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ABSTRACT 

Empirical Mode Decomposition (EMD) has been used 

effectively in the analysis of non-linear and non-stationary 

signals. As an application in Robust Signal Processing, in this 

paper we used this method to reduce noise from a corrupted 

signal which is obtained from a disaster environment. 

Conventional adaptive algorithms exhibit poor performance if 

we consider the signal from a real environment. In this paper 

it has been described how EMD can be applied for noise 

reduction by breaking the signal down into its components 

and how it can help in removing the noisy components from 

the original signal. 
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1. INTRODUCTION 
 

Adaptive filters are the digital filters with the coefficients that 

can change over time. The general idea is to assess how well 

the existing coefficients are performing and then adapt the 

coefficient values to improve performance. This approach is 

useful in two somewhat different application categories. The 

first category involves filtering requirements that are 

stationary but unknown. In this case an adaptive filter can be 

initialized with a guess and then allowed to converge to a 

better solution. The second category involves filtering 

requirements that may be loosely bounded in some way, but 

which vary over time. In the first category, speed of 

convergence often is a secondary consideration behind the 

steady-state error remaining in the converged filter. In the 

second category, steady-state error is important, but the 

adaptation speed must be sufficient to allow the filter 

coefficients to track the time-varying requirements. The trade 

between convergence speed and steady- state error is a 

fundamental issue in adaptive signal processing. [1] 

 

Empirical Mode Decomposition (EMD) has been proposed 

recently [2] as an adaptive time-frequency data analysis 

method. It has been proven to be quite versatile in a broad 

range of applications for extracting signals from data 

generated in noisy nonlinear and non-stationary process. In 

this paper EMD is used to reduce the effect of standard white 

noise corrupting the signal.  

 

2. ADAPTIVE ALGORITHMS 
 

Adaptive filters have been widely used in communication 

systems, control systems and various other systems in which 

the statistical characteristics of the signals to be filtered are 

either unknown a prior or, in some cases, are slowly time-

variant (non-stationary). Numerous applications of adaptive 

filters have been described in the literature. Two algorithms 

popularly used in adaptive filtering are described in the 

following sections. 

 

2.1 LMS Algorithm 
 

The Least Mean Square (or) LMS algorithm, first introduced 

in 1960 by Widrow & Hoff [3] is the most widely used of all 

the adaptive filtering algorithms that have been developed. 

This algorithm is relatively simple to implement and it 

provides good performance in a wide range of applications. 

The LMS algorithm can be described from the Eqn (1) 

derived by considering the steepest descent algorithm by 

neglecting some parameters as in [1]: 

 

x(k))k(2w(k)1)w(k                 (1) 

                        

where x is the input sample vector, w is the tap weight and k 

is iteration count, ε is a small positive constant and μ is the 

convergence factor that determines the step size. If μ is too 

large the convergence speed is fast but filtering is not proper. 

If μ is too small the filter gives a slow response. Since μ is 

limited for the purposes of stability, the convergence of LMS 

can be treated as very slow. 

 

2.2 RLS Algorithm 
 

Performance provided by the RLS algorithm is usually 

superior relative to the LMS algorithm, at a moderate increase 

in computational complexity. The description of RLS 

algorithm is given by the below Eqns. (2-3)  

(k)u1)-w(kw(k) *                        (2) 

 

1)-P(k)k(u x-1)-P(k P(k) H                    (3) 

 

where P[k] is an N×N matrix, x is an input sample vector, w is 

tap weight, k is the iteration count and ε is a small positive 

constant.[1] 

 

The major advantage of the RLS algorithm over the LMS 

algorithm is its faster convergence rate that makes this 

algorithm preferable for applications where the signal 

statistics vary rapidly with time. But the main disadvantage of 

the RLS algorithm is that it involves several matrix 

multiplications and computational requirements many times 

greater than the LMS algorithm. Another disadvantage of the 

RLS is its sensitivity to round-off errors that leads to unstable 

conditions. Moreover the LMS is simpler, with low 

computational requirements and quite robust to round-off 

noise. 
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3. EMD AS A FILTERING TECHNIQUE 
The EMD adaptively decomposes the input signal into a series 

of Intrinsic Mode Functions (IMF’s) through the sifting 

process which is described as follows [4]: 

1. Identifies all extrema of input signal x(t) (noise 

corrupted signal is to be considered here) 

2. Generates the upper envelope u(t) and the lower 

envelope l(t) of extrema and calculate the mean 

envelope as  

2

l(t))(u(t)
 m(t)


  

3. Subtract m(t) from x(t) to generate the detail 

 

m(t) - x(t)d(t)   

4. Updates x(t) using d(t) and then repeats the steps 

from 1 to 4 until d(t) satisfies stopping criterion. 

The detail is referred to the first IMF as imf1(t). In order to 

decompose x(t) into a series of IMFs. The above process is 

repeated as follows: 

5. Subtract imf1(t) from x(t) to generate the residual   

(t)imf -x(t))t(r 11   

6. Treats the residual r1(t) as the input signal and 

repeats the above sifting process to generate the 

next IMF inf2(t) and residual r2(t) 

7. Repeat the step 5 and 6 to generate a series of IMF’s 

and the last residual rn(t) until the stopping criterion 

(i.e rn(t) should be monotonic) is satisfied. 
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The stopping criterion for the EMD process is that the signal 

which is being decomposed, if its exhibits the monotonic 

property the decomposition process stops and no further IMFs 

are produced. Finally the input signal can be represented as 

the summation of the IMFs as shown in the Eqn (4): 

                     



n

1i

n1 )t(r)t(imf x(t)                    (4) 

where ‘ i ’ is the IMF order. It can be seen that the basic IMF 

function is adaptively generated from the input signal and 

there is no parameter that need to be initialized.  

4. OBSERVATIONS AND ANALYSIS 
In this paper the noise reduction application is implemented 

for the signal considered in [5] are same considered as the 

original input signal i.e sin((0.5*pi)*t) with t = 0: 0.1: 15 and 

the noise signal as standard white noise with zero mean unit 

variance. In order to give a quantitative evaluation of the trend 

extraction effect the performance measures such as Root 

Mean-Square Error (RMSE), Normalized Absolute Error 

(ENAE), Signal to Noise ratio (SNR) and Average Systematic 

Bias (Ebias) of the signal after de-noising are considered [6]: 

RMSE is given by Eqn (5) as: 

       












N

1t

2

)t(x-x(t)
N

1
RMSE         (5) 

where x(t)  stands for the original signal and )t(x


is the de-

noised signal. N denotes the length of the signal. The lower 

the value of the RMSE shows the better noise reduction. It 

denotes that the estimated signal is more similar to the 

original signal. The Normalized absolute error (ENAE), 

normalizes average absolute error of the de-noised signal to 

average of original signal, and if the value of ENAE is smaller, 

then error in the de-noised signal is less. ENAE shown in Eqn 

(6) is expressed as: 
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Signal-to-noise ratio (SNR) is a traditional evaluation index 

for the effect of the de-noised signal. The higher value of SNR 

the better the results. SNR is given by Eqn (7) as: 
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Average Systematic Bias (Ebias) reflects the bias of the de-

noised signal. A lower value Ebias shows a smaller systematic 

bias and Ebias can be expressed in Eqn (8) as: 

 

            












N

1t

bias x(t))t(x
N

1
E               (8) 

 

The noise reduction has been performed using the LMS, RLS 

and EMD. 

4.1 Simulation based on LMS algorithm 
The adaptive filter design and simulation based on the LMS 

algorithm is done for the above signal which is corrupted with 

the standard white noise. The filter order selected in [5] is 2 

with a step factor 0.1. Hence in this paper for comparison 

purpose the same filter orders are considered. In the present 

paper, the AR (1) coefficients considered here are a1= 0.8 and 

a2= -0.6 referring the literature [7]. By executing the 

algorithm using all the above parameters results the use of the 

LMS in noise reduction. Fig. 1 shows the simulation results. It 

contains the noise corrupted signal and the filtered output 

after passing through the LMS adaptive filter.  

 

As the filter order considered was 2, noise reduction was not 

obtained properly [5]. If the filter order is increased to a 

higher one then better performance in noise reduction can be 

achieved but not greater than the filter order considered for 
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RLS in simulation. Fig. 2 shows the learning curve which is 

plotted by considering error versus number of iterations. 
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Fig. 1 Noise corrupted signal (upper row), filtered output 

(lower row) 
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Fig. 2 Learning curve of LMS 

4.2 Simulation based on RLS algorithm 
The adaptive filter design and simulation based on the RLS 

algorithm is done for the above signal which is corrupted with 

the standard noise. The selected filter order is 16 with a 

lambda and delta [5] as 1 along with AR (1) coefficients a1= 

0.8 and a2= -0.6 from the literature [7]. By executing the 

algorithm using all the above parameters results the use of the 

RLS in noise reduction.  Fig. 3 shows the simulation results 

which contains the noise corrupted signal and the filtered 

output after passing through the RLS adaptive filter. As the 

used filter order is 16, noise reduction is somewhat better in 

comparison to that of the LMS.  
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Fig. 4 Learning curve of RLS 

Fig. 4 shows the learning curve which is plotted as error 

versus number of iterations. In the reference paper [5] 

different filter orders has been considered for the LMS and 

RLS. Hence in this, for the sake of comparison the same input 

parameters have been considered and the simulation results 

were obtained along with the calculation of performance 

measures described in Tab. 1. Plotting the learning curve is 

mandatory if the adaptive filtering techniques like the LMS, 

RLS were used in any application. By using this curve we can 

easily identify the minimal of error at a particular iteration 

count. The RLS shows better performance in error reduction 

compared to the LMS. But the RLS also suffers with the 

problem that occurs when there is no input signal for longer 

time and is also very much sensitive to computer round off 

errors which results in negative values that leads to instability. 
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With the use of some factorization algorithms these problems 

can be reduced-[8].  

4.3 Simulation based on EMD algorithm 
The design and simulation of the EMD is done for the same 

noise corrupted signal [5] which is considered for the above 

two algorithms. The simplicity of this algorithm is that there 

is no need to specify the input parameters like filter order, step 

factor, lambda, delta, etc. The only requirement to be satisfied 

is the necessity of input signal considered for decomposition 

has to obey the ‘non-monotonic property’. Hence this method 

is popularly used in the analysis of non-linear and non-

stationary applications. As the above input signal satisfies the 

non-monotonic property the EMD has reduced the noise up to 

a maximum extent. Fig. 5 shows the simulation results which 

contains the noise corrupted signal and the output signal after 

passing through the EMD. The shape of the output signal is 

slightly disturbed because of the influence of the noise signal 

at earlier stages of IMF calculation. Fig. 6 shows the learning 

curve which is plotted as error versus number of iterations. 

From the learning curve of the EMD we can observe that the 

magnitude of the error is less in comparison with adaptive 

algorithms. For plotting the learning curve the error 

considered here is the summation of all IMF’s.  

0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

time

A
m

p
li
tu

d
e

Noise corrupted signal

 

0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5

time

A
m

p
li
tu

d
e

Output signal of EMD algorithm

 
Fig. 5 Noise corrupted signal (upper row), EMD output 

(lower row) 
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Fig. 6 Learning curve of EMD 

Tab. 1 shows the calculated parameters using Eqns (5-8) for 

the three algorithms used in the noise reduction application. 

From Tab.1 we can observe greater reduction of the RMSE in 

the EMD. The SNR value obtained for the LMS and the RLS 

is negative, but it is positive for the EMD. The ENAE and Ebias 

are obtained somewhat well for the RLS due to the filter order 

considered [5] is 16. The RLS also exhibits poor performance 

if the filter order considered is less. From Tab.1 we can 

observe the performance measures of the RLS if the filter 

order was taken as 2 (like for the LMS).  

 

 

Algorithm RMSE ENAE SNR EBias 

 

LMS 

(Filter 

order 2) 

 

1.4269 

 

29.9204 

 

-6.0983 

 

0.0880 

 

RLS 

(Filter 

order 2) 

 

1.2163 

 

25.2539 

 

-4.7114 

 

0.1239 

 

RLS 

(Filter 

order 16) 

 

0.7754 

 

10.8783 

 

-0.8004 

 

0.2065 

 

EMD 0.6765 15.3132 0.3839 0.4952 

 

Table 1: Calculated values of performance measures 

 

The basic issues in any adaptive implementation are speed, 

complexity and stability. The LMS algorithm is slow and 

simple and the RLS algorithm is fast and complex. But as per 

stability requirements both LSM and RLS exhibits stable 

performance [9]. Among the three algorithms, the EMD 

shows better performance in noise reduction application. 

EMD also exhibits stable performance along with moderate 

speed and less complexity. Hence this method is popularly 

used for the non-linear and non-stationary signal analysis. The 

simulation work carried out in this paper can be considered as 

offline work. This EMD can also be efficiently used for online 

signal processing applications [10]. 

 

5. CONCLUSIONS 
In the paper the EMD is presented as an adaptive filtering 

technique which is capable of reducing the effect of standard 

noise corrupting the original signal. The performance 

measures calculated in the paper discriminated the 

performance of the EMD with the conventional adaptive 
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filtering techniques used here. It has been shown that in non-

stationary noise environments and low-SNR conditions, the 

proposed algorithm used here provides the enhancement of 

the performance levels like describing by SNR, RMSE, etc. 

 

It is obvious that this EMD technique has a great potential. It 

is not only limited to the domain of signal enhancement but 

also it does not possess any filter order like LMS and RLS. 

The principles may be applied and integrated to a wide range 

of solutions. It also presents exciting possibilities for 2-D 

signals. However, the EMD is a promising new addition to 

existing tool-boxes for non-stationary and non-linear signal 

processing. But it still needs to be better understood. The 

results reported here are believed to provide a new insight on 

the EMD and its use, but they are merely of an experimental 

nature and they clearly call for further studies devoted to more 

theoretical approaches. 
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