
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.5, May 2013

22

Secure Data Access from Android Smartphone

without Internet

Mahesh Mookanagoudar

GearUp Technology,
Dharwad

S P Sajjan
Lecturer

Karnatak University,
Dharwad

Shashidhar Halligerimath
Lecturer

KHKIE Dharwad

ABSTRACT

In recent year adoption of Android as a platform for mobiles

has increased. To perform remote accessing of mobile

contents there are many ways which make use of internet.

This technique mainly deals with secure access of the textual

contents of mobiles like contacts, SMS, Call log, location, as

well as secure deletion of the same data from the android

mobiles remotely using any mobile(need not be android

phone) through SMS using different keywords for performing

different actions and doesn’t need Internet for accessing of

data.

Keywords

Android, SMS, Phonebook / Contacts, Call log, location, file

1. INTRODUCTION
Recently with the introduction of android in smartphone, there

exists many applications for different purposes which meet

wide variety of user requirements. Among those, this paper

tries to provide a solution in a situation where in somebody

wants to access or delete certain specific data from the mobile

which is geographically away from the user’s place by just

sending an SMS with appropriate keywords to the android

phone wherein this solution is implemented. The keywords

include password and the action that the user wants to perform

on their mobile. The concept involved is like this, the

app(solution) implemented will be triggered for every SMS

that the mobile receives. On receiving the SMS, the app will

fetch the SMS and verify for the password. On successful

authentication, it checks for the remaining keywords.

Considering that the keywords match with the predefined

keywords then based on the category of keywords whether

they are meant for accessing the data like SMS/Call

log/Contacts/Location or they are meant for deletion of

SMS/Call log/Contacts, the actions will be performed and for

access operations on successful fetching of the requested data,

the data will be sent to the user mobile which had made the

request via SMS whereas for deletion operations no result is

sent. On unsuccessful match or if no data exists then nothing

is performed. The major advantages of this concept are that it

need not be running continuously in the background and it

doesn’t need internet and the client can have any mobile to

perform operations on the Android mobile wherein the

solution is implemented.

2. PROPOSED SYSTEM:

The proposed system makes use of built in features like SMS,

Phonebook, Call log, GPS and files to serve the requested

action. This system makes use of SharedPreferences for

setting the password which can be used to authenticate the

user when a request is made to access specific data through

SMS. The technique of performing actions on a android

mobile needs a pattern which will make the mobile to

understand and process the action/request. Considering that

the password is set, keywords need to be defined to perform

various requests. Let the keywords be, GET_CONTACT for

accessing the desired contact number, GET_SMS for

accessing the SMS, GET_CALL_LOG for accessing the call

log, GET_LOC to access the present location of the mobile,

GET_FILE to access the contents of a file. Similarly let the

keywords be, DEL_SMS to delete the contents of the SMS,

DEL_CONTACTS to delete the contents of PhoneBook,

DEL_CALLLOG to delete the call log. Once the keyword is

defined, the user can make a request to access specific data by

sending an SMS like the following.

Password,keyword

The above mentioned pattern remains same for all actions

apart from accessing contacts.

The following is the pattern for accessing contacts

Password,keyword,desired_contact_name

Considering the user has made a request for accessing a

contact number of a particular contact. Then the system

behaves in the following manner, the first stage of operation

deals with monitoring for the new SMS. Once the SMS enters

the mobile, the BroadcastReceiver class informs our system

about the arrival and the system fetches the newly arrived

SMS to verify whether or not the application is meant for the

system. Once the system fetches the SMS, it retrieves the

content of it to verify that the first word in the SMS is the

password. If the password matches then it tries to verify what

action is being requested by the user by verifying the second

word of the SMS with the predefined keyword. On successful

match, it tries to perform requested action. The only

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.5, May 2013

23

Difference over here would be if the second keyword is

GET_CONTACT then the system needs to fetch the third

word from the SMS which reveals the name of the desired

contact number. Based on the second keyword the actions will

be performed. For accessing the contact, the third word from

the SMS will be considered. The so extracted word will be

used with a query to check whether the requested contact

exists in the phonebook, if it exists then it will be extracted

and an SMS will be composed with the body part containing

the extracted contact number and the to part containing the

number from which the request was made and will be sent.

3. SAMPLE CODE

1. Accessing contact Code

ContentResolver contentResolver =

context.getContentResolver();

Cursor cursor =

cr.query(ContactsContract.Contacts.CONTENT_U

RI,null, "DISPLAY_NAME = '" + keyword3 +

"'", null, null);

if (cursor.moveToFirst())

{

 String

contactId=cursor.getString(cursor.getColumnIndex(

ContactsContract.

 Contacts._ID));

 Cursor phones =

cr.query(Phone.CONTENT_URI,

null,Phone.CONTACT_ID + "

 = " + contactId, null, null);

while (phones.moveToNext())

{

 number =

phones.getString(phones.getColumnIndex

(Phone.NUMBER));

}

}

 2. In the same way when the user requests to delete the

contacts from phonebook then

 if(keyword2.equals(delContactKeyword))

 {

Cursor cursor =

contentResolver.query(ContactsContract.Contacts.C

ONTENT_URI, null, null, null, null);

while (cursor.moveToNext())

{

 String lookupKey

=cursor.getString(cursor.getColumnIndex

 (ContactsContract.Contacts.LOOKUP_K

EY));

 Uri uri = CONTENT_LOOKUP_URI,

lookupKey);

Uri.withAppendedPath(ContactsContract.Contacts.

contentResolver.delete

 (uri, null, null);

}

}

To delete the call log

if(keyword2.equals(delCallLog))

 contentResolver.delete(CallLog.Calls.CONTENT_

URI, null, null)

To delete SMS

for (int i = 0; i < vector_id.size(); i++)

 {

 str_id = vector_id.get(i);

 where = str_column_name + "=" + str_id;

 delRow = cr.delete(uri_sms, where, null);

}

To access call log

 while (managedCursor.moveToNext())

 {

 String

cntName=managedCursor.getString(callName1);

 String phNumber =

managedCursor.getString(number1);

 String callType1 = managedCursor.getString(type);

 String callDate1 = managedCursor.getString(date);

 Date callDayTime = new

Date(Long.valueOf(callDate1));

 String callDuration =

managedCursor.getString(duration1);

 String dir = null;

 int dircode = Integer.parseInt(callType1);

 switch (dircode)

 {

 case CallLog.Calls.OUTGOING_TYPE:

dir = "OUTGOING";

 break;

 case CallLog.Calls.INCOMING_TYPE: dir =

"INCOMING";

 break;

 case CallLog.Calls.MISSED_TYPE:dir =

"MISSED";

 break;

}

result=" Name= "+cntName+" Phone Number

"+phNumber+" Date "+callDayTime+" Call Type

"+dir+" Duration in sec "+callDuration;

}

managedCursor.close();

}

To access SMS

Uri uriSMSURI = Uri.parse("content://sms/inbox");

Cursor cur = context.getContentResolver().query(uriSMSURI,

null, null,null, null);

String smscontent = "";

while (cur.moveToNext())

{

 if(cur.getPosition()<=2 && (null !=

cur.getString(2) || "" != cur.getString(2)) && (null

!= cur.getString(11) || "" != cur.getString(11)))

 {

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.5, May 2013

24

 System.out.println(cur.getPosition());

 smscontent += "From :" + cur.getString(2) + " : " +

cur.getString(11)+"\n";

 }

}

In the same way user present location can be accessed by

using LocationManager class with the function

lastknownlocation()

Fig 1: Architecture Design

4. FLOW DIAGRAM
1.DELETE SMS/Call log/Contacts

SMS

Request

SMS

Response

Applicati

on

DB

Resul

t

OnRecieve()

Delete SMS/Call log/Contacts Authentication

Stop()

Fig 2: Delete flow Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.5, May 2013

25

2. Data Accessing

5. CONCLUSION:

 This paper is based on the concept of SMS and

many Android telephony API’s. As Android is open source,

there exists loads of resources to understand and it becomes

easy to implement and deploy the solution. Finally we would

like to conclude that this paper provides a secure solution for

majority of the users who tend to forget their mobile and need

to access their mobiles from any geographic corner of the

world using any mobile.

6. REFERENCES:

[1] Beginning Android 2 (Paperback) by Mark Murphy

[2] Sams Teach Yourself Android Application Development

in 24 Hours.

[3] Professional, Android Application Development

(Paperback) by Reto Meier.

[4] http://android-developers.blogspot.in/

[5] http://developer.android.com/reference/android/content/

BroadcastReceiver.html

[6] http, ://stackoverflow.com

onRecieve()

Authenticate

GET_CONTACT(name) GET_SMS() GET_CALLLOG() GET_LOCATION()

If(name

Exist)

Compose SMS With Result

If(SMS

Exist)

If(CALLLOG

Exist)
If(Locaion)

Send SMS

Fig 3: Data accessing flow Diagram

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

