$ and $\mu(y^*x) \le t$, since μ is an anti-fuzzy KUSideal it follows that $\mu(z * x) \le \max\{\mu(z * y), \mu(y * x)\} \le t \text{ and that } (z * x) \in$ $\mu_{_{\rm f}}$. Hence $\,\mu_{_{\rm f}}$ is a KUS-ideal of $\,X.$

Conversely, we only need to show that (Akus₁) and (Akus₂) are true. If (Akus₁) is false, then there exist $x \in X$ such that $\mu(0) > \mu(x)$. If we take

$$t = \frac{1}{2} (\mu (x) + \mu (0))$$
, then $\mu (0) > t$ and

 $0 \le \mu(x) < t \le 1$ thus $x \in \mu_t$ and $\mu_t \ne \emptyset$. As μ_t is a

KUS-ideal of X, we have $0 \in \mu_t$ and so $\mu(0) \le t$. This is a contradiction.

Now, assume (Akus₂) is not true, then there exist x, y and $z \in X$ such that,

 $\mu(z^*x) > max\{\mu(z^*y), \mu(y^*x)\}.$

Putting
$$t = \frac{1}{2} [\mu (z * x) + \max{\{\mu (z * y), \mu(y * x)\}}]$$
, then μ $(z * x) > t$ and

 $0 \le \max\{\mu(z * y), \mu(y * x)\} < t \le 1, \text{ hence}$ $\mu(z * y) < t$ and $\mu(y * x) < t$, which imply that $(z * y) \in \mu$, and $(y * x) \in \mu$, since μ is an anti-fuzzy

KUS-ideal, it follows that $(z * x) \in \mu_t$ and that $\mu(z * x) \le$ t, this is also a contradiction. Hence μ is an anti-fuzzy KUSideal of X . \triangle

Corollary 4.2. If a fuzzy subset μ of KUS-algebra X is an anti-fuzzy KUS-ideal, then for every

 $t \in Im(\mu)$, μ is a KUS-ideal of X.

Remark 4.3. Let μ be an anti-fuzzy KUS-ideal of KUS-algebra X, then the KUS-ideal $~\mu_t~$, $t\in[0,1]$ are called level KUS-ideals of μ .

Corollary 4.4. Let I be a KUS-ideal of a KUS-algebra X, then for any fixed number t in an open interval (0,1), there exist an anti-fuzzy KUS-ideal μ of X such that $\mu_t = I$.

Proof: Define
$$\mu: X \to [0:1]$$
 by
$$\mu(x) = \begin{cases} 0, & \text{if } x \in I; \\ t, & \text{if } x \notin I. \end{cases}$$

Where t is a fixed number in (0,1). Clearly, $\mu\left(0\right)\leq\ \mu\left(x\right)\ \text{ and we have one two level sets}$ $\mu_{0}=I,\ \mu_{t}=X, \text{ which are KUS-ideals of }X, \text{ then from}$ Theorem (4.1) μ is an anti-fuzzy KUS-ideal of X. \triangle

5. Image and Pre-image of anti-fuzzy KUS-ideals

Definition 5.1([2]). $f:(X; *,0) \to (Y; *`,0`)$ be a mapping from a nonempty set X to a nonempty set Y. If β is a fuzzy subset of X, then the fuzzy subset μ of Y defined by:

$$f(\mu)(y) = \beta(y) = \left\{ \begin{array}{ll} inf_{x \in \Gamma^1(y)} \, \mu(x) & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 0 & \text{otherwise} \end{array} \right.$$

is said to be the image of μ under f.

Similarly if μ is a fuzzy subset of Y, then the fuzzy subset $\mu=(\beta\ o\ f\)$ in X (i.e., the fuzzy subset defined by μ $(x)=\beta(\ f\ (x))$, for all $\ x\in X)$ is called the pre-image of β under f.

Theorem 5.2. An onto homomorphic pre-image of antifuzzy KUS-ideal is also an anti-fuzzy KUS-ideal.

Proof: Let $f:(X; *,0) \rightarrow (Y; *`,0`)$ be an onto homomorphism of KUS-algebras,

 β is an anti-fuzzy KUS-ideal of Y and $\,\mu$ the pre-image of $\,\beta$ under $\,f\,$, then

 $\beta(f(x)) = \mu(x)$, for all $x \in X$. Let $x \in X$, then

$$\mu(0) = \beta(f(0)) < \beta(f(x)) = \mu(x)$$
. Now let

 $x, y, z \in X$, then

$$\mu(z * x) = \beta(f(z * x)) = \beta(f(z) * f(x))$$

$$\leq \max\{\beta(f(z) *' f(y)), \beta(f(y) *' f(x))\}$$

=
$$\max\{\beta(f(z*y)), \beta(f(y*x))\}$$

= max{ μ (z * y), μ (y * x)}, and the proof is completed. \triangle

Definition 5.3. An anti fuzzy subset μ of X has inf property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t) = \inf_{t \in T} \mu(t)$.

Theorem 5.4. Let $f:(X; *,0) \to (Y; *,0)$ be an onto homomorphism between KUS-algebras X and Y respectively . For every anti-fuzzy KUS-ideal μ in X, $f(\mu)$ is an antifuzzy KUS-ideal of Y.

Proof: Let $y \in Y$, there exists $x \in X$ such that f(x) = y. Then $\mu(y) = \mu(f(x)) \ge \mu(f(0)) = \mu(0')$.

Let $f: X \to Y$ be an onto homomorphism of KUSalgebras, μ is an anti-fuzzy KUS-ideal of X with inf property and β the image of μ under f, since μ is antifuzzy KUS-ideal of X, we have $\mu(0) \le \mu(x)$ for all $x \in X$. Note that $0 \in f^{-1}(0)$, where 0, 0' are the zero of X and Y, respectively. Thus $\beta(0') =$ $\inf_{t \in f^{-1}(x')} \mu(t)$ $=\beta(x')$, for all $x \in X$, which implies that $\beta(0') \le \inf_{t \in f^{-1}(x')} \mu(t) = \beta(x'), \text{ for any } x' \in Y. \text{ Let } x', y', z' \in Y.$ Y, then there exists $x_0, y_0, z_0 \in X$ such that $x_0 = f^{-1}(x'), y_0 =$ $f^{-1}(y'), z_0 = f^{-1}(z')$. It follows that $\mu(z_0 * y_0) = \inf_{t \in f^{-1}(z^* * y^*)} \mu(t)$ $\mu (y_0 * x_0) = \inf_{t \in f^{-1}(y^* * y^*)} \mu(t)$ and $\mu (z_0 * x_0) = \inf_{t \in f^{-1}(z^*x')} \mu(t)$. Then $f(\mu)(z'*x') = \beta(z'*x') = \inf_{t \in f^{-1}(z^*x')} \mu(t)$ $= \mu (z_0 * x_0) \le \max \{ \mu (z_0 * y_0), \mu (y_0 * x_0) \}$ $= max[\inf_{t \in f^{-1}(z^* v')} \mu(t) \cdot \inf_{t \in f^{-1}(y^* x')} \mu(t)]$ $= \max\{\beta (z' * y'), \beta(y' * x')\}.$ = $\max\{ f(\mu) (z' * y'), f(\mu) (y' * x') \}.$

6. Cartesian product of anti-fuzzy KUSideals

Hence $f(\mu)$ is an anti-fuzzy KUS-ideal of Y. \triangle

Definition 6.1 ([1]).A fuzzy relation R on any set S is a fuzzy subset R: $S \times S \rightarrow [0,1]$.

Definition 6.2 ([1]). If R is a fuzzy relation on sets S and β is a fuzzy subset of S, then R is a fuzzy relation on β if $R(x,y) \ge \max{\{\beta(x),\beta(y)\}}$, for all $x,y \in S$.

 $\label{eq:definition 6.3([1]). Let μ and β be fuzzy subsets of a set S . The cartesian product of μ and β is defined by <math display="block">(\mu \times \beta)(x,y) = \max \; \{\mu(x), \, \beta(y)\}, \; \text{for all} \; \; x,y \in S \; .$

Lemma 6.4([1]). Let S be a set and μ and β be fuzzy subsets of S . Then,

(1) $\mu \times \beta$ is a fuzzy relation on S,

(2)
$$(\mu \times \beta)_t = \mu_t \times \beta_t$$
, for all $t \in [0,1]$.

Definition 6.5([1]). Let S be a set and β be fuzzy subset of S. The strongest fuzzy relation on S, that is, a fuzzy relation on β is R_{β} given by

$$\mathbf{R}_{\beta}(\mathbf{x},\mathbf{y}) = \max \{\beta(\mathbf{x}), \beta(\mathbf{y})\}, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{S} .$$

Lemma 6.6([1]). For a given fuzzy subset β of a set S, let R_{β} be the strongest fuzzy relation on S. Then for $t \in [0,1]$, we have $(R_{\beta})_t = \beta_t \times \beta_t$.

Proposition 6.7. For a given fuzzy subset $\,\beta\,$ of a KUS-algebra $\,X$, let $\,R_{\,\beta}\,$ be the strongest fuzzy relation on X. If $\,\beta\,$ is an anti-fuzzy KUS-ideal of $\,X\!\times\!X\,$, then $\,R_{\,\beta}\,\,(x,\!x)\,\geq\,R_{\,\beta}\,\,(0,\!0)$, for all $\,x\!\in\!X\,$

Proof: Since R_{β} is a strongest fuzzy relation of $X \times X$, it follows from that,

 $R_{\beta}(x,x) = \max\{\beta(x), \beta(x)\} \ge \max\{\beta(0), \beta(0)\}$

= R_{β} (0,0), which implies that R_{β} (x,x) $\geq R_{\beta}$ (0,0). \triangle

Proposition 6.8. For a given fuzzy subset $\,\beta\,$ of a KUS-algebra $\,X$, let $\,R_{_{\beta}}\,$ be the strongest fuzzy relation on $\,X$. If

 $R_{\,\beta}\,$ is an anti-fuzzy KUS-ideal of $\,\, X\times X\,,$ then $\beta(x)\geq\beta(0)$, for all $x\!\in\! X$.

Proof: Since R_{β} is an anti-fuzzy KUS-ideal of $X \times X$, it follows from (Akus₁),

 $R_{_{\rm R}}(x,\!x)\!\geq R_{_{\rm R}}(0,\!0)$, where $\,(0,\!0)$ is the zero element of

 $X\times X$. But this means that , $\max\{\beta(x),\,\beta(x)\}\geq \max\{\beta(0),\,\beta(0)\}$ which implies that $\beta(x)\geq\beta(0)$. \triangle

Remark 6.9([1]). Let X and Y be KUS-algebras, we define (*) on $X \times Y$ by : for all $(x,y),(u,v) \in X \times Y$, (x,y) * (u,v) = (x*u,y*v). Then clearly $(X \times Y;*.(0,0))$ is a KUS-algebra.

Theorem 6.10. Let μ and β be an anti-fuzzy KUS-ideals of KUS-algebra X. Then $\mu \times \beta$ is an anti-fuzzy KUS-ideal of $X \times X$.

Proof: Note first that for every $(x,y) \in X \times X$, $(\mu \times \beta)(0,0) = \max \{\mu(0), \beta(0)\}$

 $\leq \max \{\mu(x), \beta(y)\} = (\mu \times \beta)(x,y)$.

Now let (x_1,x_2) , (y_1,y_2) , $(z_1,z_2) \in X \times X$. Then $(\mu \times \beta)(z_1 * x_1, z_2 * x_2) = \max \{ \mu(z_1 * x_1), \beta(z_2 * x_2) \} \le \max \{ \max\{\mu(z_1 * y_1), \mu(y_1 * x_1)\},$

 $\max\{\beta(z_2 * y_2), \beta(y_2 * x_2)\}\}$

 $= \max \; \{ \; \max \{ \; \mu(z_1 * y_1) \; , \; \beta(z_2 * y_2) \; \}, \\ \max \{ \; \mu(y_1 * x_1), \beta(y_2 * x_2) \} \}$

= $\max\{(\mu \times \beta)(z_1 * y_1, z_2 * y_2),$

 $(\mu \times \beta) (y_1 * x_1, y_2 * x_2)$

Hence $(\mu \times \beta)$ is an anti-fuzzy KUS-ideal of $X \times X . \triangle$

Theorem 6.11. Let μ and β be anti-fuzzy subsets of KUS-algebra X such that $\mu \times \beta$ is an anti-fuzzy KUS-ideal of

 $X \times X$. Then for all $x \in X$,

- (i) either $\mu(0) \le \mu(x)$ or $\beta(0) \le \beta(x)$.
- (ii) $\mu(0) \le \mu(x)$, then either $\beta(0) \le \beta(x)$ or $\beta(0) \le \mu(x)$.
- (iii) If $\beta(0) \le \beta(x)$, then either $\mu(0) \le \mu(x)$ or $\beta(0) \le \mu(x)$.
- (iv) Either μ or β is an anti-fuzzy KUS-ideal of X . **Proof.**
- (i) suppose that μ (0) > μ (x) and β (0) > β (y) for some x , y \in X . Then($\mu \times \beta$)(x,y)
- = max{ $\mu(x)$, $\beta(y)$ }<max { $\mu(0)$, $\beta(0)$ } =($\mu \times \beta$)(0,0). This is a contradiction and we obtain (i).
- (ii) Assume that there exist x, $y \in X$ such that
- $\beta\left(0\right)>\mu\left(x\right) \ \ and \ \ \beta\left(0\right)>\beta\left(y\right)$. Then $(\,\mu\times\beta\,)(0,0)=max\,\{\mu$
- $(0),\beta(0)$ = $\beta(0)$ it follows that $(\mu \times \beta)(x,y) = \max\{\mu(x), \beta(x,y)\}$
- $\beta(y)$ < $\beta(0) = (\mu \times \beta)(0,0)$ which is a contradiction. Hence (ii) holds.
- (iii) is by similar method to part (ii).
- (iv) Suppose $\beta(0) \le \beta(x)$ by (i), then form (iii) either $\mu(0) \le \mu(x)$ or $\beta(0) \le \mu(x)$ for all $x \in X$.

```
If \mu(0) \le \beta(x), for any x \in X, then (\mu \times \beta)(0,x) = \max
\{\mu\left(0\right),\,\beta\left(x\right)\}=\beta\left(x\right). Let \left(x_{1},x_{2}\right), \left(y_{1},y_{2}\right), \left(z_{1},z_{2}\right)\in X\times X,
since (\mu \times \beta) is an anti-fuzzy KUS-ideal of X \times X, we have
(\mu \times \beta)(z_1 * x_1, z_2 * x_2) \le \max\{(\mu \times \beta)(z_1 * y_1, z_2 * y_2),
                   (\mu \times \beta) (y_1 * x_1, y_2 * x_2) \} ---- (A)
   If we take x_1 = y_1 = z_1 = 0, then
\beta(z_2 * x_2) = (\mu \times \beta)(0, z_2 * x_2)
\leq \max\{(\mu \times \beta) (0, z_2 * y_2), (\mu \times \beta) (0, y_2 * x_2)\}
= \max\{\max\{\mu(0), \beta(z_2 * y_2)\},\
           \max\{\mu(0), \beta(y_2 * x_2)\}\}
= \max\{\beta(z_2 * y_2), \beta(y_2 * x_2)\}
This prove that \,\beta\, is an anti-fuzzy KUS-ideal of \,X\, .
Now we consider the case \mu(0) \le \mu(x) for all x \in X. Suppose
that \mu(0) > \mu(y) for some y \in X. then
\beta(0) \le \beta(y) < \mu(0).
   Since \mu(0) \le \mu(x) for all x \in X, it follows that \beta(0) < \mu
       (x) for any x \in X.
    Hence (\mu \times \beta)(x,0) = \max \{\mu(x), \beta(0)\} = \mu(x) \text{ taking } x_2
       = y_2 = z_2 = 0 in (A), then
\mu(z_1 * x_1) = (\mu \times \beta)(z_1 * x_1, 0)
```

$$\begin{split} u(z_1 * x_1) &= (\mu \times \beta)(z_1 * x_1, 0) \\ &\leq \max\{(\mu \times \beta) (z_1 * y_1, 0), (\mu \times \beta) (y_1 * x_1, 0)\} \\ &= \max\{\max\{\mu (z_1 * y_1), \beta (0)\}, \\ &\quad \max\{\mu (y_1 * x_1), \beta (0)\}\} \\ &= \max\{\mu (z_1 * y_1), \mu (y_1 * x_1)\} \end{split}$$

Which proves that $\,\mu\,$ is an anti-fuzzy KUS-ideal of $\,X\,$. Hence either $\,\mu\,$ or $\,\beta\,$ is an anti-fuzzy KUS-ideal of X . $\,\triangle\,$

Theorem 6.12. Let β be a fuzzy subset of a KUS-algebra X and let R_{β} be the strongest fuzzy relation on X, then β is an anti-fuzzy KUS-ideal of X if and only if R_{β} is an anti-

fuzzy KUS-ideal of $X\times X$. **Proof:** Assume that β is an anti-fuzzy KUS-ideal of X. By proposition (6.7) ,we get,

 $R_{_{\beta}}(0,0) \le R_{_{\beta}}(x,y)$, for any $(x,y) \in X \times X$.

Let (x_1,x_2) , (y_1,y_2) , $(z_1,z_2)\in X\times X$, we have from $(Akus_2)$:

 $R_{_{B}}(z_{1} * x_{1}, z_{2} * x_{2}) = \max \{\beta(z_{1} * x_{1}), \beta(z_{2} * x_{2})\}$

 $\leq \max\{\max\{\{\beta(z_1 * y_1), \beta(y_1 * x_1)\},$

 $\max\{\beta(z_2 * y_2), \beta(y_2 * x_2)\}\}$

= $\max\{\max\{\beta(z_1 * y_1), \beta(z_2 * y_2)\},\$

 $\max\{\beta (y_1 * x_1), \beta (y_2 * x_2)\}\}$

= max { R_{β} ($z_1 * y_1, z_2 * y_2$), R_{β} ($y_1 * x_1, y_2 * x_2$) }

Hence R_{R} is an anti-fuzzy KUS-ideal of $X \times X$.

Conversely, suppose that R_B is an anti-fuzzy KUS-ideal of

 $X \times X$, by proposition (6.8) $\beta(0) \le \beta(x)$ for all $x \in X$, which prove (Akus₁).

Now, let (x_1,x_2) , (y_1,y_2) , $(z_1,z_2) \in X \times X$. Then, $\max\{\beta(z_1 * x_1), \beta(z_2 * x_2)\} = R_{\beta}(z_1 * x_1, z_2 * x_2)$

 $\leq \max\{ R_{\beta}((z_1,z_2) * (y_1, y_2)), R_{\beta}((y_1,y_2) * (x_1, x_2)) \}$

= $\max\{ R_{\beta}((z_1 * y_1),(z_2 * y_2)),$

$$R_{\alpha}((y_1 * x_1), (y_2 * x_2))$$

= max{ max { $\beta(z_1 * y_1)$, $\beta(z_2 * y_2)$ }, max { $\beta(y_1 * x_1)$, $\beta(y_2 * x_2)$ } }

In particular if we take $\ x_2=y_2=z_2=0$, then $\ \beta\ (z_1*x_1)\leq max\ \{\beta\ (z_1*y_1),\ \beta\ (y_1*x_1)\}\ .$ This proves $(Akus_2)$ and $\ \beta\$ is an anti- fuzzy KUS-ideal of $\ X\ .$ $\ \triangle$

```
Theorem 6.13. Let \mu and \beta be fuzzy subsets of a KUS-
algebra X such that \mu \times \beta is an anti-fuzzy KUS-ideal of
X \times X. Then \mu or \beta is an anti-fuzzy KUS-ideal of X.
Proof: By theorem (6.11(i)), without loss of generality we
assume that \mu(x) \ge \mu(0) for all x \in X. From theorem
(6.11(iii)), it follows that either
\beta(0) \le \beta(x) or \beta(0) \le \mu(x). If \mu(x) \ge \beta(0) for all x \in X,
then (\mu \times \beta)(0,x) = \max \{ \beta(0), \mu(x) \} =
 \mu(x). Let(x,y) \in X \times X, since \mu \times \beta is an anti-fuzzy
KUS-ideal of X. By proposition (6.7), we get, (\mu \times \beta) (0.0)
\leq (\mu \times \beta) (x,y).
    Let (x_1,x_2) , (y_1,y_2) , (z_1,z_2) \in X \times X , we have from
(Akus<sub>2</sub>):
(\mu \times \beta) (z_1 * x_1, z_2 * x_2) = \max \{\mu(z_1 * x_1), \beta(z_2 * x_2)\}
\leq \max\{\max\{\{\mu(z_1 * y_1), \mu(y_1 * x_1)\}\},\
         max\{\beta (z_2 * y_2), \beta (y_2 * x_2)\}\}
= max{max {\mu (z_1 * y_1), \beta (z_2 * y_2)},
         \max\{\mu (y_1 * x_1), \beta (y_2 * x_2)\}\}
= max \{(\mu \times \beta) (z_1 * y_1, z_2 * y_2),
          (\mu \times \beta) (y_1 * x_1, y_2 * x_2) 
   In particular if we take x_1 = y_1 = z_1 = 0, then
\beta(z_2 * x_2) = (\mu \times \beta)(0, z_2 * x_2) \le
\max \{(\mu \times \beta) \ (0,(z_2 * y_2)), (\mu \times \beta) \ (0,(y_2 * x_2))\}
= \max\{\max\{\mu(0), \beta(z_2 * y_2)\},\
          max {\mu(0), \beta(y_2 * x_2)}}
= max {\beta (z_2 * y_2), \beta (y_2 * x_2)}. This proves that \beta is an anti-
fuzzy KUS-ideal of X. The second part is similar . This
completes the proof . \ensuremath{\triangle}
```

7. ACKNOWLEDGMENTS

Our thanks to Department of Pure Mathematics, Faculty of Sciences, Ain Shams University, Cairo, Egypt who have contributed towards development of the template.

8. References

- [1] Bhattacharye P. and Mukheriee N.P., Fuzzy relations and fuzzy group, Inform Sci., vol. 36 (1985), 267-282.
- [2] Is'eki K. and Yanaka S., An introduction to theory of BCK-algebras, Math. Japonica, vol. 23 (1979), 1-20.
- [3] Jun Y.B. , Hong S.M. and Roh E.H. , Fuzzy characteristic sub-algebras /ideals of a BCK-algebra, Pusan Kyongnam Math. J.(presently East Asian Math. J.), vol. 9 , no.1 (1993), 127-132.
- [4] Kumbhojkar H.V. and Bapat M.S., Not-so-fuzzy fuzzy ideals, fuzzy sets and systems, vol.37 (1991), 237-243.
- [5] Meng J. and Jun Y.B., BCK-algebras, Kyung Moon Sa Co., Korea, 1994.
- [6] Mostafa S.M., Abd-Elnaby M.A., Abdel-Halim F. and Hameed A.T., Fuzzy KUS-Ideals of KUS-Algebras, Submitted.
- [7] Palaniappan N. and Arjunan K., The homomorphism ,anti homomorphism of a fuzzy and an anti fuzzy ideals, Varahmihir Journal of Math. Sciences, vol.6, no.1 (2006), 181-188.
- [8] Prabpayak C. and Leerawat U., On isomorphisms of KU-algebras, Scientia Magna J., vol. 5, no.3 (2009), 25-31.
- [9] Prabpayak C. and Leerawat U., On ideals and congurences in KU-algebras, Scientia Magna J., vol. 5, no.1 (2009), 54-57.
- [10] Zadeh L.A., Fuzzy sets, Inform. Control,vol.8 (1965), 338-353.