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ABSTRACT
Petri nets are powerful mathematical formalism for designing and
studying behaviors of a wide range of discrete dynamical event
driven systems. The aim of this paper is to show that an arbitrary 1-
safe Petri net can be embedded as an induced subnet of a Boolean
Petri net, viz., the one that generates every binary n-vector as its
marking vector.

Keywords:
1-safe Boolean Petri net, reachability tree, binary n-vector,
marking vector.

1. INTRODUCTION
A Petri net is a graphical tool invented by Carl Adam Petri [1].
Its origin can be traced back to August 1939 when, at the age of
13, Petri created the graphics to describe chemical processes that
produce a final compound from various elements through some
intermediate compounds. The ‘net-like’ representation of these
logical tools came into the existence in his doctoral thesis “Com-
munication with Automata” at the Technical University of Darm-
stadt, Germany, in 1962 [1]. Since then Petri nets have been de-
veloped and used in many theoretical as well as application areas
[2, 3, 4, 5]. A Petri net may be identified as a particular kind of
bipartite directed graph having three types of objects. These ob-
jects are places, transitions and directed arcs connecting places
to transitions and transitions to places. Pictorially, places are de-
picted by circles and transitions as bars or boxes. A place is an
input place to a transition if there exists a directed arc connect-
ing this place to the transition. A place is an output place of a
transition if there exists a directed arc connecting the transition
to the place. Places and transitions may have many interpreta-
tions and for other meanings for places and transitions the reader
is referred to [6]. Although some structural techniques [7] have
been successfully developed to study the 1-safe systems, unfor-
tunately, they often offer only semi decision conditions, i.e., ei-
ther necessary or sufficient conditions, or their application is re-
stricted to some specific subclasses of Petri nets. Keeping this
drawback in mind, the authors (cf.: Kansal et al. [8]) proposed a
1-safe star Petri net Sn, with |P | = n and |T | = n + 1, hav-
ing a central transition, that generates all the binary n-vectors, as

its marking vectors; they also established the existence of 1-safe
Petri nets that generate all the binary n-vectors exactly once as
marking vectors.

2. PRELIMINARIES
For standard terminology and notation on Petri net theory and
graph theory, we refer the reader to Peterson [7] and Harary [9].
In this paper, we shall adopt the definition of Jenson [10]:

A Petri net is a 5-tuple N = (P, T, I−, I+, µ0), where

(1) P is a nonempty set of ‘places’,
(2) T is a nonempty set of ‘transitions’,
(3) P ∩ T = ∅,
(4) I−, I+ : P × T −→ N, where N is the set of nonnegative

integers, are called the negative and the positive ‘incidence
functions’ (or, ‘flow functions’) respectively,

(5) ∀ p ∈ P,∃t ∈ T : I−(p, t) 6= 0 or I+(p, t) 6= 0 and
∀ t ∈ T,∃p ∈ P : I−(p, t) 6= 0 or I+(p, t) 6= 0,

(6) µ0 : P → N is the initial marking.

In fact, I−(p, t) and I+(p, t) represent the number of arcs from
p to t and t to p respectively. I−, I+ and µ0 can be viewed as
matrices of size |P | × |T |, |P | × |T | and |P | × 1, respectively.

As in many standard books (e.g., see [11]), Petri net is a par-
ticular kind of directed graph, together with an initial marking
µ0. The underlying graph of a Petri net is a directed, weighted,
bipartite graph consisting of two kinds of nodes, called places
and transitions, where arcs are either from a place to a transition
or from a transition to a place.

The initial marking is represented by placing a token in the circle
representing a place pi as a black dot whenever µ0(pi) = 1,
1 ≤ i ≤ n = |P |. In general, a marking µ is a mapping
µ : P −→ N. A marking µ can hence be represented as a vector
µ ∈ Nn, n = |P |, such that the ith component of µ is the value
µ(pi).

Let N = (P, T, I−, I+, µ) be a Petri net. A transition t ∈ T
is said to be enabled at µ if and only if I−(p, t) ≤ µ(p), ∀p ∈
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P . An enabled transition may or may not ‘fire’ (depending on
whether or not the event actually takes place). After firing at µ,
the new marking µ′ is given by the rule

µ
′
(p) = µ(p)− I−(p, t) + I+(p, t), forall p ∈ P

.
We say that t fires at µ to yield µ

′
(or, that t fires µ to µ′), and we

write µ t−→ µ′, whence µ′ is said to be directly reachable from
µ. Hence, it is clear, what is meant by a sequence like

µ0 t1−→ µ1 t2−→ µ2 t3−→ µ3 · · · tk−→ µk,

which simply represents the fact that the transitions
t1, t2, t3, · · · , tk have been successively fired to transform
the marking µ0 into the marking µk. The whole of this sequence
of transformations is also written in short as µ0 σ−→ µk, where
σ = t1, t2, t3, · · · , tk denotes the corresponding firing sequence.

DEFINITION 1. A marking µ is said to be reachable from µ0,
if there exists a sequence of transitions which can be successively
fired to obtain µ from µ0. The set of all markings of a Petri net
N reachable from a given marking µ is denoted by M(N,µ)

and, together with the arcs of the form µi
tr−→ µj , represents

what in standard terminology is called the reachability graph of
the Petri net N . If the reachability graph has no cycle then it is
called reachability tree.

It has been found and established that the reachability tree of
a 1-safe Petri net can be homomorphically mappped on to the
n-dimensional complete Boolean lattice, thereby yielding new
techniques to represent the dynamics of these Petri nets [12].

DEFINITION 2. A place in a Petri net is 1-safe if the number
of tokens in that place never exceeds one. A Petri net is 1-safe if
all its places are 1-safe.

Note that there is another way to represent Petri net elements as
given in the following definition.

DEFINITION 3. The preset of a transition t is the set of all
input places to t, i.e., •t = {p ∈ P : I−(p, t) > 0}. The
postset of t is the set of all output places from t, i.e., t• =
{p ∈ P : I+(p, t) > 0}. Similarly, p’s preset and postset are
•p = {t ∈ T : I+(p, t) > 0} and p• = {t ∈ T : I−(p, t) > 0},
respectively.

3. MAIN RESULT
In this section we will give the theorem for embedding a 1-safe
Petri net into a Boolean Petri net. This theorem indicates that one
cannot hope to have a forbidden subgraph characterization of a
Boolean Petri net.

THEOREM 4. Every 1-safe Petri net N =
(P, T, I−, I+, µ0), |P | = n with µ0(p) = 1 ∀ p ∈ P
can be embedded as an induced subnet of a Boolean Petri net.

PROOF. Let N = (P, T, I−, I+, µ0), |P | = n be a 1-safe
Petri net. IfN is Boolean Petri net then there is nothing to prove.
Hence, assume that N is not a Boolean Petri net. Then, we have
the following steps to obtain a Boolean Petri net N ′ in which N
is one of its induced subnets.

Step-1: First of all, find those places in N whose postsets have
single distinct sink transitions (if the postset of a place has more
than one distinct sink transitions then choose only one transition
giving K2). Suppose such places are p1, p2, · · · , pk, 0 ≤ k < n.
Step-2: Augment n− k new transitions and join each transition
to the remaining n − k places in N by an arc from a place to a
transition creating n− k new active transitions.

Step-3: Thus, in N ′ we have n-copies of K2 as its subgraph.
Since µ0(p) = 1 ∀p ∈ P , all the transitions are enabled. Fir-
ing of n transitions forming n ‘pendant transitions’ will pro-
duce nC1 distinct binary n-vectors whose Hamming distance
is 1 from the initial marking vector. At these marking vectors,
n− 1 transitions out of those n transitions are enabled, and after
firing give at least nC2 distinct marking vectors, each of whose
Hamming distance is 2 from the initial marking.

In general at any stage j, 3 ≤ j ≤ n, we get a set of at least
nCj new distinct binary n-vectors whose Hamming distance
is j from the initial marking, which are also distinct from the
sets of nCr distinct marking vectors for all r, 2 ≤ r ≤ j − 1.
Therefore, at the nth stage we would have obtained at least
nC1 +n C2 + · · · +n Cn=2n − 1 distinct binary n-vectors.
Together with the initial marking (1, 1, · · · , 1), we thus see
that all the 2n binary n-vectors would have been obtained as
marking vectors, possibly with repetitions. Thus N ′ is Boolean.

Therefore, every 1-safe Petri net N can be embedded as an in-
duced subnet of a Boolean Petri net.

The above theorem demonstrates indirectly that the problem of
deciding whether a given 1-safe Petri net is Boolean is an NP-
complete problem. Therefore, it becomes important to look for
specific classes of 1-safe Petri nets having computationally good
characterization would entirely depend upon whether a partic-
ular class is theoretically interesting or practically essential to
have. The extent and effectiveness of embedding utility in solv-
ing the practical problem requiring the design of multi-functional
switches for the operation of certain discrete dynamical systems
of common use as washing machines and teleprinters [13]. One
immediate class that comes to our mind in this context is that
of the class of crisp Boolean Petri nets, viz, a 1-safe Petri net
that generates every binary n-vector as their marking vector ex-
actly once. Existence and uniqueness of crisp Boolean Petri net
has been reported in [14, 15]. We strongly believe that even this
class may not a forbidden subgraph characterization.
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