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ABSTRACT 
In this paper , we introduce the notion of anti-fuzzy KUS-

ideals in KUS-algebra, several appropriate examples are 

provided and their some properties are investigated . The 

image and the inverse image of anti-fuzzy KUS-ideals in 

KUS-algebra are defined and how the image and the inverse 

image of anti-fuzzy KUS-ideals in KUS-algebra become anti-

fuzzy KUS-ideals are studied . Moreover , the cartesian 

product of anti-fuzzy KUS-ideals are given .  
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1.   INTRODUCTION 
After the introduction of fuzzy subsets by L.A. Zadeh [10], 

several researchers explored on the generalization of the 

notion of fuzzy subset. H.V. Kumbhojkar and M.S. Bapat [4] 

defined not-so-fuzzy fuzzy ideals, N. Palaniappan and K. 

Arjunan [7] defined the anti-homomorphism of a fuzzy and an 

anti-fuzzy ideals.BCK - algebras form an important class of 

logical algebras introduced by K. Iseki [2] and was 

extensively investigated by several researchers. The class of 

all BCK-algebras is quasi variety.  Y. B. Jun , J. Meng and et 

al  posed an interesting problem (solved in ([3], [5])) whether 

the class of all BCK-algebras is a variety. In ([8],[9]) , C. 

Prabpayak and U. Leerawat introduced a new algebraic 

structure ,which is called KU-algebra . They gave the concept 

of homomorphisms of KU-algebras and investigated some 

related properties. S. Mostafa ,and et al (in [6]) introduced the 

notion of fuzzy KUS-ideals of KUS-algebras and they 

investigated several basic properties which are related to 

fuzzy KUS-ideals. they  described how to deal with the 

homomorphism image and inverse image of fuzzy KUS-

ideals. they have also proved that the cartesian product of 

fuzzy KUS-ideals in cartesian product of fuzzy KUS-algebras 

are fuzzy KUS-ideals. In this paper, we introduce the notion 

of anti-fuzzy KUS-ideals of KUS-algebras and then we study 

the homomorphism image and inverse image of anti-fuzzy 

KUS-ideals. We also prove that the cartesian product of anti-

fuzzy KUS-ideals is an anti-fuzzy KUS-ideals . 

2. Preliminaries 
In this section  we give some basic definitions and 

preliminaries lemmas of KUS-ideals and fuzzy  KUS-ideals of 

KUS-algebras .       

Definition 2.1([6]).  Let (X;  ,0)  be an algebra with a single 

binary operation ( ) . X is called a KUS-algebra if it satisfies 

the following identities: for any x, y, z  X , 

(kus1) :  (z y)   (z x) =  y x , 

(kus2) :  0   x = x , 

(kus3) :  x   x = 0 , 

(kus4) :  x   (y  z) = y  (x z) . 

In what follows, let (X;  ,0) denote a KUS-algebra unless 

otherwise specified.  

For brevity we also call X a KUS-algebra. In X we can define 

a binary relation (≤ ) 

by :  x ≤ y if and only if   y  x = 0 . 

Lemma 2.2 ([6]).  In any KUS-algebra (X;*,0) , the following 

properties holds: for all  x, y, z X; 

a)  x y = 0  and  y* x = 0  imply   x = y, 

b) y   [(y z)  z]= 0, 

c) (0 x)   (y x) = y 0 , 

d) x   y  implies that   y  z  x  z  and    

        z  x  z  y , 

e) x   y  and   y  z imply   x   z , 

f) x  y  ≤ z  implies that   z y ≤ x .  

Definition 2.3 ([6]).  A nonempty subset S of a KUS-algebra 

X is called a KUS-sub-algebra of X if   x y S , whenever  x 

, y S. 

Definition 2.4 ([6]).  A nonempty subset I of a KUS-algebra 

X is called a KUS-ideal of X if it satisfies: for  x , y, z  X, 

(Ikus1)   (0  I) , 

(Ikus2)   (z y) I  and  (y x) I  imply (z x) I. 

Definition 2.5 ([9]).  Let (X ;  ,0) and (Y;  `,0`) be 

nonempty sets . The mapping    

f  : (X;  ,0) → (Y;  `,0`) be called a homomorphism  if it 

satisfying 

  f  (x y) = f  (x)  ` f  (y) for all x , y  X. The set  

{xX  f  (x) = 0'} is called the Kernel of f  denoted by Ker 

f . 

Definition 2.6([10]).  Let (X;  ,0) be a nonempty  set, a 

fuzzy subset  μ  in  X  is a function 

 μ: X → [0,1]. 

Definition 2.7([6]).   Let (X;  ,0)  be a KUS-algebra , a 

fuzzy subset μ in X is called a fuzzy KUS-sub-algebra of X if 

for all x , y  X,   

μ (x y) ≥  min {μ (x), μ (y)} . 

Definition 2.8([6]).   Let (X;  ,0)  be a KUS-algebra , a 

fuzzy subset μ in X is called a fuzzy KUS-ideal of X if it 

satisfies the following conditions: , for all x , y, z  X , 

(Fkus1)    μ (0) ≥ μ (x) , 

(Fkus2)    μ (z x) ≥  min {μ (z y), μ (y x)} . 

 

3. Anti-fuzzy KUS-ideals of  
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KUS-algebras 
       In this section, we will introduce a new notion called an 

anti-fuzzy KUS-ideal of KUS-algebra  and study several basic 

properties of  it. 

Definition 3.1.   Let  (X;  ,0)   be a KUS-algebra. A fuzzy 

set  μ  in  X  is called  an anti-fuzzy KUS-ideal of X if it 

satisfies the following conditions: for all x, y and z  X, 

(Akus1)    μ (0)   μ (x). 

(Akus2)    μ (z  x)   max { μ (z y), μ (y x)}.  

Example 3.2.   Let X = {0, 1, 2, 3} in which ( ) is defined 

by the following table: 

 

 

 

 

 

 

 

 

Then (X;  , 0) is a KUS-algebra. Define a fuzzy set μ : X → 

[0, 1] by  μ (0) = t1,  

μ (1) = μ (2) = μ (3) = t2, where  t1, t2  [0, 1] with t1 < t2. 

Routine calculation gives that  μ  is an anti-fuzzy KUS-ideal 

of  KUS-algebras X. 

Lemma 3.3.  Let  μ  be an anti-fuzzy KUS-ideal of KUS-

algebra  X  and if   x ≤ y , then  µ(x) ≤  µ(y) , for all  x, y  X. 

Proof:   Assume that  x  y , then  y   x = 0 , and  

µ(0 x) = µ(x) ≤ max{µ(0 y), µ(y x)} 

= max {µ(y), µ(0)}= µ(y). Hence µ(x) ≤ µ(y). ⌂ 

Proposition 3.4.  Let μ  be an anti-fuzzy KUS-ideal of KUS-

algebra X. If the inequality  y x    z   hold in  X, then   μ (x) 

  max { μ (y), μ (z)}. 

Proof: Assume that the inequality  y x    z hold in  X, by 

lemma (3.3),   µ(y x) ≤ µ(z) --- (1).  

     By(Akus2),  µ(z x) ≤ max {µ(z y), µ(y x)}. Put  z = 0, 

then   

µ(0 x) = µ(x) ≤ max {µ(0*y), µ(y x)} 

               = max {µ(y), µ(y x)} --- (2) . 

From (1) and (2), we get µ(x) ≤ max {µ(y), µ(z)}, for all  x, y, 

z X. ⌂  

Theorem 3.5.  Let μ  be an anti-fuzzy set in X then μ  is an 

anti-fuzzy KUS-ideal of X if and only if it satisfies: if 

),(U  = {x X  μ (x)  }, for all  

 [0, 1],   ),(U    implies ),(U  is a KUS-ideal of 

X---- (A) .  

Proof:  Assume that  μ   is an anti-fuzzy KUS-ideal of X, let 

 [0,1] be such that ),(U   , and let  x, y  X  be such 

that  x  ),(U  , then  μ(x)    and so by (Akus1),  μ (0)   

μ (x)  . Thus   

0  ),(U  . 

     Now let  (z y), (y x)  U(μ,). It follows from (Akus2) 

that  

μ (z x)   max{μ (z y), μ (y x)}= , so that  (z x) 

 ),(U  . Hence  ),(U  is a KUS-ideal of X. 

     Conversely, suppose that  μ  satisfies (A), assume that 

(Akus1) is false, then there exist  

 x  X such that  μ (0) > μ (x).  If we take  

t = 

2

1  [μ (x)+μ (0)], then  μ (0) > t and 

 0   μ (x) < t   1 , thus  x  )t,(U  and   

U(μ,t)  . As  )t,(U  is a KUS-ideal of X, we have 0  

)t,(U  , and so μ (0)  t.  This is a contradiction. Hence μ 

(0)   μ (x) for all  x  X.   Now, assume (Akus2) is not true 

then there exist  

 x, y, z  X such that 

 μ (z x) > max{μ (z y), μ (y x)},  

taking   β0 = 
2

1 [μ (z x)+max{μ (z y), μ (y x)}], we have  

β0  [0, 1]  and   

max{μ (z y), μ (y x)} < β0 < μ (z x), it follows that  

max{μ (z y), μ (y x)}  U(μ,β0)  and    

z x  ),(U 0 , this is a contradiction and therefore  μ  is 

an anti-fuzzy KUS-ideal of X. ⌂ 

4. Characterization of anti-fuzzy KUS-

ideals by their level KUS-ideals 

Theorem 4.1.  A fuzzy subset µ of  a KUS-algebra  X is an 

anti-fuzzy KUS-ideal of X  if and only if, for every  t  [0,1], 

t  is either empty or a KUS-ideal of X, where    
t  ={ xX 

 μ (x)  t}. 

Proof: Assume that  μ  is an anti-fuzzy KUS-ideal of X, by 

(Akus1), we have μ(0)   μ(x) for all x  X, therefore μ (0)   

μ (x)   t,  for x  
t and so   

0  
t  .  

     Let  (z y)  
t   and  (y x) 

t  , then   

μ (z*y)  t  and  μ (y x)   t , since  μ   is an anti-fuzzy KUS-

ideal it follows that  

 μ (z x)   max{μ (z  y), μ (y x)}   t and that    (z x)  

t  . Hence  
t  is a KUS-ideal of  X. 

     Conversely, we only need to show that (Akus1) and 

(Akus2) are true. If (Akus1) is false, then there exist  x  X 

such that  μ (0) > μ (x). If we take  

 t = 
2

1  (μ (x) + μ (0)), then  μ (0) > t  and   

0   μ (x) < t   1  thus  x  
t
 and  

t   . As  t   is a 

KUS-ideal of X, we have  0  
t  and so  μ (0)   t. This is a 

contradiction.  

      Now, assume (Akus2) is not true, then there exist  x, y and 

z  X  such that,  

  μ (z*x) > max{μ (z*y), μ (y*x)}.  

Putting  t =
2

1  [μ (z   x)+ max{μ (z y), μ(y x)}], then  μ 

(z x) > t  and  

0  max{μ (z y),μ (y x)} < t   1, hence  

 μ(z y) < t   and  μ (y x) < t, which imply that   

(z y)  
t  and  (y x)  

t , since  
t   is an anti-fuzzy 

KUS-ideal, it follows that  (z x)  
t   and that  μ (z x)   

t, this is also a contradiction.   Hence μ is an anti-fuzzy KUS-

ideal of X . ⌂ 

Corollary 4.2.  If a fuzzy subset  μ  of KUS-algebra  X  is an 

anti-fuzzy KUS-ideal, then for every   

  0 1 2 3 

0 0 1 2 3 

1 3 0 1 2 

2 2 3 0 1 

3 1 2 3 0 
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t  Im(μ), 
t   is a KUS-ideal of X. 

Remark 4.3.  Let  μ  be an anti-fuzzy KUS-ideal of KUS-

algebra X, then the KUS-ideal  
t  , t  [0,1] are called level 

KUS-ideals of μ . 

Corollary 4.4.  Let  I  be a KUS-ideal of a KUS-algebra X, 

then for any fixed number  t  in an open interval (0,1), there 

exist an anti-fuzzy KUS-ideal μ  of X such that t =I. 

Proof:      Define μ  : X → [0:1] by    

μ (x) = 









.Ixif,t

;Ixif,0  

     Where  t  is a fixed number in (0,1). Clearly,   

μ (0)   μ (x)  and we have one two level sets   

μ0 = I, 
t  = X, which are KUS-ideals of X, then from 

Theorem (4.1)  μ  is an anti-fuzzy KUS-ideal of X. ⌂ 

5. Image and Pre-image of anti-fuzzy KUS-

ideals 

Definition 5.1([2]). f  :(X;  ,0) → (Y;  `,0`) be a mapping 

from a nonempty set X to a nonempty set Y. If  β  is a fuzzy 

subset of X, then the fuzzy subset  μ  of Y defined by:   





 





 

otherwise0

}y)x(f,Xx{)y(fif)x(inf
)y()y)((f

1

)y(fx 1  

is said to be the image of  μ  under f  . 

     Similarly if  μ  is a fuzzy subset of  Y, then the fuzzy 

subset  μ  = (β o f ) in X (i.e., the fuzzy subset defined by  μ 

(x) = β( f (x)), for all  x  X)  is called the pre-image of  β  

under f  . 

Theorem 5.2.    An onto homomorphic pre-image of anti-

fuzzy KUS-ideal is also an anti-fuzzy KUS-ideal. 

Proof:  Let f  :(X;  ,0) → (Y;  `,0`) be an onto 

homomorphism of KUS-algebras,  

β  is an anti-fuzzy KUS-ideal of  Y and  μ  the pre-image of  β  

under f  , then  

 β( f (x)) = μ (x), for all  x  X.  Let  x  X, then 

  μ (0) = β( f (0)) < β( f  (x)) = μ (x). Now let    

x, y, z  X, then 

μ (z x) = β( f  (z x)) = β( f  (z)  ' f  (x)) 

  max{ β( f  (z)  ' f (y)), β ( f  (y)  ' f  (x))} 

= max{ β( f  (z y)), β( f  (y x))}  

= max{μ (z y), μ (y x)}, and the proof is completed. ⌂ 

Definition 5.3.   An anti fuzzy subset  μ  of  X has  inf 

property if  for any subset  T  of  X, there exist   t0  T such 

that  μ (t) = )t(inf Tt 
 .  

Theorem 5.4.    Let f  :(X;  ,0) → (Y;  `,0`) be an onto 

homomorphism  between KUS-algebras X and Y respectively 

. For every anti-fuzzy KUS-ideal  μ in  X, f  (μ ) is an anti-

fuzzy KUS-ideal of Y. 

Proof:  Let y  Y, there exists x  X such that  

f(x) = y . Then μ(y) = μ(f(x)) ≥ μ(f(0)) = μ(0') . 

     Let f : X → Y be an onto homomorphism of KUS-

algebras ,  μ  is an anti-fuzzy KUS-ideal of X with inf 

property  and β  the image of μ  under f  , since μ  is anti-

fuzzy KUS-ideal of X, we have   

μ (0)   μ (x) for all  x  X. Note that  0  1f  (0'), where  0, 

0'  are the zero of  X  and  Y, respectively. Thus  β(0') = 

)t(inf
)'x(ft 1 

 

= β(x'), for all  x  X, which implies that   

β(0')   )t(inf
)'x(ft 1 

= β (x'), for any  x'  Y. Let  x', y', z'  

Y, then there exists x0, y0, z0 X such that   x0 = 1f  (x'), y0 = 

1f  (y'), z0 = 1f  (z')  . It follows that  

μ (z0 y0) = )t(inf
)'y'*z(ft 1 

,  

μ (y0 x0) = )t(inf
)'x'*y(ft 1 

and  

μ (z0 x0)= )t(inf
)'x'*z(ft 1 

. Then   

f  (μ ) (z' x') = β (z' x') = )t(inf
)'x'*z(ft 1 

 

= μ (z0 x0)     max{μ (z0 y0), μ (y0 x0)} 

= max[ )t(inf
)'y'*z(ft 1 

, )t(inf
)'x'*y(ft 1 

] 

= max{β (z' y'), β(y' x')}. 

= max{ f  (μ )  (z' y'), f  (μ ) (y' x')}. 

Hence  f  (μ ) is an anti-fuzzy KUS-ideal of Y. ⌂ 

6. Cartesian product of anti-fuzzy KUS-

ideals 

Definition 6.1 ([1]).A fuzzy relation  R on any set S is a fuzzy 

subset R: SS →[0,1]. 

Definition 6.2 ([1]).  If  R  is a fuzzy relation on  sets  S and  β 

is a fuzzy subset of  S , then R is a fuzzy relation on  β  if  

)y,x(R  ≥  max {β(x), β(y)}, for all  x, yS . 

Definition 6.3([1]).    Let  μ  and  β  be fuzzy subsets of a set  

S . The cartesian product of  μ  and  β  is defined by  

(  )(x,y) = max {μ(x), β(y)},  for all  x, y S . 

Lemma 6.4([1]).    Let  S  be a set and  μ  and  β  be fuzzy 

subsets of  S . Then, 

(1)    is a fuzzy relation on  S , 

(2)   (  )t  = 
tt  , for all  t  [0,1]. 

Definition 6.5([1]).    Let  S  be a set and  β  be fuzzy subset 

of  S . The strongest fuzzy relation on  S ,that is, a fuzzy 

relation on  β  is  
R  given by   

R  (x,y) = max {β(x) , β(y)},for all x, yS . 

Lemma 6.6([1]).  For a given fuzzy subset  β  of a set  S, let  

R   be the strongest fuzzy relation on  S. Then for  t [0,1], 

we have  (
R )t = 

tt  . 

Proposition 6.7.  For a given fuzzy subset  β  of a KUS-

algebra  X , let  
R  be the strongest fuzzy relation on X . If  β 

 is an anti-fuzzy KUS-ideal of  XX  , then  

R  (x,x)  ≥ 
R  (0,0) , for all  xX  
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Proof:     Since  
R  is a strongest fuzzy relation of  XX , it 

follows from that,  

R (x,x)  = max{β(x), β(x)} ≥ max{β(0), β(0)} 

 =
R (0,0), which implies that

R (x,x) ≥
R  (0,0). ⌂  

Proposition 6.8.  For a given fuzzy subset  β  of a KUS-

algebra  X , let  
R   be the strongest fuzzy relation on  X . If  

R  is an anti-fuzzy KUS-ideal of  XX , then β(x) ≥ β(0) , 

for all xX . 

Proof:  Since  
R  is an anti-fuzzy KUS-ideal of  XX , it 

follows from (Akus1),  

R (x,x) ≥ 
R (0,0) , where  (0,0) is the zero element of  

XX .  But this means that , max{β(x), β(x)} ≥  max{β(0), 

β(0)} which implies that   β(x) ≥ β(0)  . ⌂ 

Remark 6.9([1]).   Let  X  and  Y  be KUS-algebras, we 

define (*) on  YX  by : for all  (x,y),(u,v)  YX ,  (x,y) 
  (u,v)  = (x u, y v). Then clearly ( YX ; .(0,0))  is a 

KUS-algebra. 

Theorem 6.10.  Let  μ  and  β  be an anti-fuzzy KUS-ideals of 

KUS-algebra X . Then     is an anti-fuzzy KUS-ideal of  

XX . 

Proof:   Note first that for every  (x,y) XX ,  

(  )(0,0) = max {μ(0) , β(0)}  

≤  max {μ(x) , β(y)} = (  )(x,y)  . 

     Now let (x1,x2) , (y1,y2) , (z1,z2)  XX . Then 

 (  )(z1 x1, z2 x2) = max { µ(z1 x1) ,β(z2 x2)} ≤ max 

{ max{µ(z1 y1) ,µ(y1 x1)}, 

                                 max{β(z2 y2) ,β(y2 x2)}} 

= max { max{µ(z1 y1) , β(z2 y2) },  

                     max{ µ(y1 x1),β(y2 x2)}} 

    = max{(  )(z1 y1 ,z2 y2), 

                (  ) (y1 x1,y2 x2)} 

Hence (  ) is an anti-fuzzy KUS-ideal of XX .⌂ 

Theorem 6.11.  Let  μ  and  β  be anti-fuzzy subsets of KUS-

algebra X such that    is an anti-fuzzy KUS-ideal of  

XX . Then  for all  x X, 

(i)   either  μ (0) ≤  μ (x)  or  β (0) ≤  β (x) . 

(ii)    μ (0) ≤ μ(x)  ,then either  β (0) ≤  β (x)  or   

         β (0) ≤  μ (x)  . 

(iii)   If  β (0) ≤ β (x), then either  μ (0) ≤ μ (x)  or 

         β (0) ≤  μ (x). 

(iv)   Either  μ or β is an anti-fuzzy KUS-ideal of X . 

Proof.  
(i) suppose that µ (0) > µ (x) and β (0) >  β (y)   for some  

x , y X . Then(  )(x,y)   

= max{μ(x) , β(y)}<max {μ(0), β(0)} =(  )(0,0). This is a 

contradiction and we obtain (i). 

(ii) Assume that there exist  x , y X such that  

 β (0) > μ (x)   and  β (0) > β (y) . Then (  )(0,0) = max{μ 

(0),β(0)} = β(0) it follows that       (  )(x,y)  = max{μ(x) , 

β(y)}< β(0)  =(  )(0,0)  which is a contradiction. Hence (ii) 

holds. 

(iii) is by similar method to part (ii). 

(iv) Suppose  β (0) ≤  β (x) by (i), then form (iii)  either  μ (0) 

≤  μ (x)   or   β (0) ≤ μ (x)  for all  xX . 

     If  μ (0) ≤  β (x), for any  xX , then  (  )(0,x) = max 

{μ (0), β (x)} = β (x).   Let (x1,x2) , (y1,y2) , (z1,z2)  XX, 

since  (  ) is an anti-fuzzy KUS-ideal of XX , we have 

(  )(z1 x1,z2 x2) ≤max{(  )(z1 y1,z2 y2),  

                      (  ) (y1 x1,y2 x2)}---- (A)  

    If we take  x1 = y1 = z1 =0 , then 

β(z2 x2) =  (  )(0,z2 x2)  

≤ max{(  ) (0,z2 y2), (  ) (0,y2 x2)} 

= max{max {μ (0) , β(z2 y2)},  

            max{μ (0), β(y2 x2)}} 

= max{β(z2 y2), β(y2 x2)} 

This prove that  β  is an anti-fuzzy KUS-ideal of  X . 

Now we consider the case  μ (0) ≤ μ (x) for all xX. Suppose 

that  μ (0) > μ (y) for some  y X . then   

β (0) ≤ β (y) < μ (0).  

    Since  μ (0) ≤ μ (x)  for all  xX , it follows that  β (0) < μ 

(x)  for any  xX .  

     Hence  (  )(x,0) = max {μ (x), β (0)} = μ(x) taking   x2 

= y2 = z2 =0 in (A), then 

µ(z1 x1) =  (  )(z1 x1, 0)  

    ≤ max{(  ) (z1 y1,0), (  ) (y1 x1,0)} 

    = max{max{μ (z1 y1), β (0)},  

                max{μ (y1 x1),β (0)}} 

    = max{ µ (z1 y1), µ (y1 x1)} 

     Which proves that  μ  is an anti-fuzzy KUS-ideal of  X . 

Hence either  μ  or  β  is an anti-fuzzy KUS-ideal of X . ⌂ 

Theorem 6.12.  Let  β  be a fuzzy subset of a KUS-algebra X 

and let  
R  be the strongest fuzzy relation on  X , then  β  is 

an anti-fuzzy KUS-ideal of X  if and only if 
R  is an anti-

fuzzy KUS-ideal of  XX . 

Proof:     Assume that  β  is an anti-fuzzy KUS-ideal of  X . 

By proposition (6.7) ,we get,   

R  (0,0) ≤ 
R  (x,y), for any  (x,y) XX . 

     Let (x1,x2) , (y1,y2) , (z1,z2)  XX , we have from 

(Akus2) : 

R  (z1 x1, z2 x2) = max {β(z1 x1) , β(z2 x2)} 

≤ max{max {β (z1 y1) , β (y1 x1)},  

            max{β (z2 y2), β (y2 x2)}} 

    = max{max {β (z1 y1) , β (z2 y2)},  

                max{β (y1 x1), β (y2 x2)}} 

= max {
R  (z1 y1, z2 y2) , R  (y1 x1, y2 x2) } 

Hence  
R  is an anti-fuzzy KUS-ideal of  XX . 

Conversely, suppose that  
R is an anti-fuzzy KUS-ideal of 

XX , by proposition (6.8) β(0) ≤ β (x) for all x  X, which 

prove (Akus1) . 

Now, let  (x1,x2) , (y1,y2) , (z1,z2)  XX . Then, 

max{β (z1 x1) ,β (z2 x2) } = 
R  (z1 x1, z2 x2)  

≤ max{
R ((z1,z2) (y1, y2)), R ((y1,y2)  (x1, x2))} 

= max{
R ((z1 y1),(z2 y2)),    

            
R ((y1 x1),(y2 x2)) } 

 = max{ max {β(z1 y1), β (z2 y2)} ,  

max {β (y1 x1), β (y2 x2)} } 

    In particular if we take  x2 = y2 = z2 = 0 , then   

β (z1 x1) ≤ max {β (z1 y1), β (y1 x1)} . This proves 

(Akus2) and  β  is an anti- fuzzy KUS-ideal of  X . ⌂  
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Theorem 6.13.  Let  μ and β  be fuzzy subsets of a KUS-

algebra X such that    is an anti-fuzzy KUS-ideal of 

XX . Then μ  or  β  is an anti-fuzzy KUS-ideal of X. 

Proof:     By theorem (6.11(i)), without loss of generality we 

assume that  μ(x) ≥ μ(0) for all x  X. From theorem 

(6.11(iii)), it follows that either   

β (0) ≤ β (x)  or  β (0) ≤  μ (x). If μ(x) ≥ β(0) for all x  X, 

then (  )(0,x) = max { β (0) , μ (x)} = 

  μ (x) . Let(x,y)  XX , since     is an anti-fuzzy 

KUS-ideal of  X . By proposition (6.7), we get,  (  ) (0,0) 

≤ (  ) (x,y). 

     Let (x1,x2) , (y1,y2) , (z1,z2)  XX , we have from 

(Akus2) : 

(  ) (z1 x1, z2 x2)=max {μ(z1 x1),β(z2 x2)} 

≤ max{max {μ (z1 y1) , μ (y1 x1)}, 

            max{β (z2 y2), β (y2 x2)}} 

= max{max {μ (z1 y1) , β (z2 y2)},  

            max{μ (y1 x1), β (y2 x2)}} 

= max {(  ) (z1 y1, z2 y2) ,  

             (  ) (y1 x1, y2 x2) } 

    In particular if we take  x1 = y1 = z1 = 0 , then   

β (z2 x2) = (  ) (0,z2 x2)  ≤ 

 max {(  )  (0,(z2 y2)), (  )  (0,(y2 x2))} 

= max{max {μ(0), β (z2 y2)}, 

            max {μ(0), β (y2 x2)}}  

= max {β  (z2 y2), β (y2 x2)} . This proves that β is an anti-

fuzzy KUS-ideal of X. The second part is similar .This 

completes the proof . ⌂ 
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